Burrow Opening Measurements of Intertidal Macroinvertebrates from Optical Drone Images
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Dataset
2.2.1. Drone Image
2.2.2. In Situ Field Data
3. Methods
3.1. Image Annotation
3.2. Burrow Opening Extraction and Measurement
4. Results
4.1. Estimation of Burrow Opening Diameters
4.2. Validation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McLeod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C.M.; Lovelock, C.E.; Schlesinger, W.H.; Silliman, B.R. A blueprint for blue carbon: Toward an Improved Understanding of the Role of Vegetated Coastal Habitats in Sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Macreadie, P.I.; Anton, A.; Raven, J.A.; Beaumont, N.; Connolly, R.M.; Friess, D.A.; Kelleway, J.J.; Kennedy, H.; Kuwae, T.; Lavery, P.S.; et al. The future of Blue Carbon science. Nat. Commun. 2019, 10, 3998. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.R.; Marotta, H.; Peixoto, R.B.; Enrich-Prast, A.; Barroso, G.C.; Soares, M.L.G.; Machado, W.; Pérez, A.; Smoak, J.M.; Sanders, L.M. Hypersaline Tidal Flats as Important “Blue Carbon” Systems: A Case Study from Three Ecosystems. Biogeosciences 2021, 18, 2527–2538. [Google Scholar] [CrossRef]
- Heip, C.H.R.; Goosen, N.K.; Herman, P.M.J.; Kromkamp, J.; Middelburg, J.J.; Soetaert, K. Production and Consumption of Biological Particles in Temperate Tidal Estuaries. In Oceanography and Marine Biology: An Annual Review; UCL Press: London, UK, 1995. [Google Scholar]
- N-Uptake, A. Primary Production by Phytoplankton and Microphytobenthos in Estuaries. Estuaries 1999, 29, 93. [Google Scholar]
- Forja, J.M.; Ortega, T.; DelValls, T.A.; Gómez-Parra, A. Benthic Fluxes of Inorganic Carbon in Shallow Coastal Ecosystems of the Iberian Peninsula. Mar. Chem. 2004, 85, 141–156. [Google Scholar] [CrossRef]
- Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C. Global Carbon Sequestration in Tidal, Saline Wetland Soils. Glob. Biogeochem. Cycles 2003, 17, 1111. [Google Scholar] [CrossRef]
- Kuipers, B.R.; De Wilde, P.A.W.J.; Creutzberg, F. Energy Flow in a Tidal Flat Ecosystem. Mar. Ecol. Prog. Ser. 1981, 5, 215–221. [Google Scholar] [CrossRef]
- Lin, W.-J.; Wu, J.; Lin, H.-J. Contribution of Unvegetated Tidal Flats to Coastal Carbon Flux. Glob. Chang. Biol. 2020, 26, 3443–3454. [Google Scholar] [CrossRef] [PubMed]
- Guarini, J.-M.; Chauvaud, L.; Coston-Guarini, J. Can the Intertidal Benthic Microalgal Primary Production Account for the “Missing Carbon Sink”? J. Oceanogr. Res. Data 2008, 1, 13–19. [Google Scholar]
- Jordan, T.E.; Valiela, I. A Nitrogen Budget of the Ribbed Mussel, Geukensia Demissa, and Its Significance in Nitrogen Flow in a New England Salt Marsh 1. Limnol. Oceanogr. 1982, 27, 75–90. [Google Scholar] [CrossRef]
- Jones, C.G.; Lawton, J.H.; Shachak, M. Organisms as Ecosystem Engineers. Oikos 1994, 69, 373–386. [Google Scholar] [CrossRef]
- Levinton, J. Bioturbators as ecosystem engineers: Control of the Sediment Fabric, Inter-individual Interactions, and Material Fluxes. In Linking Species & Ecosystems; Springer: Boston, MA, USA, 1995; pp. 29–36. [Google Scholar]
- Kostka, J.E.; Gribsholt, B.; Petrie, E.; Dalton, D.; Skelton, H.; Kristensen, K. The Rates and Pathways of Carbon Oxidation in Bioturbated Saltmarsh Sediments. Limnol. Oceanogr. 2002, 47, 230–240. [Google Scholar] [CrossRef]
- Kogure, K.; Wada, M. Impacts of Macrobenthic Bioturbation in Marine Sediment on Bacterial Metabolic Activity. Microbes Environ. 2005, 20, 191–199. [Google Scholar] [CrossRef]
- Andreetta, A.; Fusi, M.; Cameldi, I.; Cimò, F.; Carnicelli, S.; Cannicci, S. Mangrove Carbon Sink. Do Burrowing Crabs Contribute to Sediment Carbon Storage? Evidence from a Kenyan Mangrove System. J. Sea Res. 2014, 85, 524–533. [Google Scholar] [CrossRef]
- Qiu, D.; Cui, B.; Yan, J.; Ma, X.; Ning, Z.; Wang, F.; Sui, H.; Bai, J. Effect of Burrowing Crabs on Retention and Accumulation of Soil Carbon and Nitrogen in an Intertidal Salt Marsh. J. Sea Res. 2019, 154, 101808. [Google Scholar] [CrossRef]
- Sasaki, A.; Nakao, H.; Yoshitake, S.; Nakatsubo, T. Effects of the burrowing mud shrimp, Upogebia yokoyai, on carbon flow and microbial activity on a tidal flat. Ecol. Res. 2014, 29, 493–499. [Google Scholar] [CrossRef]
- Agusto, L.E.; Qin, G.; Thibodeau, B.; Tang, J.; Zhang, J.; Zhou, J.; Wu, J.; Zhang, L.; Thapa, P.; Wang, F.; et al. Fiddling with the Blue Carbon: Fiddler Crab Burrows Enhance CO2 and CH4 Efflux in Saltmarsh. Ecol. Indic. 2022, 144, 109538. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Lucrezi, S.; Peterson, C.H.; Connolly, R.M.; Olds, A.D.; Althaus, F.; Hyndes, G.A.; Maslo, B.; Gilby, B.L.; Leon, J.X. Estimating Animal Populations and Body Sizes from Burrows: Marine Ecologists Have Their Heads Buried in the Sand. J. Sea Res. 2016, 112, 55–64. [Google Scholar] [CrossRef]
- Butler, S.; Bird, F.L. Estimating Density of Intertidal Ghost Shrimps Using Counts of Burrow Openings. Is the Method Reliable? Hydrobiologia 2007, 589, 303–314. [Google Scholar] [CrossRef]
- Beukema, J.J. Biomass and Species Richness of the Macro-Benthic Animals Living on the Tidal Flats of the Dutch Wadden Sea. Neth. J. Sea Res. 1976, 10, 236–261. [Google Scholar] [CrossRef]
- Nickell, L.A.; Atkinson, R.J.A. Functional Morphology of Burrows and Trophic Modes of Three Thalassinidean Shrimp Species, and a New Approach to the Classification of Thalassinidean Burrow Morphology. Mar. Ecol. Prog. Ser. 1995, 128, 181–197. [Google Scholar] [CrossRef]
- Koo, B.J.; Seo, J.; Jang, M.S. The Relationship between Burrow Opening Dimensions and Biomass of Intertidal Macroinvertebrates by Feeding Mode (Surface Deposit Feeders vs. Suspension Feeders). Animals 2022, 12, 2878. [Google Scholar] [CrossRef]
- Guo, M.; Li, J.; Sheng, C.; Xu, J.; Wu, L. A Review of Wetland Remote Sensing. Sensors 2017, 17, 777. [Google Scholar] [CrossRef] [PubMed]
- Ozesmi, S.L.; Bauer, M.E. Satellite Remote Sensing of Wetlands. Wetl. Ecol. Manag. 2002, 10, 381–402. [Google Scholar] [CrossRef]
- Lahoz-Monfort, J.J.; Guillera-Arroita, G.; Milner-Gulland, E.J.; Young, R.P.; Nicholson, E. Satellite Imagery as a Single Source of Predictor Variables for Habitat Suitability Modelling: How Landsat Can Inform the Conservation of a Critically Endangered Lemur. J. Appl. Ecol. 2010, 47, 1094–1102. [Google Scholar] [CrossRef]
- Tseng, K.-H.; Kuo, C.-Y.; Lin, T.-H.; Huang, Z.-C.; Lin, Y.-C.; Liao, W.-H.; Chen, C.-F. Reconstruction of Time-Varying Tidal Flat Topography Using Optical Remote Sensing Imageries. ISPRS J. Photogramm. Remote Sens. 2017, 131, 92–103. [Google Scholar] [CrossRef]
- Murray, N.J.; Phinn, S.R.; DeWitt, M.; Ferrari, R.; Johnston, R.; Lyons, M.B.; Clinton, N.; Thau, D.; Fuller, R.A. The Global Distribution and Trajectory of Tidal Flats. Nature 2019, 565, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Vanhard, E.; Corpetti, T.; Houet, T. UAV & Satellite Synergies for Optical Remote Sensing Applications: A Literature Review. Sci. Remote Sens. 2021, 3, 100019. [Google Scholar]
- Brunetta, R.; Duo, E.; Ciavola, P. Evaluating Short-Term Tidal Flat Evolution through UAV Surveys: A Case Study in the Po Delta (Italy). Remote Sens. 2021, 13, 2322. [Google Scholar] [CrossRef]
- Fairley, I.; Mendzil, A.; Togneri, M.; Reeve, D.E. The Use of Unmanned Aerial Systems to Map Intertidal Sediment. Remote Sens. 2018, 10, 1918. [Google Scholar] [CrossRef]
- Anderson, K.; Gaston, K.J. Lightweight Unmanned Aerial Vehicles Will Revolutionize Spatial Ecology. Front. Ecol. Environ. 2013, 11, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Brunier, G.; Michaud, E.; Fleury, J.; Anthony, E.J.; Morvan, S.; Gardel, A. Assessing the Relationship etween Macro-faunal Burrowing Activity and Mudflat Geomorphology from UAV-based Structure-from-Motion Photogrammetry. Remote Sens. Environ. 2020, 241, 111717. [Google Scholar] [CrossRef]
- Chen, C.; Tian, B.; Wu, W.; Duan, Y.; Zhou, Y.; Zhang, C. UAV Photogrammetry in Intertidal Mudflats: Accuracy, Efficiency, and Potential for Integration with Satellite Imagery. Remote Sens. 2023, 15, 1814. [Google Scholar] [CrossRef]
- Ventura, D.; Bonifazi, A.; Gravina, M.F.; Belluscio, A.; Ardizzone, G. Mapping and Classification of Ecologically Sensitive Marine Habitats Using Unmanned Aerial Vehicle (UAV) Imagery and Object-Based Image Analysis (OBIA). Remote Sens. 2018, 10, 1331. [Google Scholar] [CrossRef]
- Kim, K.; Lee, D.; Jang, Y.; Lee, J.; Kim, C.-H.; Jou, H.-T.; Ryu, J.-H. Deep Learning of High-Resolution Unmanned Aerial Vehicle Imagery for Classifying Halophyte Species: A Comparative Study for Small Patches and Mixed Vegetation. Remote Sens. 2023, 15, 2723. [Google Scholar] [CrossRef]
- Henriques, M.; Catry, T.; Belo, J.R.; Piersma, T.; Pontes, S.; Granadeiro, J.P. Combining Multispectral and Radar Imagery with Machine Learning Techniques to Map Intertidal Habitats for Migratory Shorebirds. Remote Sens. 2022, 14, 3260. [Google Scholar] [CrossRef]
- Kim, K.-L.; Woo, H.-J.; Jou, H.-T.; Jung, H.C.; Lee, S.-K.; Ryu, J.-H. Surface Sediment Classification Using a Deep Learning Model and Unmanned Aerial Vehicle Data of Tidal Flats. Mar. Pollut. Bull. 2024, 198, 115823. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Moon, H.; Seo, J.; Kim, K.; Kim, C.; Koo, B.J.; Ryu, J.-H.; Jou, H.-T. Research on Improving Object Detection Models for Macroinvertebrates Based on Machine Learning Using Tidal Flat UAV-Imagery. In Proceedings of the Geo AI Data Society 2023 Spring Conference, Busan, Republic of Korea, 27–29 June 2023. [Google Scholar]
- Kim, D.-W.; Lee, S.-H.; Yu, J.-J.; Son, S.-W. Image analysis technology with deep learning for monitoring the tidal flat ecosystem—Focused on monitoring the Ocypode stimpsoni Ortmann, 1897 in the Sinduri tidal flat. J. Korean Soc. Environ. Restor. Technol. 2021, 24, 89–96. [Google Scholar]
- Egawa, R.; Sharma, S.; Nadaoka, K.; MacKenzie, R.A. Burrow Dynamics of Crabs in Subtropical Estuarine Mangrove Forest. Estuar. Coast. Shelf Sci. 2021, 252, 107244. [Google Scholar] [CrossRef]
- Zeil, J.; Hemmi, J.M. The Visual Ecology of Fiddler Crabs. J. Comp. Physiol. A 2006, 192, 1–25. [Google Scholar] [CrossRef]
- Choi, J.-K.; Ryu, J.-H.; Eom, J.; Roh, S.-M.; Noh, J.H. Analysis on the Sedimentary Environment and Microphytobenthos Distribution in the Geunso Bay Tidal Flat Using Remotely Sensed Data. J. Wetl. Res. 2010, 12, 67–78. [Google Scholar]
- Dembowski, J.B. Notes on the Behavior of the Fiddler Crab. Biol. Bull. 1926, 50, 179–201. [Google Scholar] [CrossRef]
- Yun, K.; Lee, C.K.; Kim, G.S. Estimates on the Long-term Landform Changes Near Sinduri Beaches. Korean J. Remote Sens. 2022, 38, 1315–1328. [Google Scholar]
- Koo, B.K.; Shin, S.H.; Woo, H.J. Distribution of Benthic Macrofauna in Subtidal Area and on Sand Flat of Sindu-ri Coast, Korea. J. Wetl. Res. 2005, 7, 69–88. [Google Scholar]
- Chakrabarti, A. Burrow Patterns of Ocypode Ceratophthalma (Pallas) and Their Environmental Significance. J. Paleontol. 1981, 55, 431–441. [Google Scholar]
- Nex, F.; Remondino, F. UAV for 3D Mapping Applications: A Review. Appl. Geomat. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Bycroft, R.; Leon, J.X.; Schoeman, D. Comparing Random Forests and Convoluted Neural Networks for Mapping Ghost Crab Burrows Using Imagery from an Unmanned Aerial Vehicle. Estuar. Coast. Shelf Sci. 2019, 224, 84–93. [Google Scholar] [CrossRef]
- Schenone, S.; Azhar, M.; Ramírez, C.A.V.; Strozzi, A.G.; Delmas, P.; Thrush, S.F. Mapping the Delivery of Ecological Functions Combining Field Collected Data and Unmanned Aerial Vehicles (UAVs). Ecosystems 2021, 25, 948–959. [Google Scholar] [CrossRef]
Red-Clawed Fiddler Crab | Milky Fiddler Crab | Ghost Crab | |
---|---|---|---|
Location (Sediment) | Mageumri (Mud) | Mageumri (Mud) | Sinduri (Sand) |
Date and Time | 16 August 2022 15:09:27 | 16 August 2022 11:24:08 | 14 August 2022 11:51:05 |
Area (m2) | 4.0 × 5.3 | 4.3 × 6.5 | 12.7 × 15.5 |
Altitude (m) | 6.0 | 6.0 | 6.0 |
Number of Photos | 111 | 112 | 1302 |
Overlap (%) | 65 | 65 | 65 |
Sidelap (%) | 85 | 85 | 85 |
Sensor | Zenmuse P1 35 mm | ||
GSD (mm) | 0.76 | 0.76 | 0.65 |
Species | Study Area | Data | Sample |
---|---|---|---|
Red-clawed fiddler crab (U. arcuata) | Mageumri | U.arcuata.tif | 12 |
U.arcuata.xml | 12 | ||
U.arcuata.csv | 20 | ||
Milky fiddler crab (U. lactea) | Mageumri | U.lactea.tif | 17 |
U.lactea.xml | 17 | ||
U.lactea.csv | 20 | ||
Ghost crab (O. stimpsoni) | Sinduri | O.stimpsini_10.tif | 25 |
O.stimpsoni_28.tif | |||
O.stimpsoni_51.tif | |||
O.stimpsoni_10.xml | 25 | ||
O.stimpsoni_28.xml | |||
O.stimpsoni_51.xml | |||
O.stimpsoni.csv | 30 |
Species | Range (mm) | Mean (mm) | R2 | RMSE (mm) |
---|---|---|---|---|
Red-clawed fiddler crab (Uca arcuata) | 18.10–33.59 | 22.84 | 0.64 | 2.58 |
Milky fiddler crab (Uca lactea) | 6.21–14.02 | 9.50 | 0.63 | 1.14 |
Ghost crab (Ocypode stimpsoni) | 18.50–25.72 | 22.36 | 0.67 | 1.38 |
Total | 6.21–33.59 | 18.42 | 0.94 | 1.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, S.-B.; Jang, Y.; Seo, J.; Kim, K.; Koo, B.J.; Ryu, J.-H.; Lee, S.-K. Burrow Opening Measurements of Intertidal Macroinvertebrates from Optical Drone Images. Remote Sens. 2024, 16, 1941. https://doi.org/10.3390/rs16111941
Ha S-B, Jang Y, Seo J, Kim K, Koo BJ, Ryu J-H, Lee S-K. Burrow Opening Measurements of Intertidal Macroinvertebrates from Optical Drone Images. Remote Sensing. 2024; 16(11):1941. https://doi.org/10.3390/rs16111941
Chicago/Turabian StyleHa, Su-Bin, Yeongjae Jang, Jaehwan Seo, Keunyong Kim, Bon Joo Koo, Joo-Hyung Ryu, and Seung-Kuk Lee. 2024. "Burrow Opening Measurements of Intertidal Macroinvertebrates from Optical Drone Images" Remote Sensing 16, no. 11: 1941. https://doi.org/10.3390/rs16111941
APA StyleHa, S. -B., Jang, Y., Seo, J., Kim, K., Koo, B. J., Ryu, J. -H., & Lee, S. -K. (2024). Burrow Opening Measurements of Intertidal Macroinvertebrates from Optical Drone Images. Remote Sensing, 16(11), 1941. https://doi.org/10.3390/rs16111941