Estimating the Aboveground Biomass of Various Forest Types with High Heterogeneity at the Provincial Scale Based on Multi-Source Data
Abstract
:1. Introduction
- (1)
- To explore the most effective variables for AGB estimation in different forest types in large-scale areas with complex geography and high forest heterogeneity.
- (2)
- To analyze model accuracy for estimating AGB in different forest types and in the same forest type by comparing six machine learning models.
2. Materials and Methods
2.1. Materials
2.1.1. Study Area
2.1.2. Remote Sensing Data Acquisition and Variable Extraction
2.1.3. Environmental Data Collection
2.1.4. Data Collection from Sample Plots and Forest AGB Calculation
2.2. Methods
2.2.1. Variable Selection
2.2.2. Machine Learning Algorithm
- (1)
- Quantile Random Forest (QRF)
- (2)
- Bayesian Regularization Neural Network (BRNN)
- (3)
- Gradient Boosting Machine (GBM)
- (4)
- Random Forests (RF)
- (5)
- Regularized Random Forests (RRF)
- (6)
- k-Nearest Neighbors (k-NN)
2.2.3. Model Evaluation
3. Results
3.1. Importance of Variables for AGB Modeling
3.2. AGB of Different Forest Types Estimated Using Remote Sensing
3.3. Forest Biomass Inversion Estimation
4. Discussion and Conclusions
4.1. Discussion
4.1.1. Variable Selection for AGB Models
4.1.2. Remote Sensing Estimation of Different Forest Types
4.1.3. Limitations and Future Research
4.1.4. Practical Applications
4.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rodenbeck, C.; Arain, M.A.; Baldocchi, D.; Bonan, G.B.; et al. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science 2010, 329, 834–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, S.; Nie, S.; Guan, Y.; Zhang, D.; Wang, C.; Zhang, X. Forest emissions reduction assessment using airborne LiDAR for biomass estimation. Resour. Conserv. Recycl. 2022, 181, 106224. [Google Scholar] [CrossRef]
- Ploton, P.; Barbier, N.; Couteron, P.; Antin, C.M.; Ayyappan, N.; Balachandran, N.; Barathan, N.; Bastin, J.F.; Chuyong, G.; Dauby, G.; et al. Toward a general tropical forest biomass prediction model from very high resolution optical satellite images. Remote Sens. Environ. 2017, 200, 140–153. [Google Scholar] [CrossRef]
- Maia, V.A.; de Souza, C.R.; de Aguiar-Campos, N.; Fagundes, N.C.A.; Santos, A.B.M.; de Paula, G.G.P.; Santos, P.F.; Silva, W.B.; de Oliveira Menino, G.C.; dos Santos, R.M. Interactions between climate and soil shape tree community assembly and above-ground woody biomass of tropical dry forests. For. Ecol. Manag. 2020, 474, 118348. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, H.; Liu, L.; Huang, W.; Huete, A.R.; Zhang, X.; Wang, F.; Yu, L.; Xie, Q.; Wang, C.; et al. Estimating the Aboveground Biomass for Planted Forests Based on Stand Age and Environmental Variables. Remote Sens. 2019, 11, 2270. [Google Scholar] [CrossRef] [Green Version]
- McRoberts, R.; Tomppo, E. Remote sensing support for national forest inventories. Remote Sens. Environ. 2007, 110, 412–419. [Google Scholar] [CrossRef]
- Friedl, M.A.; McGwire, K.C.; McIver, D.K. An Overview of Uncertainty in Optical Remotely Sensed Data for Ecological Applications. In Spatial Uncertainty in Ecology: Implications for Remote Sensing and GIS Applications; Springer: New York, NY, USA, 2013; pp. 258–283. [Google Scholar]
- Lu, D.; Chen, Q.; Wang, G.; Moran, E.; Batistella, M.; Zhang, M.; Vaglio Laurin, G.; Saah, D. Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates. Int. J. For. Res. 2012, 2012, 436537. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.Q.; Han, P.-B.; Li, S.; Shen, L.-Q.; Huang, D.-S.; Li, Y.-F.; Peng, M.-C.; Wang, C.-Y.; Li, X.-S.; Li, W.; et al. Species richness, forest types and regeneration of Schima in the subtropical forest ecosystem of Yunnan, southwestern China. For. Ecosyst. 2020, 7, 35. [Google Scholar] [CrossRef]
- Sun, H.; Wang, J.; Xiong, J.; Bian, J.; Jin, H.; Cheng, W.; Li, A.; García Mozo, H. Vegetation Change and Its Response to Climate Change in Yunnan Province, China. Adv. Meteorol. 2021, 2021, 8857589. [Google Scholar] [CrossRef]
- Tamme, R.; Hiiesalu, I.; Laanisto, L.; Szava-Kovats, R.; Pärtel, M. Environmental heterogeneity, species diversity and co-existence at different spatial scales. J. Veg. Sci. 2010, 21, 796–801. [Google Scholar] [CrossRef]
- Xu, W.; Ci, X.; Song, C.; He, T.; Zhang, W.; Li, Q.; Li, J. Soil phosphorus heterogeneity promotes tree species diversity and phylogenetic clustering in a tropical seasonal rainforest. Ecol. Evol. 2016, 6, 8719–8726. [Google Scholar] [CrossRef]
- Su, H.; Liu, H.; Heyman, W.D. Automated Derivation of Bathymetric Information from Multi-Spectral Satellite Imagery Using a Non-Linear Inversion Model. Mar. Geod. 2008, 31, 281–298. [Google Scholar] [CrossRef]
- Welle, T.; Aschenbrenner, L.; Kuonath, K.; Kirmaier, S.; Franke, J. Mapping Dominant Tree Species of German Forests. Remote Sens. 2022, 14, 3330. [Google Scholar] [CrossRef]
- Caughlin, T.T.; Barber, C.; Asner, G.P.; Glenn, N.F.; Bohlman, S.A.; Wilson, C.H. Monitoring tropical forest succession at landscape scales despite uncertainty in Landsat time series. Ecol. Appl. 2021, 31, e02208. [Google Scholar] [CrossRef]
- Hudak, A.T.; Fekety, P.A.; Kane, V.R.; Kennedy, R.E.; Filippelli, S.K.; Falkowski, M.J.; Tinkham, W.T.; Smith, A.M.S.; Crookston, N.L.; Domke, G.M.; et al. A carbon monitoring system for mapping regional, annual aboveground biomass across the northwestern USA. Environ. Res. Lett. 2020, 15, 095003. [Google Scholar] [CrossRef]
- Cooper, S.; Okujeni, A.; Pflugmacher, D.; van der Linden, S.; Hostert, P. Combining simulated hyperspectral EnMAP and Landsat time series for forest aboveground biomass mapping. Int. J. Appl. Earth Obs. Geoinf. 2021, 98, 102307. [Google Scholar] [CrossRef]
- Silveira, E.M.d.O.; Cunha, L.I.F.; Galvão, L.S.; Withey, K.D.; Acerbi Júnior, F.W.; Scolforo, J.R.S. Modelling aboveground biomass in forest remnants of the Brazilian Atlantic Forest using remote sensing, environmental and terrain-related data. Geocarto Int. 2019, 36, 281–298. [Google Scholar] [CrossRef]
- Liu, F.; Hu, J.; Yang, F.; Li, X. Heterogeneity-diversity Relationships in Natural Areas of Yunnan, China. Chin. Geogr. Sci. 2021, 31, 506–521. [Google Scholar] [CrossRef]
- Yu, S.; Ye, Q.; Zhao, Q.; Li, Z.; Zhang, M.; Zhu, H.; Zhao, Z. Effects of Driving Factors on Forest Aboveground Biomass (AGB) in China’s Loess Plateau by Using Spatial Regression Models. Remote Sens. 2022, 14, 2842. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Ou, G.; Li, C.; Lv, Y.; Wei, A.; Xiong, H.; Xu, H.; Wang, G. Improving Aboveground Biomass Estimation of Pinus densata Forests in Yunnan Using Landsat 8 Imagery by Incorporating Age Dummy Variable and Method Comparison. Remote Sens. 2019, 11, 738. [Google Scholar] [CrossRef] [Green Version]
- Wijaya, A.; Sasmito, S.D.; Purbopuspito, J.; Murdiyarso, D. Calibration of global above ground biomass estimate using multi-source remote sensing data. In Proceedings of the Living Planet Symposium, Edinburgh, UK, 9–13 September 2013. [Google Scholar]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 2014, 9, 63–105. [Google Scholar] [CrossRef]
- Rasel, S.M.M.; Chang, H.-C.; Ralph, T.J.; Saintilan, N.; Diti, I.J. Application of feature selection methods and machine learning algorithms for saltmarsh biomass estimation using Worldview-2 imagery. Geocarto Int. 2019, 36, 1075–1099. [Google Scholar] [CrossRef]
- Pham, T.D.; Yokoya, N.; Xia, J.; Ha, N.T.; Le, N.N.; Nguyen, T.T.T.; Dao, T.H.; Vu, T.T.P.; Pham, T.D.; Takeuchi, W. Comparison of Machine Learning Methods for Estimating Mangrove Above-Ground Biomass Using Multiple Source Remote Sensing Data in the Red River Delta Biosphere Reserve, Vietnam. Remote Sens. 2020, 12, 1334. [Google Scholar] [CrossRef] [Green Version]
- Shakhovska, N.; Melnykova, N.; Chopiyak, V.; Gregus, M.M. An ensemble methods for medical insurance costs prediction task. Comput. Mater. Contin. 2022, 70, 3969–3984. [Google Scholar] [CrossRef]
- Li, Z.; Zan, Q.; Yang, Q.; Zhu, D.; Chen, Y.; Yu, S. Remote Estimation of Mangrove Aboveground Carbon Stock at the Species Level Using a Low-Cost Unmanned Aerial Vehicle System. Remote Sens. 2019, 11, 1018. [Google Scholar] [CrossRef] [Green Version]
- Uniyal, S.; Chaurasia, K.; Purohit, S.; Rao, S.; Mahammood, V. Geo-ML Enabled Above Ground Biomass and Carbon Estimation for Urban Forests. In Proceedings of the Advanced Computing: 11th International Conference, IACC 2021, Msida, Malta, 18–19 December 2021; Revised Selected Papers. pp. 599–617. [Google Scholar]
- Zhang, Y.; Liu, J.; Li, W.; Liang, S. A Proposed Ensemble Feature Selection Method for Estimating Forest Aboveground Biomass from Multiple Satellite Data. Remote Sens. 2023, 15, 1096. [Google Scholar] [CrossRef]
- Shettles, M.; Temesgen, H.; Gray, A.N.; Hilker, T. Comparison of uncertainty in per unit area estimates of aboveground biomass for two selected model sets. For. Ecol. Manag. 2015, 354, 18–25. [Google Scholar] [CrossRef]
- Lu, D. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2007, 27, 1297–1328. [Google Scholar] [CrossRef]
- Ronoud, G.; Fatehi, P.; Darvishsefat, A.A.; Tomppo, E.; Praks, J.; Schaepman, M.E. Multi-Sensor Aboveground Biomass Estimation in the Broadleaved Hyrcanian Forest of Iran. Can. J. Remote Sens. 2021, 47, 818–834. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, J.; Liang, S.; Li, X.; Li, M. An Evaluation of Eight Machine Learning Regression Algorithms for Forest Aboveground Biomass Estimation from Multiple Satellite Data Products. Remote Sens. 2020, 12, 4015. [Google Scholar] [CrossRef]
- Jiang, F.; Kutia, M.; Ma, K.; Chen, S.; Long, J.; Sun, H. Estimating the aboveground biomass of coniferous forest in Northeast China using spectral variables, land surface temperature and soil moisture. Sci. Total Environ. 2021, 785, 147335. [Google Scholar] [CrossRef]
- Durante, P.; Martín-Alcón, S.; Gil-Tena, A.; Algeet, N.; Tomé, J.; Recuero, L.; Palacios-Orueta, A.; Oyonarte, C. Improving Aboveground Forest Biomass Maps: From High-Resolution to National Scale. Remote Sens. 2019, 11, 795. [Google Scholar] [CrossRef] [Green Version]
- Band, S.S.; Janizadeh, S.; Chandra Pal, S.; Saha, A.; Chakrabortty, R.; Melesse, A.M.; Mosavi, A. Flash Flood Susceptibility Modeling Using New Approaches of Hybrid and Ensemble Tree-Based Machine Learning Algorithms. Remote Sens. 2020, 12, 3568. [Google Scholar] [CrossRef]
- Fikret Kurnaz, T.; Kaya, Y. The comparison of the performance of ELM, BRNN, and SVM methods for the prediction of compression index of clays. Arab. J. Geosci. 2018, 11, 770. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Li, C.; Liu, Z. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Sci. Rep. 2020, 10, 9952. [Google Scholar] [CrossRef]
- Chen, H.; Qin, Z.; Zhai, D.-L.; Ou, G.; Li, X.; Zhao, G.; Fan, J.; Zhao, C.; Xu, H. Mapping Forest Aboveground Biomass with MODIS and Fengyun-3C VIRR Imageries in Yunnan Province, Southwest China Using Linear Regression, K-Nearest Neighbor and Random Forest. Remote Sens. 2022, 14, 5456. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, M.; Liu, K. Forest Fire Susceptibility Modeling Using a Convolutional Neural Network for Yunnan Province of China. Int. J. Disaster Risk Sci. 2019, 10, 386–403. [Google Scholar] [CrossRef] [Green Version]
- Zhengqi, G.; Xiaoli, Z.; Yueting, W. Ability evaluation of coniferous forest aboveground biomass inversion using Sentinel-2A multiple characteristic variables. J. Beijing For. Univ. 2020, 42, 27–38. [Google Scholar]
- Xu, H.; Zhang, Z.; Ou, G.; Shi, H. A study on Estimation and Distribution for Forest Biomass and Carbon Storage in Yun-Nan Province; Yunnan Science and Technology Press: Kunming, China, 2019. [Google Scholar]
- Francke, T.; López-Tarazón, J.A.; Schröder, B. Estimation of suspended sediment concentration and yield using linear models, random forests and quantile regression forests. Hydrol. Process. 2008, 22, 4892–4904. [Google Scholar] [CrossRef]
- Glória, L.S.; Cruz, C.D.; Vieira, R.A.M.; de Resende, M.D.V.; Lopes, P.S.; de Siqueira, O.H.G.B.D.; Fonseca e Silva, F. Accessing marker effects and heritability estimates from genome prediction by Bayesian regularized neural networks. Livest. Sci. 2016, 191, 91–96. [Google Scholar] [CrossRef]
- Tien Bui, D.; Pradhan, B.; Lofman, O.; Revhaug, I.; Dick, O.B. Landslide susceptibility assessment in the Hoa Binh province of Vietnam: A comparison of the Levenberg–Marquardt and Bayesian regularized neural networks. Geomorphology 2012, 171–172, 12–29. [Google Scholar] [CrossRef]
- Tan, K.; Wang, H.; Chen, L.; Du, Q.; Du, P.; Pan, C. Estimation of the spatial distribution of heavy metal in agricultural soils using airborne hyperspectral imaging and random forest. J. Hazard. Mater. 2020, 382, 120987. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Lu, D.; Li, G.; Wang, G.; Chen, Q.; Liu, L.; Li, D. Comparative Analysis of Modeling Algorithms for Forest Aboveground Biomass Estimation in a Subtropical Region. Remote Sens. 2018, 10, 627. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Hou, J.; Li, M.; Xu, L.; Li, X.; Li, Y.; Cheng, C.; Zhao, W.; He, N. High-resolution spatial distribution of vegetation biomass and its environmental response on Qinghai-Tibet Plateau: Intensive grid-field survey. Ecol. Indic. 2023, 149, 110167. [Google Scholar] [CrossRef]
- Merganic, J.; Pichler, V.; Gomoryova, E.; Fleischer, P.; Homolak, M.; Merganicova, K. Modelling Impact of Site and Terrain Morphological Characteristics on Biomass of Tree Species in Putorana Region. Plants 2021, 10, 2722. [Google Scholar] [CrossRef]
- Kobler, J.; Zehetgruber, B.; Dirnböck, T.; Jandl, R.; Mirtl, M.; Schindlbacher, A. Effects of aspect and altitude on carbon cycling processes in a temperate mountain forest catchment. Landsc. Ecol. 2019, 34, 325–340. [Google Scholar] [CrossRef] [Green Version]
- Kirdyanov, A.V.; Hagedorn, F.; Knorre, A.A.; Fedotova, E.V.; Vaganov, E.A.; Naurzbaev, M.M.; Moiseev, P.A.; Rigling, A. 20th century tree-line advance and vegetation changes along an altitudinal transect in the Putorana Mountains, northern Siberia. Boreas 2012, 41, 56–67. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, R.; Konsam, B.; Sheikh, M.A.; Pandey, R. Above-and below-ground biomass production in Pinus roxburghii forests along altitudes in Garhwal Himalaya, India. Curr. Sci. 2019, 116, 1506–1514. [Google Scholar] [CrossRef]
- Liu, S.; Dong, Y.; Sun, Y.; Li, J.; An, Y.; Shi, F. Modelling the spatial pattern of biodiversity utilizing the high-resolution tree cover data at large scale: Case study in Yunnan province, Southwest China. Ecol. Eng. 2019, 134, 1–8. [Google Scholar] [CrossRef]
- Shen, A.; Wu, C.; Jiang, B.; Deng, J.; Yuan, W.; Wang, K.; He, S.; Zhu, E.; Lin, Y.; Wu, C. Spatiotemporal Variations of Aboveground Biomass under Different Terrain Conditions. Forests 2018, 9, 778. [Google Scholar] [CrossRef] [Green Version]
- Chun, J.H.; Ali, A.; Lee, C.B. Topography and forest diversity facets regulate overstory and understory aboveground biomass in a temperate forest of South Korea. Sci. Total Environ. 2020, 744, 140783. [Google Scholar] [CrossRef]
- Zhang, Z.; van Coillie, F.; Ou, X.; de Wulf, R. Integration of Satellite Imagery, Topography and Human Disturbance Factors Based on Canonical Correspondence Analysis Ordination for Mountain Vegetation Mapping: A Case Study in Yunnan, China. Remote Sens. 2014, 6, 1026–1056. [Google Scholar] [CrossRef] [Green Version]
- Bennett, A.C.; Penman, T.D.; Arndt, S.K.; Roxburgh, S.H.; Bennett, L.T. Climate more important than soils for predicting forest biomass at the continental scale. Ecography 2020, 43, 1692–1705. [Google Scholar] [CrossRef]
- Lenihan, J.M.; Drapek, R.; Bachelet, D.; Neilson, R.P. Climate change effects on vegetation distribution, carbon, and fire in California. Ecol. Appl. 2003, 13, 1667–1681. [Google Scholar] [CrossRef]
- Wang, H.; Ni, J.; Prentice, I.C. Sensitivity of potential natural vegetation in China to projected changes in temperature, precipitation and atmospheric CO2. Reg. Environ. Chang. 2011, 11, 715–727. [Google Scholar] [CrossRef] [Green Version]
- Lutz, D.A.; Shugart, H.H.; White, M.A. Sensitivity of Russian forest timber harvest and carbon storage to temperature increase. Forestry 2013, 86, 283–293. [Google Scholar] [CrossRef] [Green Version]
- Grant, R.; Arain, A.; Arora, V.; Barr, A.; Black, A.; Chen, J.; Wang, S.; Yuan, F.; Zhang, Y. Modelling temperature effects on CO2 and energy exchange in temperate and boreal coniferous forests. In AGU Spring Meeting Abstracts; AGU: Washington, DC, USA, 2004; p. B54A-03. [Google Scholar]
- Li, W.-J.; Peng, M.-C.; Higa, M.; Tanaka, N.; Matsui, T.; Tang, C.Q.; Ou, X.-K.; Zhou, R.-W.; Wang, C.-Y.; Yan, H.-Z. Effects of climate change on potential habitats of the cold temperate coniferous forest in Yunnan province, southwestern China. J. Mt. Sci. 2016, 13, 1411–1422. [Google Scholar] [CrossRef]
- Ma, J.; Hu, Y.; Bu, R.; Chang, Y.; Deng, H.; Qin, Q. Predicting impacts of climate change on the aboveground carbon sequestration rate of a temperate forest in northeastern China. PLoS ONE 2014, 9, e96157. [Google Scholar] [CrossRef]
- Zhou, R.; Li, W.; Zhang, Y.; Peng, M.; Wang, C.; Sha, L.; Liu, Y.; Song, Q.; Fei, X.; Jin, Y.; et al. Responses of the Carbon Storage and Sequestration Potential of Forest Vegetation to Temperature Increases in Yunnan Province, SW China. Forests 2018, 9, 227. [Google Scholar] [CrossRef] [Green Version]
- Ni, J. Impacts of climate change on Chinese ecosystems: Key vulnerable regions and potential thresholds. Reg. Environ. Chang. 2010, 11, 49–64. [Google Scholar] [CrossRef] [Green Version]
- Dakhil, M.A.; Xiong, Q.; Farahat, E.A.; Zhang, L.; Pan, K.; Pandey, B.; Olatunji, O.A.; Tariq, A.; Wu, X.; Zhang, A.; et al. Past and future climatic indicators for distribution patterns and conservation planning of temperate coniferous forests in southwestern China. Ecol. Indic. 2019, 107, 105559. [Google Scholar] [CrossRef]
- Yunnan Institute of Botany. Flora of Yunnan (M); Science Press: Beijing, China, 1977. [Google Scholar]
- Zhang, L.; Cheng, Q.; Li, C. Improved model for estimating the biomass ofPopulus euphraticaforest using the integration of spectral and textural features from the Chinese high-resolution remote sensing satellite GaoFen-1. J. Appl. Remote Sens. 2015, 9, 096010. [Google Scholar] [CrossRef]
- López-Serrano, P.M.; López-Sánchez, C.A.; Álvarez-González, J.G.; García-Gutiérrez, J. A Comparison of Machine Learning Techniques Applied to Landsat-5 TM Spectral Data for Biomass Estimation. Can. J. Remote Sens. 2016, 42, 690–705. [Google Scholar] [CrossRef]
- Taddese, H.; Asrat, Z.; Burud, I.; Gobakken, T.; Ørka, H.; Dick, Ø.; Næsset, E. Use of Remotely Sensed Data to Enhance Estimation of Aboveground Biomass for the Dry Afromontane Forest in South-Central Ethiopia. Remote Sens. 2020, 12, 3335. [Google Scholar] [CrossRef]
- Lu, D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int. J. Remote Sens. 2007, 26, 2509–2525. [Google Scholar] [CrossRef]
- Singh, C.; Karan, S.K.; Sardar, P.; Samadder, S.R. Remote sensing-based biomass estimation of dry deciduous tropical forest using machine learning and ensemble analysis. J. Environ. Manag. 2022, 308, 114639. [Google Scholar] [CrossRef]
- Han, H.; Wan, R.; Li, B. Estimating Forest Aboveground Biomass Using Gaofen-1 Images, Sentinel-1 Images, and Machine Learning Algorithms: A Case Study of the Dabie Mountain Region, China. Remote Sens. 2021, 14, 176. [Google Scholar] [CrossRef]
- Zhao, P.; Lu, D.; Wang, G.; Wu, C.; Huang, Y.; Yu, S. Examining Spectral Reflectance Saturation in Landsat Imagery and Corresponding Solutions to Improve Forest Aboveground Biomass Estimation. Remote Sens. 2016, 8, 469. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zheng, Q.; Xiang, H.; Chen, X.; Sakai, T. Forest Canopy Height Estimation Using Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) Technology Based on Full-Polarized ALOS/PALSAR Data. Remote Sens. 2021, 13, 174. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Lee, S.; Baek, W.-K.; Jung, H.-S.; Park, S.-H.; Lee, M.-J. Mapping Forest Vertical Structure in Jeju Island from Optical and Radar Satellite Images Using Artificial Neural Network. Remote Sens. 2020, 12, 797. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.; Wang, C.; Xi, X.; Pan, F.; Peng, D.; Zou, J.; Nie, S.; Qin, H. Fusion of airborne LiDAR data and hyperspectral imagery for aboveground and belowground forest biomass estimation. Ecol. Indic. 2017, 73, 378–387. [Google Scholar] [CrossRef]
- Xiaoyi, W.; Huabing, H.; Peng, G.; Caixia, L.; Congcong, L.; Wenyu, L. Forest Canopy Height Extraction in Rugged Areas with ICESat/GLAS Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4650–4657. [Google Scholar] [CrossRef]
Image Source | Spectral Variables |
---|---|
Sentinel 2A | single band, RVI (ratio vegetation index), DVI (difference vegetation index), WDVI (weighted difference vegetation index), IPVI (infrared vegetation index), PVI (perpendicular vegetation index), NDVI (normalized difference vegetation index), NDVI45 (NDVI with band4 and band5), GNDVI (NDVI of green band), IRECI (inverted red edge chlorophyll index), SAVI (soil-adjusted vegetation index), TSAVI (transformed soil-adjusted vegetation index), MSAVI (modified soil-adjusted vegetation index), S2REP (Sentinel-2 red edge position index), REIP (red-edge infection point index), ARVI (atmospherically resistant vegetation index), PSSRa (pigment-specific simple ratio chlorophyll index), MTCI (Meris terrestrial chlorophyll index), MCARI (modified chlorophyll absorption ratio index) |
Landsat 8 OLI | single band, NDVI (normalized difference vegetation index), ND43 (NDVI with band3 and band4), ND67 (NDVI with band6 and band7), ND563 (NDVI with band3 and band5 with band6), DVI (difference vegetation index), SAVI (soil-adjusted vegetation index), RVI (ratio vegetation index), B (brightness vegetation index), G (greenness vegetation index), W (temperature vegetation index), ARVI (atmospherically resistant vegetation index), MV17 (mid-infrared temperature vegetation index), MSAVI (modified soil-adjusted vegetation index), VIS234 (multiband linear combination of band2 with band3 and band4), ALBEDO (multiband linear combination), SR (simple ratio index), SAV12 (improved vegetation index), MSR (optimized simple ratio vegetation index), KT1, PC1-A, PC1-B, PC1-P |
Sentinel 2A/ Landsat 8 OLI | Mean (ME), Var (VA), Homogeneity (HO), Contrast (CN), Dissimilarity (DI), Entropy (EN), Second Moment (SM), Correlation (CO) |
Variables | Description | Variables | Description |
---|---|---|---|
Bio_1 | Annual mean temperature | T_BS | Base saturation in the topsoil |
Bio_2 | Mean diurnal range | T_CEC_CLAY | Cation-exchange capacity of the clay fraction in the topsoil |
Bio_3 | Isothermality | T_CEC_SOIL | Cation-exchange capacity in the topsoil |
Bio_4 | Temperature seasonality | T_ESP | Exchangeable sodium percentage in the topsoil |
Bio_5 | Max. temperature of the warmest month | T_SAND | Percentage of sand in the topsoil |
Bio_6 | Min. temperature of the coldest month | T_SILT | Percentage of silt in the topsoil |
Bio_7 | Range of annual temperature | T_USDA_TEX | Topsoil texture class variable and code |
Bio_8 | Mean temperature of the wettest quarter | T_CLAY | Percentage of clay in the topsoil |
Bio_9 | Mean temperature of the driest quarter | T_OC | Percentage of organic carbon in the topsoil |
Bio_10 | Mean temperature of the warmest quarter | T_REF_BULK | Topsoil reference bulk density |
Bio_11 | Mean temperature of the coldest quarter | T_ECE | Electrical conductivity of the topsoil |
Bio_12 | Annual average precipitation | T_GRAVEL | Volume percentage of gravel in the topsoil |
Bio_13 | Precipitation of the wettest month | T_CACO3 | Percentage of carbonate carbon in the topsoil |
Bio_14 | Precipitation of the driest month | T_pH_H2O | Topsoil pH |
Bio_15 | Precipitation seasonality | T_TEB | Total exchangeable bases in the topsoil |
Bio_16 | Precipitation of the wettest quarter | DEM | DEM elevation |
Bio_17 | Precipitation of the driest quarter | SLOPE | Slope |
Bio_18 | Precipitation of the warmest quarter | ASPECT | Aspect |
Bio_19 | Precipitation of the coldest quarter |
Forest Types | Total Samples | AGB Range (Mg ha−1) | Mean (Mg ha−1) | Training Samples | Testing Samples |
---|---|---|---|---|---|
Coniferous forest | 473 | 1.13–593.49 | 110.69 | 330 | 141 |
Evergreen broadleaved forest | 984 | 0.88–1082.16 | 107.78 | 668 | 296 |
Deciduous broadleaved forest | 151 | 3.86–536.81 | 62.83 | 105 | 46 |
Mixed forest | 168 | 5.27–359.39 | 105.67 | 117 | 51 |
Models | R2 | RMSE (Mg ha−1) |
---|---|---|
RF | 0.445 | 54.978 |
k-NN | 0.390 | 60.088 |
GBM | 0.443 | 55.798 |
BRNN | 0.448 | 54.843 |
RRF | 0.503 | 52.335 |
QRF | 0.500 | 53.280 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, T.; Ou, G.; Wu, Y.; Zhang, X.; Liu, Z.; Xu, H.; Xu, X.; Wang, Z.; Xu, C. Estimating the Aboveground Biomass of Various Forest Types with High Heterogeneity at the Provincial Scale Based on Multi-Source Data. Remote Sens. 2023, 15, 3550. https://doi.org/10.3390/rs15143550
Huang T, Ou G, Wu Y, Zhang X, Liu Z, Xu H, Xu X, Wang Z, Xu C. Estimating the Aboveground Biomass of Various Forest Types with High Heterogeneity at the Provincial Scale Based on Multi-Source Data. Remote Sensing. 2023; 15(14):3550. https://doi.org/10.3390/rs15143550
Chicago/Turabian StyleHuang, Tianbao, Guanglong Ou, Yong Wu, Xiaoli Zhang, Zihao Liu, Hui Xu, Xiongwei Xu, Zhenghui Wang, and Can Xu. 2023. "Estimating the Aboveground Biomass of Various Forest Types with High Heterogeneity at the Provincial Scale Based on Multi-Source Data" Remote Sensing 15, no. 14: 3550. https://doi.org/10.3390/rs15143550
APA StyleHuang, T., Ou, G., Wu, Y., Zhang, X., Liu, Z., Xu, H., Xu, X., Wang, Z., & Xu, C. (2023). Estimating the Aboveground Biomass of Various Forest Types with High Heterogeneity at the Provincial Scale Based on Multi-Source Data. Remote Sensing, 15(14), 3550. https://doi.org/10.3390/rs15143550