A PANN-Based Grid Downscaling Technology and Its Application in Landslide and Flood Modeling
Abstract
:1. Introduction
2. The Proposed Method
2.1. Overview of the Computational Framework
2.2. Physical Adaption Neural Network (PANN)
2.3. Numerical Solver with Gradients Retained
2.4. Implementation Details and Optimization
- (1)
- Inflows and outflows of random rectangle boundaries;
- (2)
- Random volume sources generated and moved inside the terrain;
- (3)
- Point source flows generated inside a random upper quartile of the terrain elevation.
3. Results and Discussion
3.1. Model Verification
3.2. Model Application and Generalization
- (1)
- The Baige landslide with the Coulomb friction model
- (2)
- Flood Mapping with the Manning friction model
3.3. Further Discussion
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blazek, J. Computational Fluid Dynamics: Principles and Applications; Butterworth-Heinemann: Oxford, UK, 2015. [Google Scholar]
- Bhatti, M.M.; Marin, M.; Zeeshan, A.; Abdelsalam, S.I. Editorial: Recent Trends in Computational Fluid Dynamics. Front. Phys. 2020, 8, 593111. [Google Scholar] [CrossRef]
- Kochkov, D.; Smith, J.A.; Alieva, A.; Wang, Q.; Brenner, M.P.; Hoyer, S. Machine learning–accelerated computational fluid dynamics. Proc. Natl. Acad. Sci. USA 2021, 118, e2101784118. [Google Scholar] [CrossRef] [PubMed]
- Srirekha, A.; Bashetty, K. Infinite to finite: An overview of finite element analysis. Indian J. Dent. Res. Off. Publ. Indian Soc. Dent. Res. 2010, 21, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.-Z.; An, H.-C.; Ouyang, C.-J.; Wang, D.-P. Rock characteristics and dynamic fragmentation process of the 2018 Daanshan rockslide in Beijing, China. J. Mt. Sci. 2023, 20, 448–465. [Google Scholar] [CrossRef]
- Ouyang, C.; Xiang, W.; An, H.; Wang, F.; Yang, W.; Fan, J. Mechanistic Analysis and Numerical Simulation of the 2021 Post-Fire Debris Flow in Xiangjiao Catchment, China. J. Geophys. Res. Earth Surf. 2023, 128, e2022JF006846. [Google Scholar] [CrossRef]
- Liu, W.; Röckner, M. Stochastic Partial Differential Equations: An Introduction, Universitext; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Goloviznin, V.M.; Chetverushkin, B.N. New Generation Algorithms for Computational Fluid Dynamics. Comput. Math. Math. Phys. 2018, 58, 1217–1225. [Google Scholar] [CrossRef]
- Lintermann, A. Computational Meshing for CFD Simulations. In Clinical and Biomedical Engineering in the Human Nose; Springer: Singapore, 2021; pp. 85–115. [Google Scholar] [CrossRef]
- Haugerud, R.A.; Harding, D.J.; Johnson, S.Y.; Harless, J.L.; Weaver, C.S.; Sherrod, B.L. High-Resolution Lidar To-pography of the Puget Lowland, Washington—A Bonanza for Earth Science. GSA Today 2003, 13, 4. [Google Scholar] [CrossRef]
- Krishnan, S.; Crosby, C.; Nandigam, V.; Phan, M.; Cowart, C.; Baru, C.; Arrowsmith, R. OpenTopography: A services oriented architecture for community access to LIDAR topography. In Proceedings of the 2nd International Conference on Computing for Geospatial Research & Applications—COM.Geo ’11, Washington, DC, USA, 23–25 May 2011; ACM Press: Washington, DC, USA, 2011; pp. 1–8. [Google Scholar] [CrossRef]
- Hankin, B.; Waller, S.; Astle, G.; Kellagher, R. Mapping space for water: Screening for urban flash flooding: Mapping space for water. J. Flood Risk Manag. 2008, 1, 13–22. [Google Scholar] [CrossRef]
- Neal, J.C.; Fewtrell, T.J.; Bates, P.D.; Wright, N.G. A comparison of three parallelisation methods for 2D flood inundation models. Environ. Model. Softw. 2010, 25, 398–411. [Google Scholar] [CrossRef]
- Diachin, L.F.; Hornung, R.; Plassmann, P.; Wissink, A. Parallel Adaptive Mesh Refinement. In Parallel Processing for Scientific Computing; Heroux, M.A., Raghavan, P., Simon, H.D., Eds.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2006; Volume 8, pp. 143–162. [Google Scholar] [CrossRef]
- Filelis-Papadopoulos, C.K.; Gravvanis, G.A. On the Multigrid Method Based on Finite Difference Approximate Inverses. Comput. Model. Eng. Sci. 2013, 90, 233–253. [Google Scholar]
- Cai, L.; Zhu, Y. The Challenges of Data Quality and Data Quality Assessment in the Big Data Era. Data Sci. J. 2015, 14, 2. [Google Scholar] [CrossRef]
- Forghani, M.; Qian, Y.; Lee, J.; Farthing, M.W.; Hesser, T.; Kitanidis, P.K.; Darve, E.F. Deep learning-based fast solver of the shallow water equations. arXiv 2021, arXiv:2111.11702. [Google Scholar]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Lu, L.; Meng, X.; Mao, Z.; Karniadakis, G.E. DeepXDE: A Deep Learning Library for Solving Differential Equations. SIAM Rev. 2021, 63, 208–228. [Google Scholar] [CrossRef]
- Sun, L.; Gao, H.; Pan, S.; Wang, J.-X. Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Comput. Methods Appl. Mech. Eng. 2020, 361, 112732. [Google Scholar] [CrossRef]
- Hutter, F.; Kotthoff, L.; Vanschoren, J. (Eds.) Automated Machine Learning: Methods, Systems, Challenges; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Aguilar, F.J.; Agüera, F.; Aguilar, M.A.; Carvajal, F. Effects of Terrain Morphology, Sampling Density, and Interpolation Methods on Grid DEM Accuracy. Photogramm. Eng. Remote Sens. 2005, 71, 805–816. [Google Scholar] [CrossRef]
- Sharifi, E.; Saghafian, B.; Steinacker, R. Downscaling satellite precipitation estimates with multiple linear regression, artificial neural networks, and spline interpolation techniques. J. Geophys. Res. Atmos. 2019, 124, 789–805. [Google Scholar] [CrossRef]
- Wing, O.E.J.; Bates, P.D.; Neal, J.C.; Sampson, C.C.; Smith, A.M.; Quinn, N.; Shustikova, I.; Domeneghetti, A.; Gilles, D.W.; Goska, R.; et al. A New Automated Method for Improved Flood Defense Representation in Large-Scale Hydraulic Models. Water Resour. Res. 2019, 55, 11007–11034. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Xu, Q.; Shi, Y.; Bamber, J.; Tuo, Y.; Ludwig, R.; Zhu, X.X. Physics-aware Machine Learning Revolutionizes Scientific Paradigm for Machine Learning and Process-based Hydrology. arXiv 2023, arXiv:2310.05227. [Google Scholar]
- Xu, Y.; Liu, X.; Cao, X.; Huang, C.; Liu, E.; Qian, S.; Liu, X.; Wu, Y.; Dong, F.; Qiu, C.-W.; et al. Artificial intelligence: A powerful paradigm for scientific research. Innovation 2021, 2, 100179. [Google Scholar] [CrossRef]
- Giladi, N.; Ben-Haim, Z.; Nevo, S.; Matias, Y.; Soudry, D. Physics-Aware Downsampling with Deep Learning for Scalable Flood Modeling. Adv. Neural Inf. Process. Syst. 2021, 34, 1378–1389. [Google Scholar]
- Nevo, S.; Morin, E.; Rosenthal, A.G.; Metzger, A.; Barshai, C.; Weitzner, D.; Voloshin, D.; Kratzert, F.; Elidan, G.; Dror, G.; et al. Flood forecasting with machine learning models in an operational framework. Hydrol. Earth Syst. Sci. 2022, 26, 4013–4032. [Google Scholar] [CrossRef]
- Sun, C.; Shrivastava, A.; Singh, S.; Gupta, A. Revisiting unreasonable effectiveness of data in deep learning era. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 843–852. [Google Scholar]
- Goh, A.T.C. Back-propagation neural networks for modeling complex systems. Artif. Intell. Eng. 1995, 9, 143–151. [Google Scholar] [CrossRef]
- Ouyang, C.; He, S.; Xu, Q.; Luo, Y.; Zhang, W. A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain. Comput. Geosci. 2013, 52, 1–10. [Google Scholar] [CrossRef]
- Shrestha, A.; Mahmood, A. Review of Deep Learning Algorithms and Architectures. IEEE Access 2019, 7, 53040–53065. [Google Scholar] [CrossRef]
- Xu, Q.; Ouyang, C.; Jiang, T.; Yuan, X.; Fan, X.; Cheng, D. MFFENet and ADANet: A robust deep transfer learning method and its application in high precision and fast cross-scene recognition of earthquake-induced landslides. Landslides 2022, 19, 1617–1647. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Gnedin, N.Y.; Semenov, V.A.; Kravtsov, A.V. Enforcing the Courant–Friedrichs–Lewy condition in explicitly conservative local time stepping schemes. J. Comput. Phys. 2018, 359, 93–105. [Google Scholar] [CrossRef]
- Labuz, J.F.; Zang, A. Mohr–Coulomb Failure Criterion. Rock Mech. Rock Eng. 2012, 45, 975–979. [Google Scholar] [CrossRef]
- Jung, Y.; Hu, J. AK-fold averaging cross-validation procedure. J. Nonparametric Stat. 2015, 27, 167–179. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. Int. J. Comput. Vis. 2020, 128, 336–359. [Google Scholar] [CrossRef]
- An, H.; Ouyang, C.; Zhou, S. Dynamic process analysis of the Baige landslide by the combination of DEM and long-period seismic waves. Landslides 2021, 18, 1625–1639. [Google Scholar] [CrossRef]
- Bao, Y.; Su, L.; Chen, J.; Ouyang, C.; Yang, T.; Lei, Z.; Li, Z. Dynamic process of a high-level landslide blocking river event in a deep valley area based on FDEM-SPH coupling approach. Eng. Geol. 2023, 319, 107108. [Google Scholar] [CrossRef]
- Ouyang, C.; An, H.; Zhou, S.; Wang, Z.; Su, P.; Wang, D.; Cheng, D.; She, J. Insights from the failure and dynamic characteristics of two sequential landslides at Baige village along the Jinsha River, China. Landslides 2019, 16, 1397–1414. [Google Scholar] [CrossRef]
- Ouyang, C.; Zhao, W.; An, H.; Zhou, S.; Wang, D.; Xu, Q.; Li, W.; Peng, D. Early identification and dynamic processes of ridge-top rockslides: Implications from the Su Village landslide in Suichang County, Zhejiang Province, China. Landslides 2019, 16, 799–813. [Google Scholar] [CrossRef]
- Wei, K.; Ouyang, C.; Duan, H.; Li, Y.; Chen, M.; Ma, J.; An, H.; Zhou, S. Reflections on the Catastrophic 2020 Yangtze River Basin Flooding in Southern China. Innov. 2020, 1, 100038. [Google Scholar] [CrossRef] [PubMed]
- Rentschler, J.; Salhab, M.; Jafino, B.A. Flood exposure and poverty in 188 countries. Nat. Commun. 2022, 13, 3527. [Google Scholar] [CrossRef]
- Harindintwali, J.D.; Wei, K.; Shan, Y.; Mi, Z.; Costello, M.J.; Grunwald, S.; Feng, Z.; Wang, F.; Guo, Y.; Wu, X.; et al. Climate change: Strategies for mitigation and adaptation. Innov. Geosci. 2023, 1, 100015-1–100015-35. [Google Scholar] [CrossRef]
- Wing, O.E.J.; Bates, P.D.; Sampson, C.C.; Smith, A.M.; Johnson, K.A.; Erickson, T.A. Validation of a 30 m resolution flood hazard model of the conterminous United States: 30 m Resolution flood model of conus. Water Resour. Res. 2017, 53, 7968–7986. [Google Scholar] [CrossRef]
- Alim, U.R.; Oliveira, T.V.D. A Quality-Preserving Cartesian to Body-Centered Cubic Downsampling Transform. In EuroVis (Short Papers); 2015; 5p. [Google Scholar] [CrossRef]
- Zheng, X.; Maidment, D.R.; Tarboton, D.G.; Liu, Y.Y.; Passalacqua, P. GeoFlood: Large-Scale Flood Inundation Mapping Based on High-Resolution Terrain Analysis. Water Resour. Res. 2018, 54, 10013–10033. [Google Scholar] [CrossRef]
TP | FP | FN | Loss (m) | Precision | Recall | |
---|---|---|---|---|---|---|
Base | 3859 | 1287 | 763 | 0.868593 | 0.7500 | 0.8350 |
Linear | 3824 | 1264 | 751 | 0.864429 | 0.7516 | 0.8358 |
Cubic | 3866 | 1227 | 784 | 0.850005 | 0.7591 | 0.8314 |
PANN | 4043 | 1003 | 744 | 0.750840 | 0.8012 | 0.8446 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Ouyang, C.; Wang, D.; Wang, F.; Xu, Q. A PANN-Based Grid Downscaling Technology and Its Application in Landslide and Flood Modeling. Remote Sens. 2023, 15, 5075. https://doi.org/10.3390/rs15205075
Zhang B, Ouyang C, Wang D, Wang F, Xu Q. A PANN-Based Grid Downscaling Technology and Its Application in Landslide and Flood Modeling. Remote Sensing. 2023; 15(20):5075. https://doi.org/10.3390/rs15205075
Chicago/Turabian StyleZhang, Binlan, Chaojun Ouyang, Dongpo Wang, Fulei Wang, and Qingsong Xu. 2023. "A PANN-Based Grid Downscaling Technology and Its Application in Landslide and Flood Modeling" Remote Sensing 15, no. 20: 5075. https://doi.org/10.3390/rs15205075
APA StyleZhang, B., Ouyang, C., Wang, D., Wang, F., & Xu, Q. (2023). A PANN-Based Grid Downscaling Technology and Its Application in Landslide and Flood Modeling. Remote Sensing, 15(20), 5075. https://doi.org/10.3390/rs15205075