A Disturbance Frequency Index in Earthquake Forecast Using Radio Occultation Data
Abstract
:1. Introduction
2. Inverse Algorithm in Ionospheric Occultation
2.1. Data Preprocessing
2.2. Doppler Inverse Algorithm
2.3. TEC Inverse Algorithm
3. Seismo-Ionospheric Monitoring Mechanism
4. Disturbance Frequency Index in Earthquake Forecasting
4.1. 2022 Ya’an Earthquake Data
4.2. Change in the Maximum Electron Density
4.3. Change in the Critical Frequency at Maximum Electron Density
4.4. The Disturbance Frequency
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Data Preprocessing
Appendix B. Doppler Inverse Algorithm
Appendix C. TOC Inverse Algorithm
References
- Hocke, K.; Pavelyev, A.G.; Yakovlev, O.I.; Barthes, L.; Jakowski, N. Radio occultation data analysis by the radioholographic method. J. Atmos. Sol. Terr. Phys. 1999, 61, 1169–1177. [Google Scholar] [CrossRef]
- Sokolovskiy, S.V. Modeling and inverting radio occultation signals in the moist troposphere. Radio Sci. 2001, 36, 441–458. [Google Scholar] [CrossRef] [Green Version]
- Ringer, M.A.; Healy, S.B. Monitoring twenty-first century climate using GPS radio occultation bending angles. Geophys. Res. Lett. 2008, 35, 32462. [Google Scholar] [CrossRef] [Green Version]
- Shao, H.; Zou, X.; Hajj, G.A. Test of a non-local excess phase delay operator for GPS radio occultation data assimilation. J. Appl. Remote Sens. 2009, 3, 033508. [Google Scholar] [CrossRef]
- Padullés, R.; Cardellach, E.; Wang, K.-N.; Ao, C.O.; Turk, F.J.; de la Torre-Juárez, M. Assessment of global navigation satellite system (GNSS) radio occultation refractivity under heavy precipitation. Atmos. Meas. Tech. 2018, 18, 11697–11708. [Google Scholar] [CrossRef] [Green Version]
- Schreiner, W.S.; Weiss, J.P.; Anthes, R.A.; Braun, J.; Chu, V.; Fong, J.; Hunt, D.; Kuo, Y.H.; Meehan, T.; Serafino, W.; et al. COSMIC-2 radio occultation constellation: First results. Geophys. Res. Lett. 2020, 47, e2019GL086841. [Google Scholar] [CrossRef]
- Chen, W.; Tenzer, R. Reformulation of Parker–Oldenburg’s method for Earth’s spherical approximation. Geophys. J. Int. 2020, 222, 1046–1073. [Google Scholar] [CrossRef]
- Zeng, Z.; Sokolovskiy, S. Effect of sporadic E clouds on GPS radio occultation signals. Geophys. Res. Lett. 2010, 37, 44561. [Google Scholar] [CrossRef]
- Cucurull, L.; Derber, J.C.; Purser, R.J. A bending angle forward operator for global positioning system radio occultation measurements. J. Geophys. Res. Atmos. 2013, 118, 14–28. [Google Scholar] [CrossRef]
- Healy, S.B. Radio occultation bending angle and impact parameter errors caused by horizontal refractive index gradients in the troposphere: A simulation study. J. Geophys. Res. Atmos. 2001, 106, 11875–11889. [Google Scholar] [CrossRef]
- Yue, X.; Schreiner, W.S.; Lin, Y.-C.; Rocken, C.; Kuo, Y.-H.; Zhao, B. Data assimilation retrieval of electron density profiles from radio occultation measurements. J. Geophys. Res. Atmos. 2011, 116, 15980. [Google Scholar] [CrossRef] [Green Version]
- Jensen, A.S.; Lohmann, M.S.; Nielsen, A.S.; Von Benzon, H.-H. Geometrical optics phase matching of radio occultation signals. Radio Sci. 2004, 39, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Emelianov, N.V.; Irsmambetova, T.R.; Kiseleva, T.P.; Tejfel, V.G.; Vashkovjak, S.N.; Glushkova, E.A.; Kornilov, V.G.; Charitonova, G.A. Photometry and position observations of Saturnian satellites during their mutual eclipses and occultations in 1995 performed at the Observatories in Russia and Kazakhstan. Astron. Astrophys. Suppl. Ser. 1999, 139, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Xian-Yi, W.; Yue-Qiang, S.; Wei-Hua, B.; Qi-Fei, D.; Dong-Wei, W.; Di, W.; Qing-Long, Y.; Ying, H. Simulation of Number and Distribution of Compass Occultation Events. Chin. J. Geophys. 2013, 56, 373–381. [Google Scholar] [CrossRef]
- Allen, R.M.; Melgar, D. Earthquake early warning: Advances, scientific challenges, and societal needs. Annu. Rev. Earth Planet. Sci. 2019, 47, 361–388. [Google Scholar] [CrossRef] [Green Version]
- Kunitsyn, V.; Andreeva, E.; Nesterov, I.; Padokhin, A.; Gribkov, D.; Rekenthaler, D.A. Earthquake Prediction Research Using Radio Tomography of the Ionosphere. In Universe of Scales: From Nanotechnology to Cosmology: Symposium in Honor of Minoru M. Freund; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 109–132. [Google Scholar]
- Cornell, C.A. Engineering seismic risk analysis. Bull. Seismol. Soc. Am. 1968, 58, 1583–1606. [Google Scholar] [CrossRef]
- Işık, E.; Sağır, Ç.; Tozlu, Z.; Ustaoğlu, Ü.S. Determination of Urban Earthquake Risk for Kırşehir, Turkey. Earth Sci. Res. J. 2019, 23, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Xinxin, M.; Zhan, L.; Huaran, C.; Honglin, J.; Dahu, L.; Liguo, J.; Xiaocan, L. Ionosphere anomaly before the Wenchuan M S 8.0 earthquake detected by COSMIC occultation data. Acta Seismol. Sin. 2013, 35, 848–855. [Google Scholar]
- Coburn, A.; Spence, R. Earthquake Protection; John Wiley Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Liu, J.Y.; Chuo, Y.J.; Shan, S.J.; Tsai, Y.B.; Chen, Y.I.; Pulinets, S.A.; Yu, S.B. Pre-Earthquake Ionospheric Anomalies Registered by Continuous GPS TEC Measurements. In Annales Geophysicae; Copernicus Publications: Göttingen, Germany, 2004; Volume 22, pp. 1585–1593. [Google Scholar]
- Silina, A.S.; Liperovskaya, E.V.; Liperovsky, V.A.; Meister, C.-V. Ionospheric phenomena before strong earthquakes. Nat. Hazards Earth Syst. Sci. 2001, 1, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Pulinets, S.; Legen’Ka, A.; Gaivoronskaya, T.; Depuev, V. Main phenomenological features of ionospheric precursors of strong earthquakes. J. Atmos. Sol. Terr. Phys. 2003, 65, 1337–1347. [Google Scholar] [CrossRef]
- Leonard, R.S.; Barnes Jr, R.A. Observation of ionospheric disturbances following the Alaska earthquake. J. Geophys. Res. 1965, 70, 1250–1253. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, Y.I.; Chuo, Y.J.; Chen, C.S. A statistical investigation of preearthquake ionospheric anomaly. J. Geophys. Res. Atmos. 2006, 111, 11333. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.T.; Zhao, G.Z.; Zhan, Y.; Tang, J.; Chen, X.B. The study on ionospheric disturbances during earthquakes. Prog. Geophys. 2007, 22, 695–701. [Google Scholar]
- Calais, E.; Minster, J.B. GPS detection of ionospheric perturbations following the January 17, 1994, Northridge Earthquake. Geophys. Res. Lett. 1995, 22, 1045–1048. [Google Scholar] [CrossRef]
- Hauksson, E.; Jones, L.M.; Hutton, K. The 1994 Northridge earthquake sequence in California: Seismological and tectonic aspects. J. Geophys. Res. Solid Earth 1995, 100, 12335–12355. [Google Scholar] [CrossRef]
- Le, H.; Liu, J.; Zhao, B.; Liu, L. Recent progress in ionospheric earthquake precursor study in China: A brief review. J. Asian Earth Sci. 2015, 114, 420–430. [Google Scholar] [CrossRef]
- Lin, J.; Wu, Y.; Zhu, F.Y.; Qiao, X.; Zhou, Y. Wenchuan earthquake ionosphere TEC anomaly detected by GPS. Chin. J. Geophys. 2009, 52, 297–300. [Google Scholar]
- Chuo, Y.J.; Liu, J.Y.; Kamogawa, M. The anomalies in the foEs prior to M ≥ 6.0 Taiwan earthquakes, Seismo Elect romagnetic: Lithosphere Atmosphere Ionosphere coupling. Terrapub 2002, 309–312. [Google Scholar]
- Liu, J.-Y.; Tsai, Y.-B.; Chen, C.-H.; Chen, Y.-I.; Yen, H.-Y. Integrated Search for Taiwan Earthquake Precursors (iSTEP). IEEJ Trans. Fundam. Mater. 2016, 136, 214–220. [Google Scholar] [CrossRef]
- Pulinets, S. Strong earthquake prediction possibility with the help of topside sounding from satellites. Adv. Space Res. 1998, 21, 455–458. [Google Scholar] [CrossRef]
- Pulinets, S.; Boyarchuk, K. Ionospheric Precursors of Earthquakes; Springer Science Business Media: Berlin, Germany, 2004. [Google Scholar]
- Liu, L.; Wan, W.; Zhang, M.-L.; Zhao, B. Case Study on Total Electron Content Enhancements at Low Latitudes during Low Geomagnetic Activities before the Storms. In Annales Geophysicae; Copernicus GmbH: Göttingen, Germany, 2008; Volume 26, pp. 893–903. [Google Scholar]
- Ding, Z.H.; Wu, J.; Sun, S.J.; Chen, J.S.; Ban, P.P. The variation of ionosphere on some days before the Wenchuan earthquake. Chin. J. Geophys. 2010, 53, 30–38. [Google Scholar]
- Parrot, M.; Berthelier, J.J.; Lebreton, J.P.; Sauvaud, J.A.; Santolík, O.; Blecki, J. Examples of unusual ionospheric observations made by the DEMETER satellite over seismic regions. Phys. Chem. Earth Parts A/B/C 2006, 31, 486–495. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, M.; Yu, T.; Wan, W.; Lei, J.; Liu, L.; Ning, B. Is an unusual large enhancement of ionospheric electron density linked with the 2008 great Wenchuan earthquake? J. Geophys. Res. Space Phys. 2008, 113, 13613. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, C.H.; Tsai, H.F.; Le, H. A statistical study on seismo-ionospheric anomalies of the total electron content for the period of 56 M≥ 6.0 earthquakes occurring in China during 1998–2012. Chin. J. Space Sci. 2013, 33, 258–269. [Google Scholar]
- Vidale, J.E.; Shearer, P.M. A survey of 71 earthquake bursts across southern California: Exploring the role of pore fluid pressure fluctuations and aseismic slip as drivers. J. Geophys. Res. Atmos. 2006, 111, B05312. [Google Scholar] [CrossRef] [Green Version]
- Masci, F.; Thomas, J.N.; Villani, F.; Secan, J.A.; Rivera, N. On the onset of ionospheric precursors 40 min before strong earthquakes. J. Geophys. Res. Space Phys. 2015, 120, 1383–1393. [Google Scholar] [CrossRef]
- Hao, Y.; Li, Q.; Guo, J.; Zhang, X.; Yang, G.; Zhang, D.; Xiao, Z. Imaging of the large-scale ionospheric disturbances induced by seismic waves using GPS network in China. Chin. J. Geophys. 2021, 64, 3925–3932. [Google Scholar]
- Hayakawa, M.; Molchanov, O.A. Summary report of NASDA’s earthquake remote sensing frontier project. Phys. Chem. Earth Parts A/B/C 2004, 29, 617–625. [Google Scholar] [CrossRef]
- Shvets, A.V.; Hayakawa, M.; Maekawa, S. Results of subionospheric radio LF monitoring prior to the Tokachi (m= 8, Hokkaido, 25 September 2003) earthquake. Nat. Hazards Earth Syst. Sci. 2004, 4, 647–653. [Google Scholar] [CrossRef] [Green Version]
- Ohta, K.; Izutsu, J.; Schekotov, A.; Hayakawa, M. The ULF/ELF electromagnetic radiation before the 11 March 2011 Japanese earthquake. Radio Sci. 2013, 48, 589–596. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Ouzounov, D.; Ciraolo, L.; Singh, R.; Cervone, G.; Leyva, A.; Dunajecka, M.; Kotsarenko, A. Thermal, Atmospheric and Ionospheric Anomalies around the Time of the Colima M7. 8 Earthquake of 21 January 2003. In Annales Geophysicae; Copernicus GmbH: Göttingen, Germany, 2006; Volume 24, pp. 835–849. [Google Scholar]
- Zhang, Y.; Liu, X.; Guo, J.; Shi, K.; Zhou, M.; Wang, F. Co-Seismic Ionospheric Disturbance with Alaska Strike-Slip Mw7.9 Earthquake on 23 January 2018 Monitored by GPS. Atmosphere 2021, 12, 83. [Google Scholar] [CrossRef]
- Klimenko, M.V.; Klimenko, V.V.; Karpov, I.V.; Zakharenkova, I.E. Simulation of seismo-ionospheric effects initiated by internal gravity waves. Russ. J. Phys. Chem. B 2011, 5, 393–401. [Google Scholar] [CrossRef]
- Dobrovolsky, I.P.; Zubkov, S.I.; Miachkin, V.I. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Němec, F.; Santolík, O.; Parrot, M.; Berthelier, J.J. Spacecraft observations of electromagnetic perturbations connected with seismic activity. Geophys. Res. Lett. 2008, 35, L05109. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Li, Y.; Li, Y.; Sun, S.; Gao, X. A self-adaptive deep learning algorithm for accelerating multi-component flash calculation. Comput. Methods Appl. Mech. Eng. 2020, 369, 113207. [Google Scholar] [CrossRef]
- Behrad, F.; Abadeh, M.S. An overview of deep learning methods for multimodal medical data mining. Expert Syst. Appl. 2022, 200, 117006. [Google Scholar] [CrossRef]
- Jiang, Z.; Petit, G. Combination of TWSTFT and GNSS for accurate UTC time transfer. Metrologia 2009, 46, 305. [Google Scholar] [CrossRef]
- Gorbunov, M.E.; Ao, C.O. Simulation studies of GPS radio occultation measurements. Radio Sci. 2003, 38, 1–5. [Google Scholar]
- Steiner, A.K.; Kirchengast, G.; Ladreiter, H.P. Inversion, Error Analysis, and Validation of GPS/MET Occultation Data. In Annales Geophysicae; Springer: Berlin, Germany, 1998; Volume 17, pp. 122–138. [Google Scholar]
- Xu, X.; Luo, J.; Wang, H.; Liu, H.; Hu, T. Morphology of sporadic E layers derived from Fengyun-3C GPS radio occultation measurements. Earth Planets Space 2022, 74, 55. [Google Scholar] [CrossRef]
- Hasan, M.Z.; Yaacob, S.; Ahmed, A.; Hamzah, N.H.; Yaakob, S.B.; Idris, M.H.; Said, A. Analysis on attitude position of earth centered inertial (ECI) based on razaksat data. J. Teknol. 2015, 76, 5887. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J. Conversion of Earth-centered Earth-fixed coordinates to geodetic coordinates. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 957–961. [Google Scholar] [CrossRef]
- Capitaine, N.; Gontier, A.M. Accurate procedure for deriving UTI at a submilliarcsecond accuracy from Greenwich Sidereal Time or from the stellar angle. Astron. Astrophys. 1993, 275, 645. [Google Scholar]
- Amar, A.; Weiss, A.J. Localization of Narrowband Radio Emitters Based on Doppler Frequency Shifts. IEEE Trans. Signal Process 2008, 56, 5500–5508. [Google Scholar] [CrossRef]
- Schreiner, W.S.; Sokolovskiy, S.V.; Rocken, C.; Hunt, D.C. Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci. 1999, 34, 949–966. [Google Scholar] [CrossRef]
- Seddon, N.; Bearpark, T. Observation of the Inverse Doppler Effect. Science 2003, 302, 1537–1540. [Google Scholar] [CrossRef]
- Emara, M.K.; Hautcoeur, J.; Panther, G.; Wight, J.S.; Gupta, S. Surface Impedance Engineered Low-Profile Dual-Band Grooved-Dielectric Choke Ring for GNSS Applications. IEEE Trans. Antennas Propag. 2019, 67, 2008–2011. [Google Scholar] [CrossRef]
- Petricca, F.; Cascioli, G.; Genova, A. A Technique for the Analysis of Radio Occultation Data to Retrieve Atmospheric Properties and Associated Uncertainties. Radio Sci. 2021, 56, 1–18. [Google Scholar] [CrossRef]
- Claret, A. A new method to compute limb-darkening coefficients for stellar atmosphere models with spherical symmetry: The space missions TESS, Kepler, CoRoT, and MOST. Astron. Astrophys. 2018, 618, A20. [Google Scholar] [CrossRef] [Green Version]
- Mannucci, A.J.; Ao, C.O.; Iijima, B.A.; Meehan, T.K.; Vergados, P.; Kursinski, E.R.; Schreiner, W.S. An assessment of reprocessed GPS/MET observations spanning 1995–1997. Atmos. Meas. Tech. 2021, 15, 4971–4987. [Google Scholar] [CrossRef]
- Forootan, E.; Kosary, M.; Farzaneh, S.; Kodikara, T.; Vielberg, K.; Fernandez-Gomez, I.; Borries, C.; Schumacher, M. Forecasting global and multi-level thermospheric neutral density and ionospheric electron content by tuning models against satellite-based accelerometer measurements. Sci. Rep. 2022, 12, 2095. [Google Scholar] [CrossRef]
- Okoh, D.; Habarulema, J.B.; Rabiu, B.; Seemala, G.; Wisdom, J.B.; Olwendo, J.; Obrou, O.; Matamba, T.M. Storm-time modeling of the African regional ionospheric total electron content using artificial neural networks. Space Weather. 2020, 18, e2020SW002525. [Google Scholar] [CrossRef]
- Cheng, Y.; Lin, J.; Shen, X.; Wan, X.; Li, X.; Wang, W. Analysis of GNSS radio occultation data from satellite ZH-01. Earth Planet. Phys. 2018, 2, 499–504. [Google Scholar] [CrossRef]
- Polat, H.C.; Tekinalp, O. Solar Sail Application with a Proposed Low Earth Orbit Mission Concept. In Proceedings of the 2019 9th International Conference on Recent Advances in Space Technologies (RAST) IEEE, Istanbul, Turkey, 11–14 June 2019; pp. 285–291. [Google Scholar]
- Adhikari, L.; Ho, S.-P.; Zhou, X. Inverting COSMIC-2 Phase Data to Bending Angle and Refractivity Profiles Using the Full Spectrum Inversion Method. Remote Sens. 2021, 13, 1793. [Google Scholar] [CrossRef]
- Peng, G.; Haojian, Y.; Zhenjie, H.; Min, L.; Cheng, H. On the singular point of Abel integral transformation in GPS/LEO occultation technology. Acta Astrono. Sin. 2004, 45, 330–336. [Google Scholar]
- Schreiner, W.; Rocken, C.; Sokolovskiy, S.; Hunt, D. Quality assessment of COSMIC/FORMOSAT-3 GPS radio occultation data derived from single-and double-difference atmospheric excess phase processing. GPS Solut. 2010, 14, 13–22. [Google Scholar] [CrossRef]
- Daun, K.J.; Thomson, K.A.; Liu, F.; Smallwood, G. Deconvolution of axisymmetric flame properties using Tikhonov regularization. Appl. Opt. 2006, 45, 4638–4646. [Google Scholar] [CrossRef]
Index | Minimum | Maximum | Standard Deviation | ||
---|---|---|---|---|---|
Maximum electron density | |||||
Critical frequency | 8.6 | 4.5 | 14.7 | 8.2 | 2.0 |
Coefficient | R | RL | RU |
---|---|---|---|
0.9598 | 0.9473 | 0.9694 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Tan, G.; Bai, W.; Sun, Y.; Wang, Y.; Luo, X.; Song, H.; Sun, S. A Disturbance Frequency Index in Earthquake Forecast Using Radio Occultation Data. Remote Sens. 2023, 15, 3089. https://doi.org/10.3390/rs15123089
Zhang T, Tan G, Bai W, Sun Y, Wang Y, Luo X, Song H, Sun S. A Disturbance Frequency Index in Earthquake Forecast Using Radio Occultation Data. Remote Sensing. 2023; 15(12):3089. https://doi.org/10.3390/rs15123089
Chicago/Turabian StyleZhang, Tao, Guangyuan Tan, Weihua Bai, Yueqiang Sun, Yuhe Wang, Xiaotian Luo, Hongqing Song, and Shuyu Sun. 2023. "A Disturbance Frequency Index in Earthquake Forecast Using Radio Occultation Data" Remote Sensing 15, no. 12: 3089. https://doi.org/10.3390/rs15123089
APA StyleZhang, T., Tan, G., Bai, W., Sun, Y., Wang, Y., Luo, X., Song, H., & Sun, S. (2023). A Disturbance Frequency Index in Earthquake Forecast Using Radio Occultation Data. Remote Sensing, 15(12), 3089. https://doi.org/10.3390/rs15123089