Estimation of Rice Leaf Area Index Utilizing a Kalman Filter Fusion Methodology Based on Multi-Spectral Data Obtained from Unmanned Aerial Vehicles (UAVs)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. UAV Multi-Spectral Data Acquisition and LAI Determination
2.3. Vegetation Index
2.4. Multi-Model Fusion Approach
- (1)
- The model prediction equation represents the probability density function of a normal distribution. Here, fi(x) is the probability density of the variable x for the i-th model.
- (2)
- Prediction equation after fusion of two models. When combining two normal distributions, the resulting function f(x) represents the fused prediction. The means and variances from both models are incorporated into a single exponent, implying the combined influence of both distributions on the variable x.
- (3)
- If , the inclusion center of the function, which represents the average value in the prediction model, can be determined. This formula gives the new mean μ′ after fusing two models. It is a weighted average of the means μ1 and μ2 of the individual models, where the weights are determined by the variances .
- (4)
- If , the degree of dispersion of the function, that is, the variance of the prediction model, can be obtained as follows:
- (5)
- If multiple models are fused, they form a new prediction model. This extends the concept of fusing two models to i models. The resulting fused prediction model f(x) incorporates the influence of i different normal distributions.
- (6)
- Find the predicted value and variance of the fusion model, and .
2.5. Data Utilization and Analysis
3. Results
3.1. Vegetation Index Estimation Model of Rice LAI
3.1.1. Relationship between LAI and Vegetation Index of Rice during the Whole Growth Period
3.1.2. Relationship between LAI and Vegetation Index of Rice at Different Growth Stages
3.2. Estimation of Rice LAI Based on Statistical Data Fusion
3.3. Estimation of Rice LAI Based on KF Fusion Method
3.3.1. Estimation of Rice LAI Based on Classical KF Fusion Method
3.3.2. Estimation of Rice LAI using KF Fusion Method Based on Dynamic Variance
3.4. Adaptive Optimization of KF Fusion Method
3.4.1. Determination of the Number of Optimal Coupled Vegetation Indices
3.4.2. Effects of Different Vegetation Index Combinations in Different Growth Periods on Fusion Accuracy
3.5. Prediction Results of Each LAI Estimation Model under Different Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.M.; Black, T. Defining leaf area index for non-flat leaves. Plant Cell Environ. 1992, 15, 421–429. [Google Scholar] [CrossRef]
- Brown, L.A.; Meier, C.; Morris, H.; Pastor-Guzman, J.; Bai, G.; Lerebourg, C.; Gobron, N.; Lanconelli, C.; Clerici, M.; Dash, J. Evaluation of global leaf area index and fraction of absorbed photosynthetically active radiation products over North America using Copernicus Ground Based Observations for Validation data. Remote Sens. Environ. 2020, 247, 111935. [Google Scholar] [CrossRef]
- Ma, H.; Liang, S. Development of the GLASS 250-m leaf area index product (version 6) from MODIS data using the bidirectional LSTM deep learning model. Remote Sens. Environ. 2022, 273, 112985. [Google Scholar] [CrossRef]
- Qiao, L.; Gao, D.; Zhao, R.; Tang, W.; An, L.; Li, M.; Sun, H. Improving estimation of LAI dynamic by fusion of morphological and vegetation indices based on UAV imagery. Comput. Electron. Agr. 2022, 192, 106603. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, T.; Shi, L.; Wang, W.; Niu, Z.; Guo, W.; Ma, X. Combining spectral and texture features of UAV hyperspectral images for leaf nitrogen content monitoring in winter wheat. Int. J. Remote Sens. 2022, 43, 2335–2356. [Google Scholar] [CrossRef]
- Jiang, J.; Johansen, K.; Stanschewski, C.S.; Wellman, G.; Mousa, M.A.A.; Fiene, G.M.; Asiry, K.A.; Tester, M.; McCabe, M.F. Phenotyping a diversity panel of quinoa using UAV-retrieved leaf area index, SPAD-based chlorophyll and a random forest approach. Precis. Agric. 2022, 23, 961–983. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, H.B.; Xu, X.Q.; He, J.Y.; Ge, X.K.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J. Photogramm. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Li, W.; Li, D.; Liu, S.Y.; Baret, F.; Ma, Z.Y.; He, C.; Warner, T.A.; Guo, C.L.; Cheng, T.; Zhu, Y.; et al. RSARE: A physically-based vegetation index for estimating wheat green LAI to mitigate the impact of leaf chlorophyll content and residue-soil background. ISPRS J. Photogramm. 2023, 200, 138–152. [Google Scholar] [CrossRef]
- Roosjen, P.P.J.; Brede, B.; Suomalainen, J.M.; Bartholomeus, H.M.; Kooistra, L.; Clevers, J.G.P.W. Improved estimation of leaf area index and leaf chlorophyll content of a potato crop using multi-angle spectral data–potential of unmanned aerial vehicle imagery. Int. J. Appl. Earth Obs. 2018, 66, 14–26. [Google Scholar] [CrossRef]
- Brede, B.; Verrelst, J.; Gastellu-Etchegorry, J.-P.; Clevers, J.G.P.W.; Goudzwaard, L.; den Ouden, J.; Verbesselt, J.; Herold, M. Assessment of Workflow Feature Selection on Forest LAI Prediction with Sentinel-2A MSI, Landsat 7 ETM+ and Landsat 8 OLI. Remote Sens. 2020, 12, 915. [Google Scholar] [CrossRef]
- Li, L.; Ma, H. Saliency-Guided Nonsubsampled Shearlet Transform for Multisource Remote Sensing Image Fusion. Sensors 2021, 21, 1756. [Google Scholar] [CrossRef]
- Marzougui, A.; McGee, R.J.; Van Vleet, S.; Sankaran, S. Remote sensing for field pea yield estimation: A study of multi-scale data fusion approaches in phenomics. Front. Plant Sci. 2023, 14, 1111575. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Özdoğan, M.; Zipper, S.C.; Román, M.O.; Walker, J.; Hong, S.Y.; Marshall, M.; Magliulo, V.; Moreno, J.; Alonso, L.; et al. How Universal Is the Relationship between Remotely Sensed Vegetation Indices and Crop Leaf Area Index? A Global Assessment. Remote Sens. 2016, 8, 597. [Google Scholar] [CrossRef] [PubMed]
- Estévez, J.; Vicent, J.; Rivera-Caicedo, J.P.; Morcillo-Pallarés, P.; Vuolo, F.; Sabater, N.; Camps-Valls, G.; Moreno, J.; Verrelst, J. Gaussian processes retrieval of LAI from Sentinel-2 top-of-atmosphere radiance data. ISPRS J. Photogramm. 2020, 167, 289–304. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Deng, L.; Guo, L.; Wu, Y. Wheat leaf area index prediction using data fusion based on high-resolution unmanned aerial vehicle imagery. Plant Met. 2022, 18, 68. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.; Feng, H.; Jin, X.; Yuan, H.; Li, Z.; Zhou, C.; Yang, G.; Tian, Q. A Comparison of Crop Parameters Estimation Using Images from UAV-Mounted Snapshot Hyperspectral Sensor and High-Definition Digital Camera. Remote Sens. 2018, 10, 1138. [Google Scholar] [CrossRef]
- Yang, G.; Ye, Q.; Xia, J. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond. Inf. Fus. 2022, 77, 29–52. [Google Scholar] [CrossRef] [PubMed]
- Kordestani, M.; Dehghani, M.; Moshiri, B.; Saif, M. A New Fusion Estimation Method for Multi-Rate Multi-Sensor Systems With Missing Measurements. IEEE Access 2020, 8, 47522–47532. [Google Scholar] [CrossRef]
- Lu, F.; Wang, Y.; Huang, J.; Huang, Y.; Qiu, X. Fusing unscented Kalman filter for performance monitoring and fault accommodation in gas turbine. J. Aerospace Eng. 2016, 232, 556–570. [Google Scholar] [CrossRef]
- Sun, X.; Yang, G. Multi-sensor optimal weighted fusion incremental Kalman smoother. J. Syst. Eng. Electron. 2018, 29, 262–268. [Google Scholar] [CrossRef]
- Jin, H.; Li, A.; Yin, G.; Xiao, Z.; Bian, J.; Nan, X.; Jing, J. A Multiscale Assimilation Approach to Improve Fine-Resolution Leaf Area Index Dynamics. IEEE Trans. Geosci. Remote 2019, 57, 8153–8168. [Google Scholar] [CrossRef]
- Lai, X.; Huang, J.; Ye, C.; Sun, F.; Liu, Y. Adaptive multinoulli-based Kalman filter with randomly unknown delayed and lost measurements. Dig. Sign. Proce. 2022, 129, 103653. [Google Scholar] [CrossRef]
- Li, W.; Wu, W.; Yu, M.; Tao, H.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Monitoring rice grain protein accumulation dynamics based on UAV multispectral data. Field. Crop. Res. 2023, 294, 108858. [Google Scholar] [CrossRef]
- Rouse, J.W. Monitoring the Vernal Advancement of Retrogradation (Green Wave Effect) of Natural Vegetation; Nasa: Washington, DC, USA, 1974. [Google Scholar]
- Fitzgerald, G.J.; Rodriguez, D.; Christensen, L.K.; Belford, R.; Sadras, V.O.; Clarke, T.R. Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments. Precis. Agric. 2006, 7, 233–248. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf area index from light quality of the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Roujean, J.-L.; Breon, F.-M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Deng, F.; Chen, J.M.; Plummer, S.; Chen, M.; Pisek, J. Algorithm for global leaf area index retrieval using satellite imagery. IEEE Trans. Geosci. Remote 2006, 44, 2219–2229. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Taddeo, S.; Dronova, I.; Depsky, N. Spectral vegetation indices of wetland greenness: Responses to vegetation structure, composition, and spatial distribution. Remote Sens. Environ. 2019, 234, 111467. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agr. Forest. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Campos-Taberner, M.; Moreno-Martínez, Á.; Walther, S.; Duveiller, G.; Cescatti, A.; Mahecha, M.D.; Muñoz-Marí, J.; García-Haro, F.J.; Guanter, L. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 2021, 7, eabc7447. [Google Scholar] [CrossRef] [PubMed]
- Badgley, G.; Field, C.B.; Berry, J.A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 2017, 3, e1602244. [Google Scholar] [CrossRef] [PubMed]
- Evensen, G. The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean Dynam. 2003, 53, 343–367. [Google Scholar] [CrossRef]
- Liu, Z.; Jin, G. Improving accuracy of optical methods in estimating leaf area index through empirical regression models in multiple forest types. Trees-Struct. Funct. 2016, 30, 2101–2115. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, C.; Chen, J.M.; Wang, X.; Jin, G. Empirical models for tracing seasonal changes in leaf area index in deciduous broadleaf forests by digital hemispherical photography. For. Ecol. Manag. 2015, 351, 67–77. [Google Scholar] [CrossRef]
- Rischen, T.; Frenzel, T.; Fischer, K. Biodiversity in agricultural landscapes: Different non-crop habitats increase diversity of ground-dwelling beetles (Coleoptera) but support different communities. Biodivers. Conserv. 2021, 30, 3965–3981. [Google Scholar] [CrossRef]
- Haas, J.; Ban, Y. Sentinel-1A SAR and sentinel-2A MSI data fusion for urban ecosystem service mapping. Remote Sens. Appl. Sco. Environ. 2017, 8, 41–53. [Google Scholar] [CrossRef]
- Oliveira, R.A.; Nsi, R.; Niemelinen, O.; Nyholm, L.; Alhonoja, K.; Kaivosoja, J.; Jauhiainen, L.; Viljanen, N.; Nezami, S.; Markelin, L. Machine learning estimators for the quantity and quality of grass swards used for silage production using drone-based imaging spectrometry and photogrammetry. Remote Sens. Environ. 2020, 246, 111830. [Google Scholar] [CrossRef]
- Zhang, Y.; Hui, J.; Qin, Q.; Sun, Y.; Zhang, T.; Sun, H.; Li, M. Transfer-learning-based approach for leaf chlorophyll content estimation of winter wheat from hyperspectral data. Remote Sens. Environ. 2021, 267, 112724. [Google Scholar] [CrossRef]
- Zhu, X.; Cai, F.; Tian, J.; Williams, T.K. Spatiotemporal Fusion of Multisource Remote Sensing Data: Literature Survey, Taxonomy, Principles, Applications, and Future Directions. Remote Sens. 2018, 10, 527. [Google Scholar] [CrossRef]
- Cheng, M.; Jiao, X.; Liu, Y.; Shao, M.; Yu, X.; Bai, Y.; Wang, Z.; Wang, S.; Tuohuti, N.; Liu, S.; et al. Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning. Agr. Water. Manag. 2022, 264, 107530. [Google Scholar] [CrossRef]
- Jafarbiglu, H.; Pourreza, A. A comprehensive review of remote sensing platforms, sensors, and applications in nut crops. Comput. Electron. Agr. 2022, 197, 106844. [Google Scholar] [CrossRef]
- Kalarikkal, R.K.; Kim, Y.; Ksiksi, T. Incorporating satellite remote sensing for improving potential habitat simulation of Prosopis cineraria (L.) Druce in United Arab Emirates. Glob. Ecol. Conserv. 2022, 37, e02167. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, P.; Bai, X.; Khan, J.; Zhang, S.; Li, L.; Wang, L. Assimilation of the leaf area index and vegetation temperature condition index for winter wheat yield estimation using Landsat imagery and the CERES-Wheat model. Agr. Forest. Meteorol. 2017, 246, 194–206. [Google Scholar] [CrossRef]
- Lee, H.; Wang, J.; Leblon, B. Using Linear Regression, Random Forests, and Support Vector Machine with Unmanned Aerial Vehicle Multispectral Images to Predict Canopy Nitrogen Weight in Corn. Remote Sens. 2020, 12, 2071. [Google Scholar] [CrossRef]
- Yang, K.; Gong, Y.; Fang, S.; Duan, B.; Yuan, N.; Peng, Y.; Wu, X.; Zhu, R. Combining Spectral and Texture Features of UAV Images for the Remote Estimation of Rice LAI throughout the Entire Growing Season. Remote Sens. 2021, 13, 3001. [Google Scholar] [CrossRef]
- Xie, Q.; Dash, J.; Huang, W.; Peng, D.; Qin, Q.; Mortimer, H.; Casa, R.; Pignatti, S.; Laneve, G.; Pascucci, S.; et al. Vegetation Indices Combining the Red and Red-Edge Spectral Information for Leaf Area Index Retrieval. IEEE J.-Stars. 2018, 11, 1482–1493. [Google Scholar] [CrossRef]
- Ren, H.; Zhou, G.; Zhang, F. Using negative soil adjustment factor in soil-adjusted vegetation index (SAVI) for aboveground living biomass estimation in arid grasslands. Remote Sens. Environ. 2018, 209, 439–445. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, W.; Li, T.; Sun, Y. Accuracy and uncertainty analysis of staple food crop modelling by the process-based Agro-C model. Int. J. Biometeorol. 2021, 65, 587–599. [Google Scholar] [CrossRef]
- Movassagh, S.; Fatehi, A.; Sedigh, A.K.; Shariati, A. Kalman Filter Fusion With Smoothing for a Process With Continuous-Time Integrated Sensor. IEEE Sens. J. 2023, 23, 7279–7287. [Google Scholar] [CrossRef]
- Radočaj, D.; Jurišić, M.; Gašparović, M. The Role of Remote Sensing Data and Methods in a Modern Approach to Fertilization in Precision Agriculture. Remote Sens. 2022, 14, 778. [Google Scholar] [CrossRef]
Experiment (Exp.) | Rice Variety | Nitrogen Fertilization Rate (kg·ha−1) | Plant Density (cm × cm) | Imagery Acquisition Date |
---|---|---|---|---|
Exp. 1 (2014) | Wuyunjing24 (V1), Eryou1 (V2) | 0 (N0), 100 (N1) 200 (N2), 300 (N6) | 30 × 15 (D1) 50 × 15 (D2) | 07/14, 07/26, 08/05, 08/18, 08/29, 09/05, 09/21, 10/02 |
Exp. 2 (2015) | Wuyunjing24 (V1), Eryou1 (V2) | 0 (N0), 100 (N1) 200 (N2), 300 (N6) | 30 × 15 (D1) 50 × 15 (D2) | 07/22, 07/28, 08/04, 08/17, 08/28, 09/04, 09/20 |
Exp. 3 (2016) | Wuyunjing24 (V1), Eryou1 (V2) | 0 (N0), 100 (N1) 200 (N2), 300 (N6) | 30 × 15 (D1) 50 × 15 (D2) | 07/22, 08/02, 08/11, 08/25, 09/09, 09/18, 10/03 |
Exp. 4 (2017) | Wuyunjing27 (V3), Eryou728 (V4) | 100 (N1), 300 (N6) | 30 × 15 (D1) | 07/16, 07/25, 08/13, 08/23, 09/06, 09/14, 10/02 |
Exp. 5 (2018) | Wuyunjing27 (V3), Eryou728 (V4) | 100 (N1), 300 (N6) | 30 × 15 (D1) | 07/20, 08/05, 08/14, 08/23, 08/28, 09/04,09/14 |
Exp. 6 (2019) | Wuyunjing27 (V3), Sueryou295 (V5) | 100 (N1), 300 (N6) | 30 × 15 (D1) | 07/23, 08/05, 08/14, 08/19, 09/07, 09/20, 10/03 |
Exp. 7 (2018) | W30 (V6), Tianlong619 (V7), Tianlong6 (V8), Suxiang3 (V9), Suxiang100 (V10), Fengyouxiangzhan (V11), Changyou5 (V12), Huaidao5 (V13), Ningjing8 (V14), Wuyunjing30 (V15), Nanjing5055 (V16), Nanjing46 (V17), | 240 (N4), 270 (N5) | 30 × 15 (D1) | 07/20, 07/28, 08/05, 08/14, 08/23, 08/28, 09/04, 09/14, 09/22, 10/01 |
Exp. 8 (2019) | Tianlong619 (V7), Tianlong6 (V8), Fengyouxiangzhan (V11), Changyou5 (V12), Huaidao5 (V13), Ningxiangjing8 (V14), Wuyunjing30 (V15), Nanjing5055 (V16), Nanjing46 (V17), Huajing5 (V18), Yangiing3012 (V19), Nanjing9108 (V20) | 225 (N3), 270 (N5) | 30 × 15 (D1) 60 × 15 (D3) | 07/23, 07/29, 08/05, 08/14, 08/19, 08/22, 09/07, 09/12, 09/20, 09/28, 10/03 |
Exp. 9 (2020) | Suxiang100 (V10), Fengyouxiangzhan (V11), Changyou5 (V12), Huaidao5 (V13), Ningxiangjing8 (V14), Wuyunjing30 (V15), Nanjing5055 (V16), Nanjing46 (V17), Huajing5 (V18), Yangiing3012 (V19), Nanjing9108 (V20), Changnongjing10 (V21) | 225 (N3) 270 (N5) | 30 × 15 (D1) 60 × 15 (D3) | 07/17, 07/24, 08/18, 08/23, 09/03, 09/13, 09/24, 10/05 |
Vegetation Index | Full Name | Calculation Formula | Reference |
---|---|---|---|
NDVI | Normalized difference vegetation index | (B5 − B3)/(B5 + B3) | Rouse [24] |
NDVIREP | Red-edge normalized difference vegetation index | (B5 − B4)/(B5 + B4) | Fitzgerald et al. [25] |
DVI | Difference vegetation index | B5 − B3 | Jordan [26] |
DVIREP | Red-edge difference vegetation index | B5 − B4 | Jordan [26] |
RVI | Ratio vegetation index | B5/B3 | Roujean et al., Deng et al. [27,28] |
RVIREP | Red-edge ratio vegetation index | B5/B4 | Roujean et al. [27] |
SAVI | Soil-adjusted vegetation index | 1.5 × (B5 − B3)/(B3 + B5 + 0.5) | Huete [29] |
GNDVI | Green normalized difference vegetation index | (B5 − B2)/(B5 + B2) | Taddeo et al. [30] |
OSAVI | Optimized soil-adjusted vegetation index | (B5 − B3)/(B3 + B5 + 0.16) | Wu et al. [31] |
EVI | Enhanced vegetation index | 2.5 × (B5 − B3)/(B5 + 6 × B3 − 7.5 × B2 + 1) | Jiang et al. [32] |
kNDVI | kernel Normalized difference vegetation index | tanh(NDVI2) | Gustau et al. [33] |
NIRv | Near-infrared reflectance of vegetation | (NDVI − 0.08) × B5 | Badgley et al. [34] |
Experiment | Experimental Group | Dataset | Interannual Generalization Test | Intervarietal Generalization Test | Inter-Sensor Generalization Test |
---|---|---|---|---|---|
Exp. 1 | Group 1 | G1S1WM G1S1SM G1S2WM G1S2SM | model building | model building | model building |
Exp. 2 | model validation | model building | model building | ||
Exp. 3 | model building | model building | model building | ||
Exp. 4 | Group 2 | G2S1WM G2S1SM G2S2WM G2S2SM | model building | model building | model building |
Exp. 5 | model validation | model building | model building | ||
Exp. 6 | model building | model building | model building | ||
Exp. 7 | Group 3 | G3S1WM G3S1SM G3S2WM G3S2SM | model validation | model validation | model building model building |
Exp. 8 | model building | model validation | |||
Exp. 9 | Group 4 | / | / | / | model validation |
Experiment | NDVI | NDVIREP | DVI | DVIREP | RVI | RVIREP | SAVI | GNDVI | OSAVI | EVI | kNDVI | NIRv |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Group 1 | 0.48 | 0.69 | 0.57 | 0.67 | 0.11 | 0.65 | 0.58 | 0.61 | 0.57 | 0.42 | 0.65 | 0.65 |
Group 2 | 0.36 | 0.45 | 0.49 | 0.66 | 0.02 | 0.34 | 0.49 | 0.53 | 0.47 | 0.25 | 0.57 | 0.58 |
Group 3 | 0.27 | 0.49 | 0.22 | 0.50 | 0.01 | 0.44 | 0.28 | 0.38 | 0.31 | 0.04 | 0.45 | 0.28 |
All experiments | 0.38 | 0.55 | 0.44 | 0.61 | 0.03 | 0.49 | 0.45 | 0.50 | 0.44 | 0.24 | 0.54 | 0.53 |
NDVI | NDVIREP | DVI | DVIREP | RVIREP | SAVI | GNDVI | OSAVI | kNDVI | NIRv | |
---|---|---|---|---|---|---|---|---|---|---|
μ | 0.0046 | 0.0046 | 0.0047 | 0.0047 | 0.0232 | 0.0046 | 0.0048 | 0.0047 | 0.0397 | 0.0401 |
Sigma | 1.9647 | 1.6084 | 1.5025 | 0.9821 | 1.3299 | 1.5475 | 1.4417 | 1.6269 | 3.0189 | 3.0761 |
Skew | 1.05 | 0.22 | 0.52 | 0.37 | 0.09 | 0.67 | 0.89 | 0.84 | −1.60 | −1.49 |
Kurtosis | 2.27 | 4.71 | 1.01 | 1.20 | 5.26 | 1.25 | 2.21 | 1.64 | 4.79 | 4.80 |
Precision Evaluation Index | Sigma Determination Method | Tillering–Booting Stage | Heading–Maturity Stage | ||||||
---|---|---|---|---|---|---|---|---|---|
G1 | G2 | G3 | Average | G1 | G2 | G3 | Average | ||
Average σ | Fixed sigma | 1.7264 | 1.7264 | 1.7264 | 1.7264 | 1.8549 | 1.8549 | 1.8549 | 1.8549 |
Dynamic σ | 1.2594 | 1.3859 | 1.2823 | 1.3185 | 1.5619 | 1.4827 | 1.5848 | 1.5413 | |
R2 | Fixed sigma | 0.80 | 0.73 | 0.49 | 0.67 | 0.67 | 0.63 | 0.45 | 0.58 |
Dynamic σ | 0.82 | 0.76 | 0.53 | 0.70 | 0.69 | 0.65 | 0.50 | 0.61 | |
RMSE | Fixed σ | 1.01 | 1.01 | 2.07 | 1.36 | 1.45 | 1.15 | 2.20 | 1.59 |
Dynamic σ | 0.96 | 0.97 | 1.92 | 1.28 | 1.39 | 1.09 | 1.93 | 1.47 | |
MAPE | Fixed σ | 50.2% | 28.8% | 55.4% | 44.8% | 26.1% | 29.7% | 35.5% | 30.5% |
Dynamic σ | 49.9% | 26.5% | 49.9% | 42.1% | 25.2% | 28.7% | 31.7% | 29.5% |
Number of Couplings | 8 | 7 | 6 | 5 | 4 | 3 | 2 | |
---|---|---|---|---|---|---|---|---|
R2 | Fixed variance | 0.641 | 0.665 | 0.677 | 0.695 | 0.704 | 0.696 | 0.674 |
Dynamic variance | 0.670 | 0.683 | 0.692 | 0.713 | 0.718 | 0.722 | 0.693 | |
RMSE | Fixed variance | 1.443 | 1.425 | 1.419 | 1.405 | 1.406 | 1.399 | 1.416 |
Dynamic variance | 1.348 | 1.328 | 1.313 | 1.308 | 1.297 | 1.299 | 1.310 | |
MAPE | Fixed variance | 40.2% | 37.8% | 35.6% | 34.3% | 34.0% | 35.7% | 34.8% |
Dynamic variance | 37.9% | 36.4% | 34.5% | 33.4% | 33.5% | 35.1% | 34.7% |
Precision Evaluation Index | Scenes | Tillering–Booting Stage | Heading–Booting Stage | ||||
---|---|---|---|---|---|---|---|
DVIREP | Average | KF-DGDV | DVIREP | Average | KF-DGDV | ||
R2 | Year | 0.65 | 0.63 | 0.67 | 0.51 | 0.56 | 0.55 |
Variety | 0.55 | 0.57 | 0.59 | 0.54 | 0.55 | 0.57 | |
RMSE | Year | 1.46 | 1.43 | 1.26 | 2.01 | 1.90 | 1.59 |
Variety | 1.62 | 1.59 | 1.35 | 1.83 | 1.55 | 1.43 | |
MAPE | Year | 44.0% | 46.2% | 43.8% | 33.5% | 33.8% | 32.2% |
Variety | 53.5% | 49.4% | 47.4% | 28.6% | 27.2% | 26.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; He, J.; Li, W.; Zheng, H.; Wang, X.; Yao, X.; Cheng, T.; Zhang, X.; Zhu, Y.; Cao, W.; et al. Estimation of Rice Leaf Area Index Utilizing a Kalman Filter Fusion Methodology Based on Multi-Spectral Data Obtained from Unmanned Aerial Vehicles (UAVs). Remote Sens. 2024, 16, 2073. https://doi.org/10.3390/rs16122073
Yu M, He J, Li W, Zheng H, Wang X, Yao X, Cheng T, Zhang X, Zhu Y, Cao W, et al. Estimation of Rice Leaf Area Index Utilizing a Kalman Filter Fusion Methodology Based on Multi-Spectral Data Obtained from Unmanned Aerial Vehicles (UAVs). Remote Sensing. 2024; 16(12):2073. https://doi.org/10.3390/rs16122073
Chicago/Turabian StyleYu, Minglei, Jiaoyang He, Wanyu Li, Hengbiao Zheng, Xue Wang, Xia Yao, Tao Cheng, Xiaohu Zhang, Yan Zhu, Weixing Cao, and et al. 2024. "Estimation of Rice Leaf Area Index Utilizing a Kalman Filter Fusion Methodology Based on Multi-Spectral Data Obtained from Unmanned Aerial Vehicles (UAVs)" Remote Sensing 16, no. 12: 2073. https://doi.org/10.3390/rs16122073
APA StyleYu, M., He, J., Li, W., Zheng, H., Wang, X., Yao, X., Cheng, T., Zhang, X., Zhu, Y., Cao, W., & Tian, Y. (2024). Estimation of Rice Leaf Area Index Utilizing a Kalman Filter Fusion Methodology Based on Multi-Spectral Data Obtained from Unmanned Aerial Vehicles (UAVs). Remote Sensing, 16(12), 2073. https://doi.org/10.3390/rs16122073