Application of Ground-Penetrating Radar with the Logging Data Constraint in the Detection of Fractured Rock Mass in Dazu Rock Carvings, Chongqing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition
2.3. Single Geophysical Method Data Analysis
2.3.1. Ground-Penetrating Radar
2.3.2. Conventional Logging
2.3.3. Borehole Televiewer
3. Results
3.1. Comprehensive Analysis of Borehole Data
3.2. Obtain Formation Electromagnetic Wave Velocity
3.3. Integrated Interpretation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Wang, X.; Guo, Q.; Zhang, M.; Wang, Y. Experimental Investigation on the Correlation between Rainfall Infiltration and the Deterioration of Wall Paintings at Mogao Grottoes, China. Bull. Eng. Geol. Environ. 2020, 79, 1199–1207. [Google Scholar] [CrossRef]
- Lu, K.; Li, Z.; Niu, R.; Li, F.; Pan, J.; Li, K.; Chen, L. Using Surface Nuclear Magnetic Resonance and Spontaneous Potential to Investigate the Source of Water Seepage in the JinDeng Temple Grottoes, China. J. Cult. Herit. 2020, 45, 142–151. [Google Scholar] [CrossRef]
- Rasol, M.A.; Pérez-Gracia, V.; Solla, M.; Pais, J.C.; Fernandes, F.M.; Santos, C. An Experimental and Numerical Approach to Combine Ground Penetrating Radar and Computational Modeling for the Identification of Early Cracking in Cement Concrete Pavements. Ndt E Int. 2020, 115, 102293. [Google Scholar] [CrossRef]
- Grasmueck, M. 3-D Ground-penetrating Radar Applied to Fracture Imaging in Gneiss. Geophysics 1996, 61, 1050–1064. [Google Scholar] [CrossRef]
- Tang, C.-S.; Wang, D.-Y.; Zhu, C.; Zhou, Q.-Y.; Xu, S.-K.; Shi, B. Characterizing Drying-Induced Clayey Soil Desiccation Cracking Process Using Electrical Resistivity Method. Appl. Clay Sci. 2018, 152, 101–112. [Google Scholar] [CrossRef]
- Gélis, C.; Noble, M.; Cabrera, J.; Penz, S.; Chauris, H.; Cushing, E.M. Ability of High-Resolution Resistivity Tomography to Detect Fault and Fracture Zones: Application to the Tournemire Experimental Platform, France. Pure Appl. Geophys. 2016, 173, 573–589. [Google Scholar] [CrossRef]
- Xu, Z.; Xin, H.; Weng, Y.; Li, G. Hydrogeological Study in Tongchuan City Using the Audio-Frequency Magnetotelluric Method. Magnetochemistry 2023, 9, 32. [Google Scholar] [CrossRef]
- Sun, Y.; Zhai, C.; Xu, J.; Cong, Y.; Qin, L.; Zhao, C. Characterisation and Evolution of the Full Size Range of Pores and Fractures in Rocks under Freeze-Thaw Conditions Using Nuclear Magnetic Resonance and Three-Dimensional X-ray Microscopy. Eng. Geol. 2020, 271, 105616. [Google Scholar] [CrossRef]
- Dijk, P.; Berkowitz, B.; Bendel, P. Investigation of Flow in Water-Saturated Rock Fractures Using Nuclear Magnetic Resonance Imaging (NMRI). Water Resour. Res. 1999, 35, 347–360. [Google Scholar] [CrossRef]
- Katayama, I.; Abe, N.; Okazaki, K.; Hatakeyama, K.; Akamatsu, Y.; Michibayashi, K.; Godard, M.; Kelemen, P. Crack Geometry of Serpentinized Peridotites Inferred from Onboard Ultrasonic Data from the Oman Drilling Project. Tectonophysics 2021, 814, 228978. [Google Scholar] [CrossRef]
- Shirole, D.; Hedayat, A.; Walton, G. Damage Monitoring in Rock Specimens with Pre-Existing Flaws by Non-Linear Ultrasonic Waves and Digital Image Correlation. Int. J. Rock Mech. Min. Sci. 2021, 142, 104758. [Google Scholar] [CrossRef]
- Liu, W.; Wang, G.; Han, D.; Xu, H.; Chu, X. Accurate Characterization of Coal Pore and Fissure Structure Based on CT 3D Reconstruction and NMR. J. Nat. Gas Sci. Eng. 2021, 96, 104242. [Google Scholar] [CrossRef]
- Wang, X.; Pan, J.; Wang, K.; Ge, T.; Wei, J.; Wu, W. Characterizing the Shape, Size, and Distribution Heterogeneity of Pore-Fractures in High Rank Coal Based on X-Ray CT Image Analysis and Mercury Intrusion Porosimetry. Fuel 2020, 282, 118754. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, J.; Cai, J.; Zhu, X.; Hu, Q.; Wang, M.; Geng, B.; Zhong, G. Fracture Characteristics and Logging Identification of Lacustrine Shale in the Jiyang Depression, Bohai Bay Basin, Eastern China. Mar. Pet. Geol. 2021, 132, 105192. [Google Scholar] [CrossRef]
- Tabasi, S.; Soltani Tehrani, P.; Rajabi, M.; Wood, D.A.; Davoodi, S.; Ghorbani, H.; Mohamadian, N.; Ahmadi Alvar, M. Optimized Machine Learning Models for Natural Fractures Prediction Using Conventional Well Logs. Fuel 2022, 326, 124952. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G.; Fan, Z.; Wang, Z.; Chen, J.; Zhou, Z.; Wang, S.; Xiao, C. Fracture Detection in Oil-Based Drilling Mud Using a Combination of Borehole Image and Sonic Logs. Mar. Pet. Geol. 2017, 84, 195–214. [Google Scholar] [CrossRef]
- Li, H.; Zhao, X.; Dai, B.; Huang, Z.; Zhu, Q. Study on the Evolution and Prediction of Fracture Depth of Surrounding Rock in Deep Mining Roadway Based on Numerical Analysis and Borehole Detection. Front. Earth Sci. 2022, 10, 1024240. [Google Scholar] [CrossRef]
- Rozycki, A.; Ruiz Fonticiella, J.M.; Cuadra, A. Detection and Evaluation of Horizontal Fractures in Earth Dams Using the Self-Potential Method. Eng. Geol. 2006, 82, 145–153. [Google Scholar] [CrossRef]
- Li, S.; Gu, X.; Xu, X.; Xu, D.; Zhang, T.; Liu, Z.; Dong, Q. Detection of Concealed Cracks from Ground Penetrating Radar Images Based on Deep Learning Algorithm. Constr. Build. Mater. 2021, 273, 121949. [Google Scholar] [CrossRef]
- Talley, J.; Baker, G.S.; Becker, M.W.; Beyrle, N. Four Dimensional Mapping of Tracer Channelization in Subhorizontal Bedrock Fractures Using Surface Ground Penetrating Radar. Geophys. Res. Lett. 2005, 32, L04401. [Google Scholar] [CrossRef]
- Eskandari Torbaghan, M.; Li, W.; Metje, N.; Burrow, M.; Chapman, D.N.; Rogers, C.D.F. Automated Detection of Cracks in Roads Using Ground Penetrating Radar. J. Appl. Geophys. 2020, 179, 104118. [Google Scholar] [CrossRef]
- Dorn, C.; Linde, N.; Le Borgne, T.; Bour, O.; Klepikova, M. Inferring Transport Characteristics in a Fractured Rock Aquifer by Combining Single-Hole Ground-Penetrating Radar Reflection Monitoring and Tracer Test Data. Water Resour. Res. 2012, 48, W11521. [Google Scholar] [CrossRef]
- Solla, M.; Lagüela, S.; González-Jorge, H.; Arias, P. Approach to Identify Cracking in Asphalt Pavement Using GPR and Infrared Thermographic Methods: Preliminary Findings. Ndt E Int. 2014, 62, 55–65. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, C.; Xin, Y. A Fracture Evaluation by Acoustic Logging Technology in Oil-Based Mud: A Case from Tight Sandstone Reservoirs in Keshen Area of Kuqa Depression, Tarim Basin, NW China. Pet. Explor. Dev. 2017, 44, 418–427. [Google Scholar] [CrossRef]
- Tokhmchi, B.; Memarian, H.; Rezaee, M.R. Estimation of the Fracture Density in Fractured Zones Using Petrophysical Logs. J. Pet. Sci. Eng. 2010, 72, 206–213. [Google Scholar] [CrossRef]
- Dias, L.O.; Bom, C.R.; Faria, E.L.; Valentín, M.B.; Correia, M.D.; de Albuquerque, M.P.; de Albuquerque, M.P.; Coelho, J.M. Automatic Detection of Fractures and Breakouts Patterns in Acoustic Borehole Image Logs Using Fast-Region Convolutional Neural Networks. J. Pet. Sci. Eng. 2020, 191, 107099. [Google Scholar] [CrossRef]
- Leal, J.A.; Ochoa, L.H.; Garcia, J.A. Identification of Natural Fractures Using Resistive Image Logs, Fractal Dimension and Support Vector Machines. Ing. Investig. 2016, 36, 125–132. [Google Scholar] [CrossRef]
- Lopes, J.A.G.; Medeiros, W.E.; Oliveira, J.G.; Santana, F.L.; Araújo, R.E.B.; La Bruna, V.; Xavier, M.M.; Bezerra, F.H.R. Three-Dimensional Characterization of Karstic Dissolution Zones, Fracture Networks, and Lithostratigraphic Interfaces Using GPR Cubes, Core Logs, and Petrophysics: Implications for Thief Zones Development in Carbonate Reservoirs. Mar. Pet. Geol. 2023, 150, 106126. [Google Scholar] [CrossRef]
- Tokhmechi, B.; Memarian, H.; Rasouli, V.; Noubari, H.A.; Moshiri, B. Fracture Detection from Water Saturation Log Data Using a Fourier–Wavelet Approach. J. Pet. Sci. Eng. 2009, 69, 129–138. [Google Scholar] [CrossRef]
- Lau, J.S.O.; Auger, L.F.; Bisson, J.G. Subsurface Fracture Surveys Using a Borehole Television Camera and Acoustic Televiewer. Can. Geotech. J. 1987, 24, 499–508. [Google Scholar] [CrossRef]
- Li, S.J.; Feng, X.-T.; Wang, C.Y.; Hudson, J.A. ISRM Suggested Method for Rock Fractures Observations Using a Borehole Digital Optical Televiewer. Rock Mech. Rock Eng. 2013, 46, 635–644. [Google Scholar] [CrossRef]
- Capineri, L.; Falorni, P.; Borgioli, G.; Bulletti, A.; Valentini, S.; Ivashov, S.; Zhuravlev, A.; Razevig, V.; Vasiliev, I.; Paradiso, M.; et al. Application of the RASCAN Holographic Radar to Cultural Heritage Inspections. Archaeol. Prospect. 2009, 16, 218–230. [Google Scholar] [CrossRef]
- Hœrlé, S.; Huneau, F.; Salomon, A.; Denis, A. Using the Ground-Penetrating Radar to Assess the Conservation Condition of Rock-Art Sites. Comptes Rendus Geosci. 2007, 339, 536–544. [Google Scholar] [CrossRef]
- Masini, N.; Nuzzo, L.; Rizzo, E. GPR Investigations for the Study and the Restoration of the Rose Window of Troia Cathedral (Southern Italy). Near Surf. Geophys. 2007, 5, 287–300. [Google Scholar] [CrossRef]
- Catapano, I.; Gennarelli, G.; Ludeno, G.; Soldovieri, F. Applying Ground-Penetrating Radar and Microwave Tomography Data Processing in Cultural Heritage: State of the Art and Future Trends. IEEE Signal Process. Mag. 2019, 36, 53–61. [Google Scholar] [CrossRef]
- Cripps, A.C.; McCann, D.M. The Use of the Natural Gamma Log in Engineering Geological Investigations. Eng. Geol. 2000, 55, 313–324. [Google Scholar] [CrossRef]
- O’Neal, M.L.; McGeary, S. Late Quaternary Stratigraphy and Sea-Level History of the Northern Delaware Bay Margin, Southern New Jersey, USA: A Ground Penetrating Radar Analysis of Composite Quaternary Coastal Terraces. Quat. Sci. Rev. 2002, 21, 929–946. [Google Scholar] [CrossRef]
- Hyndman, R.D.; Yuan, T.; Moran, K. The Concentration of Deep Sea Gas Hydrates from Downhole Electrical Resistivity Logs and Laboratory Data. Earth Planet. Sci. Lett. 1999, 172, 167–177. [Google Scholar] [CrossRef]
- Liu, J.-J.; Liu, J.-C. Integrating Deep Learning and Logging Data Analytics for Lithofacies Classification and 3D Modeling of Tight Sandstone Reservoirs. Geosci. Front. 2022, 13, 101311. [Google Scholar] [CrossRef]
- Guo, H.-S.; Feng, X.-T.; Li, S.-J.; Yang, C.-X.; Yao, Z.-B. Evaluation of the Integrity of Deep Rock Masses Using Results of Digital Borehole Televiewers. Rock Mech. Rock Eng. 2017, 50, 1371–1382. [Google Scholar] [CrossRef]
Survey Line Number | Sandstone Formation Velocity | Average Velocity |
---|---|---|
L2 | 0.135 m/ns | 0.117 m/ns |
L3 | 0.134 m/ns | 0.114 m/ns |
L4 | 0.136 m/ns | 0.118 m/ns |
average value | 0.135 m/ns | 0.116 m/ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, W.; Liu, S.; Zhao, Q.; Deng, L.; Lu, Q.; Pan, L.; Li, Z. Application of Ground-Penetrating Radar with the Logging Data Constraint in the Detection of Fractured Rock Mass in Dazu Rock Carvings, Chongqing, China. Remote Sens. 2023, 15, 4452. https://doi.org/10.3390/rs15184452
Yuan W, Liu S, Zhao Q, Deng L, Lu Q, Pan L, Li Z. Application of Ground-Penetrating Radar with the Logging Data Constraint in the Detection of Fractured Rock Mass in Dazu Rock Carvings, Chongqing, China. Remote Sensing. 2023; 15(18):4452. https://doi.org/10.3390/rs15184452
Chicago/Turabian StyleYuan, Wenxing, Sixin Liu, Qiancheng Zhao, Li Deng, Qi Lu, Lei Pan, and Zhilian Li. 2023. "Application of Ground-Penetrating Radar with the Logging Data Constraint in the Detection of Fractured Rock Mass in Dazu Rock Carvings, Chongqing, China" Remote Sensing 15, no. 18: 4452. https://doi.org/10.3390/rs15184452
APA StyleYuan, W., Liu, S., Zhao, Q., Deng, L., Lu, Q., Pan, L., & Li, Z. (2023). Application of Ground-Penetrating Radar with the Logging Data Constraint in the Detection of Fractured Rock Mass in Dazu Rock Carvings, Chongqing, China. Remote Sensing, 15(18), 4452. https://doi.org/10.3390/rs15184452