Comparison of the Heights of Sporadic E Layers and Vertical Ion Convergence Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Model
2.1.1. COSMIC-1
2.1.2. WACCM-X
2.2. Data Analysis
2.2.1. Ion Vertical Velocity
2.2.2. The Height of Different Parameters
2.2.3. The Occurrence Rate of Es and IVN
3. Results and Discussion
3.1. Comparison of the Heights of Es Layers and Vertical Ion Convergence Parameters
3.2. The Descending Rates of Es Layers and IVN
4. Conclusions
- IVN proves to be a more suitable parameter for accurately representing the height of Es layers;
- The descents of ion vertical velocity null agree well with that of Es layers at different latitudes.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiu, L.; Yu, T.; Yan, X.; Sun, Y.; Zuo, X.; Yang, N.; Wang, J.; Qi, Y. Altitudinal and Latitudinal Variations in Ionospheric Sporadic-E Layer Obtained From FORMOSAT-3/COSMIC Radio Occultation. JGR Space Phys. 2021, 126, e2021JA029454. [Google Scholar] [CrossRef]
- Haldoupis, C. A Tutorial Review on Sporadic E Layers. In Aeronomy of the Earth’s Atmosphere and Ionosphere; Abdu, M.A., Pancheva, D., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 381–394. [Google Scholar] [CrossRef]
- Yue, X.; Schreiner, W.S.; Pedatella, N.M.; Kuo, Y. Characterizing GPS Radio Occultation Loss of Lock Due to Ionospheric Weather. Space Weather 2016, 14, 285–299. [Google Scholar] [CrossRef]
- Hosokawa, K.; Kimura, K.; Sakai, J.; Saito, S.; Tomizawa, I.; Nishioka, M.; Tsugawa, T.; Ishii, M. Visualizing Sporadic E Using Aeronautical Navigation Signals at VHF Frequencies. J. Space Weather Space Clim. 2021, 11, 6. [Google Scholar] [CrossRef]
- Haldoupis, C.; Meek, C.; Christakis, N.; Pancheva, D.; Bourdillon, A. Ionogram Height–Time–Intensity Observations of Descending Sporadic E Layers at Mid-Latitude. J. Atmos. Sol. Terr. Phys. 2006, 68, 539–557. [Google Scholar] [CrossRef]
- Arras, C.; Wickert, J.; Beyerle, G.; Heise, S.; Schmidt, T.; Jacobi, C. A Global Climatology of Ionospheric Irregularities Derived from GPS Radio Occultation. Geophys. Res. Lett. 2008, 35, L14809. [Google Scholar] [CrossRef]
- Christakis, N.; Haldoupis, C.; Zhou, Q.; Meek, C. Seasonal Variability and Descent of Mid-Latitude Sporadic E Layers at Arecibo. Ann. Geophys. 2009, 27, 923–931. [Google Scholar] [CrossRef]
- Maeda, J.; Heki, K. Morphology and Dynamics of Daytime Mid-Latitude Sporadic-E Patches Revealed by GPS Total Electron Content Observations in Japan. Earth Planets Space 2015, 67, 89. [Google Scholar] [CrossRef]
- Arras, C.; Wickert, J. Estimation of Ionospheric Sporadic E Intensities from GPS Radio Occultation Measurements. J. Atmos. Sol. Terr. Phys. 2018, 171, 60–63. [Google Scholar] [CrossRef]
- Yu, B.; Xue, X.; Yue, X.; Yang, C.; Yu, C.; Dou, X.; Ning, B.; Hu, L. The Global Climatology of the Intensity of the Ionospheric Sporadic E Layer. Atmos. Chem. Phys. 2019, 19, 4139–4151. [Google Scholar] [CrossRef]
- Qiu, L.; Zuo, X.; Yu, T.; Sun, Y.; Liu, H.; Sun, L.; Zhao, B. The Characteristics of Summer Descending Sporadic E Layer Observed with the Ionosondes in the China Region. JGR Space Phys. 2021, 126, e2020JA028729. [Google Scholar] [CrossRef]
- Chu, Y.H.; Wang, C.Y.; Wu, K.H.; Chen, K.T.; Tzeng, K.J.; Su, C.L.; Feng, W.; Plane, J.M.C. Morphology of Sporadic E Layer Retrieved from COSMIC GPS Radio Occultation Measurements: Wind Shear Theory Examination. J. Geophys. Res. Space Phys. 2014, 119, 2117–2136. [Google Scholar] [CrossRef]
- Haldoupis, C.; Pancheva, D. Terdiurnal Tidelike Variability in Sporadic E Layers. J. Geophys. Res. 2006, 111, A07303. [Google Scholar] [CrossRef]
- Šauli, P.; Bourdillon, A. Height and Critical Frequency Variations of the Sporadic-E Layer at Midlatitudes. J. Atmos. Sol. Terr. Phys. 2008, 70, 1904–1910. [Google Scholar] [CrossRef]
- Tang, Q.; Zhou, C.; Liu, H.; Du, Z.; Liu, Y.; Zhao, J.; Yu, Z.; Zhao, Z.; Feng, X. Global Structure and Seasonal Variations of the Tidal Amplitude in Sporadic-E Layer. JGR Space Phys. 2022, 127, e2022JA030711. [Google Scholar] [CrossRef]
- Zuo, X.; Wan, W. Planetary Wave Oscillations in Sporadic E Layer Occurrence at Wuhan. Earth Planets Space 2008, 60, 647–652. [Google Scholar] [CrossRef]
- Jacobi, C.; Arras, C. Tidal Wind Shear Observed by Meteor Radar and Comparison with Sporadic E Occurrence Rates Based on GPS Radio Occultation Observations. Adv. Radio Sci. 2019, 17, 213–224. [Google Scholar] [CrossRef]
- Whitehead, J.D. Formation of the Sporadic E Layer in the Temperate Zones. Nature 1960, 188, 567. [Google Scholar] [CrossRef]
- Shinagawa, H.; Miyoshi, Y.; Jin, H.; Fujiwara, H. Global Distribution of Neutral Wind Shear Associated with Sporadic E Layers Derived from GAIA. J. Geophys. Res. Space Phys. 2017, 122, 4450–4465. [Google Scholar] [CrossRef]
- Qiu, L.; Zuo, X.; Yu, T.; Sun, Y.; Qi, Y. Comparison of Global Morphologies of Vertical Ion Convergence and Sporadic E Occurrence Rate. Adv. Space Res. 2019, 63, 3606–3611. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Arras, C.; Andoh, S.; Miyoshi, Y.; Shinagawa, H.; Harding, B.J.; Englert, C.R.; Immel, T.J.; Sobhkhiz-Miandehi, S.; Stolle, C. Examining the Wind Shear Theory of Sporadic E With ICON/MIGHTI Winds and COSMIC-2 Radio Occultation Data. Geophys. Res. Lett. 2022, 49, e2021GL096202. [Google Scholar] [CrossRef]
- Qiu, L.; Yamazaki, Y.; Yu, T.; Miyoshi, Y.; Zuo, X. Numerical Investigation on the Height and Intensity Variations of Sporadic E Layers at Mid-Latitude. JGR Space Phys. 2023, 128, e2023JA031508. [Google Scholar] [CrossRef]
- Dalakishvili, G.; Didebulidze, G.G.; Todua, M. Formation of Sporadic E (Es) Layer by Homogeneous and Inhomogeneous Horizontal Winds. J. Atmos. Sol. Terr. Phys. 2020, 209, 105403. [Google Scholar] [CrossRef]
- Tang, Q.; Zhou, C.; Liu, H.; Liu, Y.; Zhao, J.; Yu, Z.; Hu, L.; Zhao, Z.; Feng, X. Low Altitude Tailing Es (LATTE): Analysis of Sporadic-E Layer Height at Different Latitudes of Middle and Low Region. Space Weather 2023, 21, e2022SW003323. [Google Scholar] [CrossRef]
- Anthes, R.A.; Bernhardt, P.A.; Chen, Y.; Cucurull, L.; Dymond, K.F.; Ector, D.; Healy, S.B.; Ho, S.-P.; Hunt, D.C.; Kuo, Y.-H.; et al. The COSMIC/FORMOSAT-3 Mission: Early Results. Bull. Amer. Meteor. Soc. 2008, 89, 313–334. [Google Scholar] [CrossRef]
- Brahmanandam, P.S.; Uma, G.; Liu, J.Y.; Chu, Y.H.; Latha Devi, N.S.M.P.; Kakinami, Y. Global S4 Index Variations Observed Using FORMOSAT-3/COSMIC GPS RO Technique during a Solar Minimum Year: GLOBAL S4 INDEX MAPS. J. Geophys. Res. 2012, 117, A9. [Google Scholar] [CrossRef]
- Liu, H.-L.; Foster, B.T.; Hagan, M.E.; McInerney, J.M.; Maute, A.; Qian, L.; Richmond, A.D.; Roble, R.G.; Solomon, S.C.; Garcia, R.R.; et al. Thermosphere Extension of the Whole Atmosphere Community Climate Model: Whole atmosphere model. J. Geophys. Res. 2010, 115, A12302. [Google Scholar] [CrossRef]
- Liu, H.; Bardeen, C.G.; Foster, B.T.; Lauritzen, P.; Liu, J.; Lu, G.; Marsh, D.R.; Maute, A.; McInerney, J.M.; Pedatella, N.M.; et al. Development and Validation of the Whole Atmosphere Community Climate Model with Thermosphere and Ionosphere Extension (WACCM-X 2.0). J. Adv. Model Earth Syst. 2018, 10, 381–402. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Matthes, K.; Funke, B.; Andersson, M.E.; Barnard, L.; Beer, J.; Charbonneau, P.; Clilverd, M.A.; Dudok de Wit, T.; Haberreiter, M.; Hendry, A.; et al. Solar Forcing for CMIP6 (v3.2). Geosci. Model Dev. 2017, 10, 2247–2302. [Google Scholar] [CrossRef]
- Thébault, E.; Finlay, C.C.; Beggan, C.D.; Alken, P.; Aubert, J.; Barrois, O.; Bertrand, F.; Bondar, T.; Boness, A.; Brocco, L.; et al. International Geomagnetic Reference Field: The 12th Generation. Earth Planets Space 2015, 67, 79. [Google Scholar] [CrossRef]
- Codrescu, S.M.; Codrescu, M.V.; Fedrizzi, M. An Ensemble Kalman Filter for the Thermosphere-Ionosphere. Space Weather 2018, 16, 57–68. [Google Scholar] [CrossRef]
- Nygrén, T.; Jalonen, L.; Oksman, J.; Turunen, T. The Role of Electric Field and Neutral Wind Direction in the Formation of Sporadic E-Layers. J. Atmos. Terr. Phys. 1984, 46, 373–381. [Google Scholar] [CrossRef]
- Yue, X.; Schreiner, W.S.; Zeng, Z.; Kuo, Y.-H.; Xue, X. Case Study on Complex Sporadic E Layers Observed by GPS Radio Occultations. Atmos. Meas. Tech. 2015, 8, 225–236. [Google Scholar] [CrossRef]
- Arras, C.; Wickert, J.; Jacobi, C.; Beyerle, G.; Heise, S.; Schmidt, T. Global Sporadic E Layer Characteristics Obtained from GPS Radio Occultation Measurements. In Climate and Weather of the Sun-Earth System (CAWSES); Lübken, F.-J., Ed.; Springer Atmospheric Sciences; Springer: Dordrecht, The Netherlands, 2013; pp. 207–221. [Google Scholar] [CrossRef]
- Bishop, R.L.; Earle, G.D.; Larsen, M.F.; Swenson, C.M.; Carlson, C.G.; Roddy, P.A.; Fish, C.; Bullett, T.W. Sequential Observations of the Local Neutral Wind Field Structure Associated with E Region Plasma Layers: E region layers and local neutral wind field. J. Geophys. Res. 2005, 110, A4. [Google Scholar] [CrossRef]
- Zhou, C.; Tang, Q.; Song, X.; Qing, H.; Liu, Y.; Wang, X.; Gu, X.; Ni, B.; Zhao, Z. A Statistical Analysis of Sporadic E Layer Occurrence in the Midlatitude China Region. J. Geophys. Res. Space Physics 2017, 122, 3617–3631. [Google Scholar] [CrossRef]
- Yu, Y.; Wan, W.; Ren, Z.; Xiong, B.; Zhang, Y.; Hu, L.; Ning, B.; Liu, L. Seasonal Variations of MLT Tides Revealed by a Meteor Radar Chain Based on Hough Mode Decomposition. JGR Space Phys. 2015, 120, 7030–7048. [Google Scholar] [CrossRef]
- Resende, L.C.A.; Batista, I.S.; Denardini, C.M.; Carrasco, A.J.; De Fátima Andrioli, V.; Moro, J.; Batista, P.P.; Chen, S.S. Competition between Winds and Electric Fields in the Formation of Blanketing Sporadic E Layers at Equatorial Regions. Earth Planets Space 2016, 68, 201. [Google Scholar] [CrossRef]
- Cai, X.; Yuan, T.; Eccles, J.V.; Pedatella, N.M.; Xi, X.; Ban, C.; Liu, A.Z. A Numerical Investigation on the Variation of Sodium Ion and Observed Thermospheric Sodium Layer at Cerro Pachón, Chile during Equinox. JGR Space Phys. 2019, 124, 10395–10414. [Google Scholar] [CrossRef]
- Cai, X.; Yuan, T.; Eccles, J.V. A Numerical Investigation on Tidal and Gravity Wave Contributions to the Summer Time Na Variations in the Midlatitude E Region. J. Geophys. Res. Space Phys. 2017, 122, 10577–10595. [Google Scholar] [CrossRef]
- Qiu, L.; Yamazaki, Y.; Yu, T.; Becker, E.; Miyoshi, Y.; Qi, Y.; Siddiqui, T.A.; Stolle, C.; Feng, W.; Plane, J.M.C.; et al. Numerical Simulations of Metallic Ion Density Perturbations in Sporadic E Layers Caused by Gravity Waves. Earth Space Sci. 2023, 10, e2023EA003030. [Google Scholar] [CrossRef]
- Didebulidze, G.G.; Dalakishvili, G.; Todua, M. Formation of Multilayered Sporadic E under an Influence of Atmospheric Gravity Waves (AGWs). Atmosphere 2020, 11, 653. [Google Scholar] [CrossRef]
- Andoh, S.; Saito, A.; Shinagawa, H. Simulation of Horizontal Sporadic E Layer Movement Driven by Atmospheric Tides. Earth Planets Space 2023, 75, 86. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Yu, T.; Qiu, L.; Yan, X.; Wang, J.; Liang, Y.; Liu, S.; Qi, Y. Comparison of the Heights of Sporadic E Layers and Vertical Ion Convergence Parameters. Remote Sens. 2023, 15, 5674. https://doi.org/10.3390/rs15245674
Yu Y, Yu T, Qiu L, Yan X, Wang J, Liang Y, Liu S, Qi Y. Comparison of the Heights of Sporadic E Layers and Vertical Ion Convergence Parameters. Remote Sensing. 2023; 15(24):5674. https://doi.org/10.3390/rs15245674
Chicago/Turabian StyleYu, Yan, Tao Yu, Lihui Qiu, Xiangxiang Yan, Jin Wang, Yu Liang, Shuo Liu, and Yifan Qi. 2023. "Comparison of the Heights of Sporadic E Layers and Vertical Ion Convergence Parameters" Remote Sensing 15, no. 24: 5674. https://doi.org/10.3390/rs15245674
APA StyleYu, Y., Yu, T., Qiu, L., Yan, X., Wang, J., Liang, Y., Liu, S., & Qi, Y. (2023). Comparison of the Heights of Sporadic E Layers and Vertical Ion Convergence Parameters. Remote Sensing, 15(24), 5674. https://doi.org/10.3390/rs15245674