Prediction of Land Surface Temperature Considering Future Land Use Change Effects under Climate Change Scenarios in Nanjing City, China
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
2.2.1. Landsat Data
2.2.2. LULC and Its Driving Factors
3. Methodology
3.1. LST Derivation
3.1.1. Calculation of Proportion of Vegetation
3.1.2. Calculation of Surface Emissivity
3.1.3. Calculation of LST
3.2. Acquisition of Potential Driving Factors of LST
3.3. Simulation of the Future LULC Data Using the PLUS Model
3.4. Projection of Future LST
3.5. UHI Intensity Calculation and Classification
4. Results
4.1. Spatiotemporal Patterns of LST during 1990–2020
4.2. Simulation of LULC Data in Nanjing for 2025 and 2030
4.3. Simulation of Coverage Indices in Nanjing for 2025 and 2030
4.4. Predicting LST of Nanjing in 2025 and 2030
4.5. Spatiotemporal Distribution of UHI Intensity Levels
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hamstead, Z.A.; Kremer, P.; Larondelle, N.; McPhearson, T.; Haase, D. Classification of the heterogeneous structure of urban landscapes (STURLA) as an indicator of landscape function applied to surface temperature in New York City. Ecol. Indic. 2016, 70, 574–585. [Google Scholar] [CrossRef]
- He, B.J.; Wang, J.S.; Zhu, J.; Qi, J.D. Beating the urban heat: Situation, background, impacts and the way forward in China. Renew. Sust. Energy Rev. 2022, 161, 112350. [Google Scholar] [CrossRef]
- Lai, J.M.; Zhan, W.F.; Quan, J.L.; Bechtel, B.; Wang, K.C.; Zhou, J.; Huang, F.; Chakraborty, T.; Liu, Z.H.; Lee, X. Statistical estimation of next-day nighttime surface urban heat islands. ISPRS J. Photogramm. 2021, 176, 182–195. [Google Scholar] [CrossRef]
- Hashim, B.M.; Al Maliki, A.; Sultan, M.A.; Shahid, S.; Yaseen, Z.M. Effect of land use land cover changes on land surface temperature during 1984–2020: A case study of Baghdad city using landsat image. Nat. Hazards 2022, 112, 1223–1246. [Google Scholar] [CrossRef]
- Bokaie, M.; Zarkesh, M.K.; Arasteh, P.D.; Hosseini, A. Assessment of Urban Heat Island based on the relationship between land surface temperature and Land Use/Land Cover in Tehran. Sustain. Cities Soc. 2016, 23, 94–104. [Google Scholar] [CrossRef]
- Zhou, D.C.; Xiao, J.F.; Frolking, S.; Liu, S.G.; Zhang, L.X.; Cui, Y.P.; Zhou, G.Y. Croplands intensify regional and global warming according to satellite observations. Remote Sens. Environ. 2021, 264, 112585. [Google Scholar] [CrossRef]
- Shen, P.K.; Zhao, S.Q.; Ma, Y.J. Perturbation of Urbanization to Earth’s Surface Energy Balance. J. Geophys. Res.-Atmos. 2021, 126, e2020JD033521. [Google Scholar] [CrossRef]
- Singh, P.; Kikon, N.; Verma, P. Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustain. Cities Soc. 2017, 32, 100–114. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Yang, R.X.; Xiao, X.M.; Xia, J.H. Contribution of urban functional zones to the spatial distribution of urban thermal environment. Build. Environ. 2022, 216, 109000. [Google Scholar] [CrossRef]
- Anderson, G.B.; Bell, M.L. Heat Waves in the United States: Mortality Risk during Heat Waves and Effect Modification by Heat Wave Characteristics in 43 U.S. Communities. Environ. Health Perspect. 2011, 119, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Zhan, W.F.; Liu, Z.H.; Bechtel, B.; Li, J.F.; Lai, J.M.; Fu, H.Y.; Li, L.; Huang, F.; Wang, C.L.; Chen, Y.Y. Urban-Rural Gradient in Urban Heat Island Variations Responsive to Large-Scale Human Activity Changes During Chinese New Year Holiday. Geophys. Res. Lett. 2022, 49, e2022GL100689. [Google Scholar] [CrossRef]
- Pour, S.H.; Abd Wahab, A.K.; Shahid, S.; Asaduzzaman, M.; Dewan, A. Low impact development techniques to mitigate the impacts of climate-change-induced urban floods: Current trends, issues and challenges. Sustain. Cities Soc. 2020, 62, 102373. [Google Scholar] [CrossRef]
- United Nations. World Urbanization Prospectus: The 2014 Revision; Department of Economic and Social Affairs: New York, NY, USA, 2014; pp. 7–9. Available online: https://population.un.org/wup/Publications/Files/WUP2014-Report.pdf (accessed on 27 December 2022).
- Ayanlade, A. Seasonality in the daytime and night-time intensity of land surface temperature in a tropical city area. Sci. Total Environ. 2016, 557, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Cao, W.; Liu, Y.; Lu, B.B. The impacts of landscape patterns spatio-temporal changes on land surface temperature from a multi-scale perspective: A case study of the Yangtze River Delta. Sci. Total Environ. 2022, 821, 153381. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.C.; Han, N.L.; Hu, K.; Yu, M.; Li, X.Q. The impact of land-use changes on the spatio-temporal variation of carbon storage in the central mountainous area of Hainan Island. J. Nanjing For. Univ. 2023, 47, 115–122. [Google Scholar] [CrossRef]
- Song, S.; Shi, M.X.; Hu, S.S.; Wang, S.H.; Xu, D.W. Evolutions and driving mechanisms of urban blue-green spaces in northeast China: A case study with the urban central district of Harbin City. J. Nanjing For. Univ. 2022, 46, 221–229. [Google Scholar] [CrossRef]
- Huang, J.S.; Gao, X.D.; Jing, W.P. Research on remote sensing change monitoring of urban land types based on BOVW and SVM. J. Nanjing For. Univ. 2023, 47, 37–44. [Google Scholar] [CrossRef]
- Buyantuyev, A.; Wu, J.G. Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landsc. Ecol. 2010, 25, 17–33. [Google Scholar] [CrossRef]
- Feng, Y.J.; Li, H.P.; Tong, X.H.; Chen, L.J.; Liu, Y. Projection of land surface temperature considering the effects of future land change in the Taihu Lake Basin of China. Glob. Planet. Chang. 2018, 167, 24–34. [Google Scholar] [CrossRef]
- Kumar, D.; Shekhar, S. Statistical analysis of land surface temperature-vegetation indexes relationship through thermal remote sensing. Ecotoxicol. Environ. Safe. 2015, 121, 39–44. [Google Scholar] [CrossRef]
- Shen, W.J.; Ji, M.; Li, M.S. Review on monitoring methods of the effects of forest changes on regional temperature based on multi-source remote sensing data. J. Nanjing For. Univ. 2022, 46, 1–11. [Google Scholar] [CrossRef]
- Liu, Z.H.; Zhan, W.F.; Bechtel, B.; Voogt, J.; Lai, J.M.; Chakraborty, T.; Wang, Z.H.; Li, M.C.; Huang, F.; Lee, X.H. Surface warming in global cities is substantially more rapid than in rural background areas. Commun. Earth Environ. 2022, 3, 219. [Google Scholar] [CrossRef]
- Islam, T.; Hulley, G.C.; Malakar, N.K.; Radocinski, R.G.; Guillevic, P.C.; Hook, S.J. A Physics-Based Algorithm for the Simultaneous Retrieval of Land Surface Temperature and Emissivity From VIIRS Thermal Infrared Data. IEEE Trans. Geosci. Remote 2017, 55, 563–576. [Google Scholar] [CrossRef]
- Streutker, D.R. Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sens. Environ. 2003, 85, 282–289. [Google Scholar] [CrossRef]
- Meng, Q.Y.; Zhang, L.L.; Sun, Z.H.; Meng, F.; Wang, L.; Sun, Y.X. Characterizing spatial and temporal trends of surface urban heat island effect in an urban main built-up area: A 12-year case study in Beijing, China. Remote Sens. Environ. 2018, 204, 826–837. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Odeh, I.O.A.; Han, C.F. Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. Int. J. Appl. Earth Obs. 2009, 11, 256–264. [Google Scholar] [CrossRef]
- You, M.Z.; Lai, R.W.; Lin, J.Y.; Zhu, Z.S. Quantitative Analysis of a Spatial Distribution and Driving Factors of the Urban Heat Island Effect: A Case Study of Fuzhou Central Area, China. Int. J. Environ. Res. Public Health 2021, 18, 13088. [Google Scholar] [CrossRef] [PubMed]
- Muthamilselvan, A.; Srimadhi, K.; Ramalingam, N.; Pavithra, P. Urbanization and its related environmental problem in Srirangam Island, Tiruchirappalli district of Tamil Nadu, India-Thermal Remote Sensing and GIS approach. Environ. Earth Sci. 2016, 75, 765. [Google Scholar] [CrossRef]
- Song, J.Y.; Wang, Z.H. Interfacing the Urban Land-Atmosphere System Through Coupled Urban Canopy and Atmospheric Models. Bound.-Layer Meteorol. 2015, 154, 427–448. [Google Scholar] [CrossRef]
- Meng, C.L. Variational Assimilation of the Impervious Surfaces Temperature. Atmosphere 2020, 11, 380. [Google Scholar] [CrossRef] [Green Version]
- Li, J.X.; Song, C.H.; Cao, L.; Zhu, F.G.; Meng, X.L.; Wu, J.G. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Tran, D.X.; Pla, F.; Latorre-Carmona, P.; Myint, S.W.; Gaetano, M.; Kieu, H.V. Characterizing the relationship between land use land cover change and land surface temperature. ISPRS J. Photogramm. 2017, 124, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Guan, Q.F.; Clarke, K.C.; Liu, S.S.; Wang, B.Y.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban 2021, 85, 101569. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Li, X.; Mao, Y.T.; Li, L.; Wang, X.R.; Lin, Q. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Tian, L.; Tao, Y.; Fu, W.X.; Li, T.; Ren, F.; Li, M.Y. Dynamic Simulation of Land Use/Cover Change and Assessment of Forest Ecosystem Carbon Storage under Climate Change Scenarios in Guangdong Province, China. Remote Sens. 2022, 14, 2330. [Google Scholar] [CrossRef]
- Nanjing Municipal Bureau of Statistics. Nanjing Statistical Yearbook; Nanjing Municipal Bureau of Statistics: Nanjing, China, 2021.
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Ermida, S.L.; Soares, P.; Mantas, V.; Gottsche, F.M.; Trigo, I.E. Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef] [Green Version]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Hughes, M.J.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef] [Green Version]
- U.S. Geological Survey. Landsat Surface Reflectance Data, 2015–3034; U.S. Geological Survey: Reston, VA, USA, 2015; p. 1. [CrossRef]
- Lai, L.; Huang, X.J.; Yang, H.; Chuai, X.W.; Zhang, M.; Zhong, T.Y.; Chen, Z.G.; Chen, Y.; Wang, X.; Thompson, J.R. Carbon emissions from land-use change and management in China between 1990 and 2010. Sci. Adv. 2016, 2, e1601063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elvidge, C.D.; Zhizhin, M.; Ghosh, T.; Hsu, F.C.; Taneja, J. Annual Time Series of Global VIIRS Nighttime Lights Derived from Monthly Averages: 2012 to 2019. Remote Sens. 2021, 13, 922. [Google Scholar] [CrossRef]
- Peng, S.Z.; Ding, Y.X.; Wen, Z.M.; Chen, Y.M.; Cao, Y.; Ren, J.Y. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. Forest Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Murakami, D.; Yoshida, T.; Yamagata, Y. Gridded GDP Projections Compatible with the Five SSPs (Shared Socioeconomic Pathways). Front. Built Environ. 2021, 7, 760306. [Google Scholar] [CrossRef]
- Chen, Y.D.; Guo, F.; Wang, J.C.; Cai, W.J.; Wang, C.; Wang, K.C. Provincial and gridded population projection for China under shared socioeconomic pathways from 2010 to 2100. Sci. Data 2020, 7, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meehl, G.A.; Boer, G.J.; Covey, C.; Latif, M.; Stouffer, R.J. The Coupled Model Intercomparison Project (CMIP). Bull. Am. Meteorol. Soc. 2000, 81, 313–318. [Google Scholar] [CrossRef]
- Meehl, G.A.; Covey, C.; Delworth, T.; Latif, M.; McAvaney, B.; Mitchell, J.F.B.; Stouffer, R.J.; Taylor, K.E. The WCRP CMIP3 multimodel dataset—A new era in climate change research. Bull. Am. Meteorol. Soc. 2007, 88, 1383–1394. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Cook, B.I.; Mankin, J.S.; Marvel, K.; Williams, A.P.; Smerdon, J.E.; Anchukaitis, K.J. Twenty-First Century Drought Projections in the CMIP6 Forcing Scenarios. Earths Future 2020, 8, e2019EF001461. [Google Scholar] [CrossRef] [Green Version]
- Hurtt, G.C.; Chini, L.; Sahajpal, R.; Frolking, S.; Bodirsky, B.L.; Calvin, K.; Doelman, J.C.; Fisk, J.; Fujimori, S.; Goldewijk, K.K.; et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 2020, 13, 5425–5464. [Google Scholar] [CrossRef]
- Yun, X.; Tang, Q.; Li, J.; Lu, H.; Zhang, L.; Chen, D. Can reservoir regulation mitigate future climate change induced hydrological extremes in the Lancang-Mekong River Basin? Sci. Total Environ. 2021, 785, 147322. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Hishe, S.; Lyimo, J.; Bewket, W. Effects of soil and water conservation on vegetation cover: A remote sensing based study in the Middle Suluh River Basin, northern Ethiopia. Environ. Syst. Res. 2017, 6, 26. [Google Scholar] [CrossRef]
- Ottle, C.; Stoll, M. Effect of atmospheric absorption and surface emissivity on the determination of land surface temperature from infrared satellite data. Int. J. Remote Sens. 1993, 14, 2025–2037. [Google Scholar] [CrossRef]
- Eastman, J.R.; Sangermano, F.; Machado, E.A.; Rogan, J.; Anyamba, A. Global Trends in Seasonality of Normalized Difference Vegetation Index (NDVI), 1982–2011. Remote Sens. 2013, 5, 4799–4818. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.L.; Hao, D.L.; Huete, A.; Dechant, B.; Berry, J.; Chen, J.M.; Joiner, J.; Frankenberg, C.; Bond-Lamberty, B.; Ryu, Y.; et al. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nat. Rev. Earth Environ. 2022, 3, 447–493. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S.X. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Varshney, A. Improved NDBI differencing algorithm for built-up regions change detection from remote-sensing data: An automated approach. Remote Sens. Lett. 2013, 4, 504–512. [Google Scholar] [CrossRef]
- Xu, H.Q. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Davranche, A.; Lefebvre, G.; Poulin, B. Wetland monitoring using classification trees and SPOT-5 seasonal time series. Remote Sens. Environ. 2010, 114, 552–562. [Google Scholar] [CrossRef] [Green Version]
- Hui, F.M.; Xu, B.; Huang, H.B.; Yu, Q.; Gong, P. Modelling spatial-temporal change of Poyang Lake using multitemporal Landsat imagery. Int. J. Remote Sens. 2008, 29, 5767–5784. [Google Scholar] [CrossRef]
- Poulin, B.; Davranche, A.; Lefebvre, G. Ecological assessment of Phragmites australis wetlands using multi-season SPOT-5 scenes. Remote Sens. Environ. 2010, 114, 1602–1609. [Google Scholar] [CrossRef] [Green Version]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Liu, Q.S.; Liu, G.H.; Huang, C.; Xie, C.J. Comparison of tasselled cap transformations based on the selective bands of Landsat 8 OLI TOA reflectance images. Int. J. Remote Sens. 2015, 36, 417–441. [Google Scholar] [CrossRef]
- Crist, E.P. A TM Tasseled Cap equivalent transformation for reflectance factor data. Remote Sens. Environ. 1985, 17, 301–306. [Google Scholar] [CrossRef]
- Unger, J.; Gál, T.; Rakonczai, J.; Mucsi, L.; Szatmári, J.; Tobak, Z.; Van Leeuwen, B.; Fiala, K. Air temperature versus surface temperature in urban environmen. In Proceedings of the Seventh International Conference on Urban Climate, Yokohama, Japan, 17 December 2009. [Google Scholar]
- Li, J.Y.; Chen, X.; Kurban, A.; Van de Voorde, T.; De Maeyer, P.; Zhang, C. Coupled SSPs-RCPs scenarios to project the future dynamic variations of water-soil-carbon-biodiversity services in Central Asia. Ecol. Indic. 2021, 129, 107936. [Google Scholar] [CrossRef]
- Zhai, H.; Lv, C.Q.; Liu, W.Z.; Yang, C.; Fan, D.S.; Wang, Z.K.; Guan, Q.F. Understanding Spatio-Temporal Patterns of Land Use/Land Cover Change under Urbanization in Wuhan, China, 2000–2019. Remote Sens. 2021, 13, 3331. [Google Scholar] [CrossRef]
- Munsi, M.; Areendran, G.; Joshi, P.K. Modeling spatio-temporal change patterns of forest cover: A case study from the Himalayan foothills (India). Reg. Environ. Chang. 2012, 12, 619–632. [Google Scholar] [CrossRef]
- Rahman, M.T.; Aldosary, A.S.; Mortoja, M.G. Modeling Future Land Cover Changes and Their Effects on the Land Surface Temperatures in the Saudi Arabian Eastern Coastal City of Dammam. Land 2017, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.M.; Wang, X.H.; Yan, D.J.; Liu, Z.; Zhou, Y.F. Analysis of remotely-sensed ecological indexes’ influence on urban thermal environment dynamic using an integrated ecological index: A case study of Xi’an, China. Int. J. Remote Sens. 2019, 40, 3421–3447. [Google Scholar] [CrossRef]
- Yang, G.Y.; Yu, Z.W.; Jorgensen, G.; Vejre, H. How can urban blue-green space be planned for climate adaption in high-latitude cities? A seasonal perspective. Sustain. Cities Soc. 2020, 53, 101932. [Google Scholar] [CrossRef]
- Abdi, H. Partial least squares regression and projection on latent structure regression (PLS Regression). Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 97–106. [Google Scholar] [CrossRef]
- Smoliak, B.V.; Wallace, J.M.; Lin, P.; Fu, Q. Dynamical Adjustment of the Northern Hemisphere Surface Air Temperature Field: Methodology and Application to Observations. J. Clim. 2015, 28, 1613–1629. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Fu, W.X.; Tao, Y.; Li, M.Y.; Wang, L. Dynamics of the alpine timberline and its response to climate change in the Hengduan mountains over the period 1985–2015. Ecol. Indic. 2022, 135, 108589. [Google Scholar] [CrossRef]
- Hulley, G.; Hook, S. VIIRS/NPP Land Surface Temperature and Emissivity Daily L3 Global 1 km SIN Grid Day V001; NASA EOSDIS Land Processes DAAC: Washington, DC, USA, 2018. [CrossRef]
- Mathew, A.; Khandelwal, S.; Kaul, N. Spatial and temporal variations of urban heat island effect and the effect of percentage impervious surface area and elevation on land surface temperature: Study of Chandigarh city, India. Sustain. Cities Soc. 2016, 26, 264–277. [Google Scholar] [CrossRef]
- Nimish, G.; Bharath, H.A.; Lalitha, A. Exploring temperature indices by deriving relationship between land surface temperature and urban landscape. Remote Sens. Appl. 2020, 18, 100299. [Google Scholar] [CrossRef]
- Qiao, Z.; Tian, G.J.; Xiao, L. Diurnal and seasonal impacts of urbanization on the urban thermal environment: A case study of Beijing using MODIS data. ISPRS J. Photogramm. 2013, 85, 93–101. [Google Scholar] [CrossRef]
- Ma, Y.L.; Yang, K.; Zhang, S.H.; Li, M.C. Impacts of Large-Area Impervious Surfaces on Regional Land Surface Temperature in the Great Pearl River Delta, China. J. Indian Soc. Remote 2019, 47, 1831–1845. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.N.; Zhou, Y.; Liu, D.Y.; Wang, H.T. The dominant factors and influence of urban characteristics on land surface temperature using random forest algorithm. Sustain. Cities Soc. 2022, 79, 103722. [Google Scholar] [CrossRef]
- Zhang, J.G.; Ge, Y. Comparative study on spatial distributions and influencing factors of national forest cities and national garden cities. J. Nanjing For. Univ. 2022, 46, 41–49. [Google Scholar] [CrossRef]
Levels | Definition |
---|---|
Level-1 | |
Level-2 | |
Level-3 | |
Level-4 | |
Level-5 |
Types | 1990 (°C) | 1995 (°C) | 2000 (°C) | 2005 (°C) | 2010 (°C) | 2015 (°C) | 2020 (°C) |
---|---|---|---|---|---|---|---|
Cropland | 23.46 | 23.52 | 23.96 | 24.35 | 24.74 | 25.06 | 25.11 |
Forest | 23.01 | 23.05 | 23.40 | 24.03 | 24.27 | 24.42 | 24.39 |
Water | 21.72 | 22.00 | 22.57 | 22.79 | 23.12 | 23.29 | 23.41 |
Imperious surface | 25.33 | 25.17 | 25.64 | 25.94 | 26.42 | 27.35 | 27.57 |
Scenarios | Cropland | Forest | Grassland or Shrub | Water | Imperious Surface | Total | ||
---|---|---|---|---|---|---|---|---|
2020 | Area (km2) | 4139.20 | 402.88 | 0.23 | 684.21 | 1371.95 | 6598.48 | |
Percent | 62.73 | 6.11 | 0.00 | 10.37 | 20.79 | 100.00 | ||
SSP126 | 2025 | Area (km2) | 4104.71 | 412.25 | 0.13 | 683.37 | 1398.02 | 6598.48 |
Percent | 62.21 | 6.25 | 0.00 | 10.36 | 21.19 | 100.00 | ||
2030 | Area (km2) | 4063.03 | 416.32 | 0.10 | 683.37 | 1435.66 | 6598.48 | |
Percent | 61.58 | 6.31 | 0.00 | 10.36 | 21.76 | 100.00 | ||
SSP245 | 2025 | Area (km2) | 4086.16 | 381.46 | 0.10 | 683.37 | 1447.38 | 6598.48 |
Percent | 61.93 | 5.78 | 0.00 | 10.36 | 21.94 | 100.00 | ||
2030 | Area (km2) | 4011.60 | 363.22 | 0.06 | 683.37 | 1540.24 | 6598.48 | |
Percent | 60.80 | 5.50 | 0.00 | 10.36 | 23.34 | 100.00 | ||
SSP585 | 2025 | Area (km2) | 4055.01 | 346.54 | 0.17 | 683.37 | 1513.39 | 6598.48 |
Percent | 61.45 | 5.25 | 0.00 | 10.36 | 22.94 | 100.00 | ||
2030 | Area (km2) | 3953.28 | 302.64 | 0.12 | 683.40 | 1659.03 | 6598.48 | |
Percent | 59.91 | 4.59 | 0.00 | 10.36 | 25.14 | 100.00 |
Types | SSP126 | SSP245 | SSP585 | |||
---|---|---|---|---|---|---|
2025 (°C) | 2030 (°C) | 2025 (°C) | 2030 (°C) | 2025 (°C) | 2030 (°C) | |
Cropland | 25.06 | 25.36 | 25.30 | 25.53 | 25.52 | 26.23 |
Forest | 24.36 | 24.25 | 24.48 | 24.72 | 24.71 | 25.18 |
Water | 23.44 | 23.52 | 23.61 | 23.82 | 23.64 | 24.02 |
Imperious surface | 27.62 | 27.67 | 27.84 | 28.09 | 28.11 | 28.94 |
Difference (°C) | SSP126 | SSP245 | SSP585 | |||
---|---|---|---|---|---|---|
2020–2025 | 2020–2030 | 2020–2025 | 2020–2030 | 2020–2025 | 2020–2030 | |
<0 | 1.42% | 1.72% | 0.49% | 0.52% | 0.20% | 0.11% |
0–1 | 95.77% | 85.79% | 90.77% | 71.93% | 79.45% | 54.09% |
1–3 | 2.81% | 12.44% | 8.43% | 26.37% | 19.35% | 41.82% |
>3 | 0.00% | 0.05% | 0.30% | 1.19% | 1.00% | 3.97% |
Total | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% |
Levels | SSP126 | SSP245 | SSP585 | |||
---|---|---|---|---|---|---|
2025 | 2030 | 2025 | 2030 | 2025 | 2030 | |
None | 42.22% | 36.05% | 34.94% | 26.51% | 27.58% | 10.38% |
Level-1 | 45.56% | 51.20% | 50.65% | 56.37% | 55.15% | 64.28% |
Level-2 | 8.25% | 8.72% | 9.25% | 10.07% | 10.30% | 11.15% |
Level-3 | 3.53% | 3.70% | 4.47% | 6.30% | 5.90% | 10.31% |
Level-4 | 0.41% | 0.32% | 0.66% | 0.73% | 1.02% | 3.74% |
Level-5 | 0.02% | 0.01% | 0.03% | 0.02% | 0.05% | 0.14% |
Total | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, L.; Tao, Y.; Li, M.; Qian, C.; Li, T.; Wu, Y.; Ren, F. Prediction of Land Surface Temperature Considering Future Land Use Change Effects under Climate Change Scenarios in Nanjing City, China. Remote Sens. 2023, 15, 2914. https://doi.org/10.3390/rs15112914
Tian L, Tao Y, Li M, Qian C, Li T, Wu Y, Ren F. Prediction of Land Surface Temperature Considering Future Land Use Change Effects under Climate Change Scenarios in Nanjing City, China. Remote Sensing. 2023; 15(11):2914. https://doi.org/10.3390/rs15112914
Chicago/Turabian StyleTian, Lei, Yu Tao, Mingyang Li, Chunhua Qian, Tao Li, Yi Wu, and Fang Ren. 2023. "Prediction of Land Surface Temperature Considering Future Land Use Change Effects under Climate Change Scenarios in Nanjing City, China" Remote Sensing 15, no. 11: 2914. https://doi.org/10.3390/rs15112914
APA StyleTian, L., Tao, Y., Li, M., Qian, C., Li, T., Wu, Y., & Ren, F. (2023). Prediction of Land Surface Temperature Considering Future Land Use Change Effects under Climate Change Scenarios in Nanjing City, China. Remote Sensing, 15(11), 2914. https://doi.org/10.3390/rs15112914