Deep-Learning-Based Automatic Sinkhole Recognition: Application to the Eastern Dead Sea
Abstract
:1. Introduction
Authors | Technique Used | Data Source | Key Insights on ML/DL Use | Study Limitations | Best Performance Metrics for Sinkhole Class |
---|---|---|---|---|---|
Lee et al. [28] | 3D-Convolutional Neural Network (CNN) | Thermal images from drones, resolution: 640 × 480 pixels. | Demonstrated that a light-CNN algorithm can effectively be applied to thermal drone images for detecting artificial sinkholes. | Reliance on drone-based thermal imaging, risk of missing sinkholes due to drone speed and background patterns, and a benchmark dataset not fully representing sinkhole diversity, indicating a need for more varied data. | Precision: 87.9% Recall: 88.1% |
Zhu and Pierskalla [29] | Random Forest Classifier | LiDAR data, average point spacing: 1 m, DEM cell size: 1.5 m. | One of the first studies to apply ML to the problem of sinkhole delineation from elevation data. | The model failed to transfer effectively between study areas (89% accuracy in detecting sinkholes in area 1 vs. 73% accuracy in area 2), elevation models of equivalent resolution are difficult and costly to obtain in more remote karst regions. | Precision: 84.71% Recall: 65.17% |
Kang et al. [30] | Modified CNN architecture based on AlexNet (See Krizhevsky et al. [18] | Ground Penetrating Radar (GPR), original resolution: 50 × 50 pixels (B-scan), 50 × 13 pixels (C-scan), enhanced to 200 × 200 pixels. | Highlighted versatility of CNN architectures at sinkhole detection by applying them to GPR data. | Narrowly defined area of interest, so transferability untested, GPR data are difficult to obtain in more remote study areas. | (Original resolution) Precision: 88.26% Recall: 72.36%, (Enhanced resolution) Precision: 100% Recall: 100%, |
Mihevc and Mihevc [31] | U-Net | LiDAR, DEM cell size: 1 m. | Proved U-Nets to be a highly scalable automatic approach to sinkhole detection—initially mapped > 470,000 sinkholes in Slovenia, and has now been applied to map > 400,000 sinkholes across the entire USA. See https://dolines.org accessedon 17 June 2024 | Elevation models of equivalent resolution are currently unavailable in many karst regions, accuracy was not especially high (16% variation as compared to manual mapping for both sinkhole count and area), model performance relatively untested outside limestone karst areas. | Intersection over Union (IoU): 60.4% Dice Coefficient: 72.36% |
Nefeslioglu et al. [32] | Artificial Neural Network (ANN) | Satellite optical imagery and InSAR DEMs spatial resolution: 10 m. | Used ANNs for sinkhole susceptibility mapping and detection, confirming the value of ANN models in this field. | The accuracy of the used DEM, and its sensitivity to vegetation and land cover changes, may introduce errors in deformation mapping. This emphasizes the importance of the accuracy of sinkhole susceptibility assessments and deformation analyses. | Root Mean Square Error (RMSE): 45.1% |
Rafique et al. [33] | U-Net | LiDAR DEMs, aerial imagery resolution: 1.524 m per pixel. | Integrated two types of raster data (optical imagery and elevation models) and their derivatives to improve U-Net performance in sinkhole detection, with good learning between US limestone karst areas. | Elevation models of equivalent resolution are currently unavailable in many karst regions, model performance relatively untested outside limestone karst areas. The study suggests that aerial images alone were not useful for sinkhole segmentation. | IoU: 45.38% Precision: 66.29% |
2. Dead Sea Site Description and Sinkhole Evolution
3. Materials and Methods
3.1. Deep Learning Approach
3.2. Datasets and Annotation Process
3.2.1. Dataset for Phase 1 (HR Drone Images)
3.2.2. Dataset for Phase 2 (LR Satellite Images)
3.2.3. Annotation Special Cases
3.3. Deep Learning Model Architecture
- Simplifying intermediary steps: U-Net generates semantic segmentation maps that serve as simplifying intermediary steps in our pipeline, followed by post-processing operations like connected-component labelling (CCL) [55] to generate the instance segmentation map. This two-step approach reduces the complexity of the problem, allowing for more accurate segmentation despite limited data.
- Adaptability to limited datasets: U-Net is particularly adept at handling limited datasets due to its efficient structure. The fully convolutional nature of U-Net allows it to perform well even with relatively small amounts of training data, which was crucial considering the limited number of annotated sinkhole instances available for our study.
- Multiscale feature extraction: U-Net’s architecture, with its encoder-decoder structure and skip connections, allows it to capture multiscale features effectively [56]. This is advantageous for detailed sinkhole identification, as it enables the network to retain high-resolution information, while also learning more abstract representations at the same time. In certain scenarios, the skip connections can also help manage class imbalance challenges, commonly encountered in image segmentation tasks, as they facilitate the retention of high-resolution information, important for accurately depicting smaller-scale, minority classes [54].
- Scalability: U-Net is known for its scalability and efficiency in processing large datasets. Even if the datasets grow substantially with more drone and satellite data being accumulated over time, U-Net’s fully convolutional architecture can keep pace with the increased scale and is amenable to efficient parallel processing in hardware. The fully convolutional nature, also allows to address various input sizes seamlessly, such as the ones we experimented with: 128 × 128 and 256 × 256, as well as other shapes that may arise in the future due to our focus on multi-resolution aspects.
- Strategic goals: Additionally, the U-Net architecture fits well within our strategic goal of developing a multi-scale, multi-resolution sinkhole detection system. Given the potential for future integration of super-resolution techniques via latent diffusion models such as SR3, which is a U-Net-based super-resolution diffusion model [57], U-Net provides a robust foundation that can be expanded upon. It acts therefore as a backbone and allows to connect heterogeneous components, i.e., segmentation and super-resolution modules, in a consistent manner. Adding such super-resolution techniques can help improve the detection of tightly spaced geological features, for example, around merged sinkholes’ edge areas, something we encountered issues with in this work, and would like to address next.
3.4. Transition from Higher- to Lower-Resolution Satellite Imagery
3.4.1. Addressing Combined Sinkholes
3.4.2. Modifications in Data Pre- and Post-Processing
3.4.3. Transfer Learning and Freezing of Certain U-Net Layers for the Satellite Case
3.5. Model Evaluation
4. Results
4.1. Experiment Setup
- Non-Weighted Cross-Entropy
- Weighted Cross-Entropy
- Focal Loss
4.2. Performance of the Model
4.3. Performance Analysis across Datasets
4.3.1. Phase I—Trained with Drone Images
4.3.2. Phase II—Trained with Satellite Images
5. Discussion
5.1. Challenges in Sinkhole Edge Detection
5.2. Handling Class Imbalance
5.3. Effectiveness of Transfer Learning
5.4. Model Generalisability to Other Karst Environments
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Comparative Analysis of Results from Drone Imagery Training
Semantic Segmentation | Instance Segmentation | |
---|---|---|
Ground truth | ||
Non-weighted CE | ||
Weighted CE | ||
Focal gamma 1 | ||
Focal gamma 2 | ||
Focal gamma 5 |
Appendix B. Transfer-Learning Results
- Freezing Initial Encoder Layers
- Freezing Half of the Encoder Layers
- Freezing the Entire Encoder
- Unfreezing the Entire Encoder
The Satellite Images from The Year 2022 | Associated Ground Truth Semantic Segmentation Mask Image |
---|---|
Semantic Segmentation | Instance Segmentation | |
---|---|---|
Freezing Initial Encoder Layers | ||
Freezing Half of the Encoder | ||
Freezing the Entire Encoder | ||
Unfreezing the Entire Encoder |
References
- De Waele, J.; Gutiérrez, F. Karst Hydrogeology, Geomorphology and Caves; Wiley Blackwell: Hoboken, NJ, USA, 2022; ISBN 9781119605348. [Google Scholar]
- Orhan, O.; Haghshenas Haghighi, M.; Demir, V.; Gökkaya, E.; Gutiérrez, F.; Al-Halbouni, D. Spatial and Temporal Patterns of Land Subsidence and Sinkhole Occurrence in the Konya Endorheic Basin, Turkey. Geosciences 2024, 14, 5. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Parise, M.; De Waele, J.; Jourde, H. A review on natural and human-induced geohazards and impacts in karst. Earth-Sci. Rev. 2014, 138, 61–88. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Cooper, A.H.; Johnson, K.S. Identification, prediction, and mitigation of sinkhole hazards in evaporite karst areas. Environ. Geol. 2008, 53, 1007–1022. [Google Scholar] [CrossRef]
- De Waele, J.; Gutiérrez, F.; Parise, M.; Plan, L. Geomorphology and natural hazards in karst areas: A review. Geomorphology 2011, 134, 1–8. [Google Scholar] [CrossRef]
- Galve, J.P.; Bonachea, J.; Remondo, J.; Gutiérrez, F.; Guerrero, J.; Lucha, P.; Cendrero, A.; Gutiérrez, M.; Sánchez, J.A. Development and validation of sinkhole susceptibility models in mantled karst settings. A case study from the Ebro valley evaporite karst (NE Spain). Eng. Geol. 2008, 99, 185–197. [Google Scholar] [CrossRef]
- Galve, J.P.; Gutiérrez, F.; Lucha, P.; Guerrero, J.; Bonachea, J.; Remondo, J.; Cendrero, A. Probabilistic sinkhole modelling for hazard assessment. Earth Surf. Process. Landf. 2009, 34, 437–452. [Google Scholar] [CrossRef]
- Sevil, J.; Gutiérrez, F. Morphometry and evolution of sinkholes on the western shore of the Dead Sea. Implic. Susceptibility Assess. Geomorphol. 2023, 434, 108732. [Google Scholar] [CrossRef]
- Gutiérrez, F. Sinkhole Hazards. In Oxford Research Encyclopedia of Natural Hazard Science; Gutiérrez, F., Ed.; Oxford University Press: Oxford, UK, 2016; ISBN 9780199389407. [Google Scholar]
- Bondesan, A.; Meneghel, M.; Sauro, U. Morphometric analysis of dolines. IJS 1992, 21, 1–55. [Google Scholar] [CrossRef]
- Williams, P.W. The analysis of spatial characteristics of karst terrains. In Spatial Analysis in Geomorphology, 1st ed.; Chorley, R.J., Ed.; Routledge: London, UK, 1972; pp. 135–164. ISBN 9780429273346. [Google Scholar]
- Huang, T.S.; Kohonen, T.; Schroeder, M.R.; Lotsch, H.K.V.; Maybank, S. Theory of Reconstruction from Image Motion; Springer: Berlin/Heidelberg, Germany, 1993; ISBN 978-3-642-77559-8. [Google Scholar]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Liu, X. Airborne LiDAR for DEM generation: Some critical issues. Prog. Phys. Geogr. Earth Environ. 2008, 32, 31–49. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 51. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, J.F.; Mark, D.M. The extraction of drainage networks from digital elevation data. Comput. Vis. Graph. Image Process. 1984, 28, 323–344. [Google Scholar] [CrossRef]
- Jenson, S.K.; Domingue, J.O. Extracting topographic structure from digital elevation data for geographic information-system analysis. Photogramm. Eng. Remote Sens. 1988, 54, 1593–1600. [Google Scholar]
- Wang, L.; Liu, H. An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. Int. J. Geogr. Inf. Sci. 2006, 20, 193–213. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, H.; Wang, S.; Yu, B.; Beck, R.; Hinkel, K. A localized contour tree method for deriving geometric and topological properties of complex surface depressions based on high-resolution topographical data. Int. J. Geogr. Inf. Sci. 2015, 29, 2041–2060. [Google Scholar] [CrossRef]
- Wu, Q.; Deng, C.; Chen, Z. Automated delineation of karst sinkholes from LiDAR-derived digital elevation models. Geomorphology 2016, 266, 1–10. [Google Scholar] [CrossRef]
- Wu, Q.; Lane, C.R.; Wang, L.; Vanderhoof, M.K.; Christensen, J.R.; Liu, H. Efficient Delineation of Nested Depression Hierarchy in Digital Elevation Models for Hydrological Analysis Using Level-Set Methods. J. Am. Water Resour. Assoc. 2019, 55, 354–368. [Google Scholar] [CrossRef]
- Wu, Q. lidar: A Python package for delineating nested surface depressions from digital elevation data. JOSS 2021, 6, 2965. [Google Scholar] [CrossRef]
- Lee, E.J.; Shin, S.Y.; Ko, B.C.; Chang, C. Early sinkhole detection using a drone-based thermal camera and image processing. Infrared Phys. Technol. 2016, 78, 223–232. [Google Scholar] [CrossRef]
- Zhu, J.; Pierskalla, W.P. Applying a weighted random forests method to extract karst sinkholes from LiDAR data. J. Hydrol. 2016, 533, 343–352. [Google Scholar] [CrossRef]
- Kang, M.-S.; Kim, N.; Im, S.B.; Lee, J.-J.; An, Y.-K. 3D GPR Image-based UcNet for Enhancing Underground Cavity Detectability. Remote Sens. 2019, 11, 2545. [Google Scholar] [CrossRef]
- Mihevc, A.; Mihevc, R. Morphological characteristics and distribution of dolines in Slovenia, a study of a lidar-based doline map of Slovenia. AC 2021, 50, 11–36. [Google Scholar] [CrossRef]
- Nefeslioglu, H.A.; Tavus, B.; Er, M.; Ertugrul, G.; Ozdemir, A.; Kaya, A.; Kocaman, S. Integration of an InSAR and ANN for Sinkhole Susceptibility Mapping: A Case Study from Kirikkale-Delice (Turkey). IJGI 2021, 10, 119. [Google Scholar] [CrossRef]
- Rafique, M.U.; Zhu, J.; Jacobs, N. Automatic Segmentation of Sinkholes Using a Convolutional Neural Network. Earth Space Sci. 2022, 9, 448. [Google Scholar] [CrossRef]
- Abelson, M.; Yechieli, Y.; Baer, G.; Lapid, G.; Behar, N.; Calvo, R.; Rosensaft, M. Natural versus human control on subsurface salt dissolution and development of thousands of sinkholes along the Dead Sea coast. J. Geophys. Res. Earth Surf. 2017, 122, 1262–1277. [Google Scholar] [CrossRef]
- Al-Halbouni, D.; Holohan, E.P.; Saberi, L.; Alrshdan, H.; Sawarieh, A.; Closson, D.; Walter, T.R.; Dahm, T. Sinkholes, subsidence and subrosion on the eastern shore of the Dead Sea as revealed by a close-range photogrammetric survey. Geomorphology 2017, 285, 305–324. [Google Scholar] [CrossRef]
- Watson, R.A.; Holohan, E.P.; Al-Halbouni, D.; Saberi, L.; Sawarieh, A.; Closson, D.; Alrshdan, H.; Abou Karaki, N.; Siebert, C.; Walter, T.R.; et al. Sinkholes and uvalas in evaporite karst: Spatio-temporal development with links to base-level fall on the eastern shore of the Dead Sea. Solid Earth 2019, 10, 1451–1468. [Google Scholar] [CrossRef]
- Al-Halbouni, D.; Watson, R.A.; Holohan, E.P.; Meyer, R.; Polom, U.; Dos Santos, F.M.; Comas, X.; Alrshdan, H.; Krawczyk, C.M.; Dahm, T. Dynamics of hydrological and geomorphological processes in evaporite karst at the eastern Dead Sea—A multidisciplinary study. Hydrol. Earth Syst. Sci. 2021, 25, 3351–3395. [Google Scholar] [CrossRef]
- Closson, D.; Abou Karaki, N. Salt karst and tectonics: Sinkholes development along tension cracks between parallel strike-slip faults, Dead Sea, Jordan. Earth Surf. Process. Landf. 2009, 34, 1408–1421. [Google Scholar] [CrossRef]
- Shviro, M.; Haviv, I.; Baer, G. High-resolution InSAR constraints on flood-related subsidence and evaporite dissolution along the Dead Sea shores: Interplay between hydrology and rheology. Geomorphology 2017, 293, 53–68. [Google Scholar] [CrossRef]
- Yechieli, Y.; Abelson, M.; Bein, A.; Crouvi, O.; Shtivelman, V. Sinkhole “swarms” along the Dead Sea coast: Reflection of disturbance of lake and adjacent groundwater systems. Geol. Soc. Am. Bull. 2006, 118, 1075–1087. [Google Scholar] [CrossRef]
- Yechieli, Y.; Abelson, M.; Baer, G. Sinkhole formation and subsidence along the Dead Sea coast, Israel. Hydrogeol. J. 2016, 24, 601. [Google Scholar] [CrossRef]
- Avni, Y.; Lensky, N.; Dente, E.; Shviro, M.; Arav, R.; Gavrieli, I.; Yechieli, Y.; Abelson, M.; Lutzky, H.; Filin, S.; et al. Self-accelerated development of salt karst during flash floods along the Dead Sea Coast, Israel. JGR Earth Surf. 2016, 121, 17–38. [Google Scholar] [CrossRef]
- Arav, R.; Filin, S.; Avni, Y. Sinkhole swarms from initiation to stabilisation based on in situ high-resolution 3-D observations. Geomorphology 2020, 351, 106916. [Google Scholar] [CrossRef]
- Ezersky, M.G.; Frumkin, A. Identification of sinkhole origin using surface geophysical methods, Dead Sea, Israel. Geomorphology 2020, 364, 107225. [Google Scholar] [CrossRef]
- Al-Halbouni, D.; Holohan, E.P.; Taheri, A.; Schöpfer, M.P.J.; Emam, S.; Dahm, T. Geomechanical modelling of sinkhole development using distinct elements: Model verification for a single void space and application to the Dead Sea area. Solid Earth 2018, 9, 1341–1373. [Google Scholar] [CrossRef]
- Al-Halbouni, D.; Holohan, E.P.; Taheri, A.; Watson, R.A.; Polom, U.; Schöpfer, M.P.J.; Emam, S.; Dahm, T. Distinct element geomechanical modelling of the formation of sinkhole clusters within large-scale karstic depressions. Solid Earth 2019, 10, 1219–1241. [Google Scholar] [CrossRef]
- Schulten, H.Z.; Watson, R.A.; Al-Halbouni, D.; Al-Rabayah, O.A.-R.; Abdulla, F.; Holohan, E.P. Dynamics of sinkhole and uvala development on the eastern shore of the Dead Sea, 1980–2022. In Proceedings of the EGU23, the 25th EGU General Assembly, Vienna, Austria, 23–28 April 2023. [Google Scholar]
- El-Isa, Z.; Rimawi, O.; Jarrar, G.; Abou Karaki, N.; Taqieddin, S.; Atallah, M.; Seif El-Din, N.; Al Saed, A. Assessment of the Hazard of Subsidence and Sinkholes in Ghor Al-Haditha Area; University of Jordan: Amman, Jordan, 1995. [Google Scholar]
- Al-Halbouni, D.; AlRabayah, O.; Rüpke, L. A Vision on a UNESCO Global Geopark at the Southeastern Dead Sea in Jordan—Geosites and Conceptual Approach. Land 2022, 11, 549. [Google Scholar] [CrossRef]
- Al-Halbouni, D.; AlRabayah, O.; Nakath, D.; Rüpke, L. A Vision on a UNESCO Global Geopark at the Southeastern Dead Sea in Jordan—How Natural Hazards May Offer Geotourism Opportunities. Land 2022, 11, 553. [Google Scholar] [CrossRef]
- Polom, U.; Alrshdan, H.; Al-Halbouni, D.; Holohan, E.P.; Dahm, T.; Sawarieh, A.; Atallah, M.Y.; Krawczyk, C.M. Shear wave reflection seismic yields subsurface dissolution and subrosion patterns: Application to the Ghor Al-Haditha sinkhole site, Dead Sea, Jordan. Solid Earth 2018, 9, 1079–1098. [Google Scholar] [CrossRef]
- Sevil, J.; Gutiérrez, F. Temporal variability of sinkhole hazard illustrated in the western shore of the Dead Sea. Nat. Hazards 2024, 114, 2395–2414. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015. Available online: http://arxiv.org/pdf/1505.04597 (accessed on 17 June 2024).
- He, L.; Ren, X.; Gao, Q.; Zhao, X.; Yao, B.; Chao, Y. The connected-component labeling problem: A review of state-of-the-art algorithms. Pattern Recognit. 2017, 70, 25–43. [Google Scholar] [CrossRef]
- Kurian, N.C.; Lohan, A.; Verghese, G.; Dharamshi, N.; Meena, S.; Li, M.; Liu, F.; Gillet, C.; Rane, S.; Grigoriadis, A.; et al. Deep Multi-Scale U-Net Architecture and Label-Noise Robust Training Strategies for Histopathological Image Segmentation. 2022. Available online: http://arxiv.org/pdf/2205.01777 (accessed on 17 June 2024).
- Saharia, C.; Ho, J.; Chan, W.; Salimans, T.; Fleet, D.J.; Norouzi, M. Image super-resolution via iterative refinement. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 4713–4726. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Cai, Z.; Vasconcelos, N. Cascade R-CNN: High quality object detection and instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 1483–1498. [Google Scholar] [CrossRef]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.-Y.; et al. Segment anything. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 4015–4026. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Görtler, J.; Hohman, F.; Moritz, D.; Wongsuphasawat, K.; Ren, D.; Nair, R.; Kirchner, M.; Patel, K. Neo: Generalizing Confusion Matrix Visualization to Hierarchical and Multi-Output Labels. In CHI Conference on Human Factors in Computing Systems; ACM: New York, NY, USA, 2022; pp. 1–13. [Google Scholar]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Ma, Z.; Mei, G. Deep learning for geological hazards analysis: Data, models, applications, and opportunities. Earth-Sci. Rev. 2021, 223, 103858. [Google Scholar] [CrossRef]
- Karpatne, A.; Ebert-Uphoff, I.; Ravela, S.; Babaie, H.A.; Kumar, V. Machine Learning for the Geosciences: Challenges and Opportunities. IEEE Trans. Knowl. Data Eng. 2019, 31, 1544–1554. [Google Scholar] [CrossRef]
- Palmer, A.N. Cave Geology; Cave Books: Dayton, OH, USA, 2007; ISBN 978-0939748662. [Google Scholar]
- Ford, D.; Williams, P.W. Karst Hydrogeology and Geomorphology; Wiley: Chichester, UK, 2007; ISBN 978-0-470-84996-5. [Google Scholar]
- Kobal, M.; Bertoncelj, I.; Pirotti, F.; Dakskobler, I.; Kutnar, L. Using lidar data to analyse sinkhole characteristics relevant for understory vegetation under forest cover-case study of a high karst area in the dinaric mountains. PLoS ONE 2015, 10, e0122070. [Google Scholar] [CrossRef]
- Vennari, C.; Parise, M. A Chronological Database about Natural and Anthropogenic Sinkholes in Italy. Geosciences 2022, 12, 200. [Google Scholar] [CrossRef]
- Pellicani, R.; Spilotro, G.; Gutiérrez, F. Susceptibility mapping of instability related to shallow mining cavities in a built-up environment. Eng. Geol. 2017, 217, 81–88. [Google Scholar] [CrossRef]
- Gong, R.; Li, W.; Chen, Y.; van Gool, L. Dlow: Domain flow for adaptation and generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2477–2486. [Google Scholar]
(A) Phase I—Train Models with Drone Images Exploring Different Loss Functions | |||||
Focal Loss with Gamma = 1 | |||||
Precision | Recall | Specificity | F1 Score | Accuracy | |
Sinkhole | 97.477 | 96.222 | 99.937 | 96.846 | 99.751 |
Edge | 17.117 | 17.244 | 99.996 | 17.18 | 99.989 |
Background | 99.909 | 99.944 | 96.622 | 99.927 | 99.803 |
Focal Loss with Gamma = 2 | |||||
Precision | Recall | Specificity | F1 Score | Accuracy | |
Sinkhole | 97.302 | 96.587 | 99.932 | 96.943 | 99.764 |
Edge | 16.962 | 15.433 | 99.997 | 16.161 | 99.99 |
Background | 99.915 | 99.941 | 96.86 | 99.928 | 99.804 |
Focal Loss with Gamma = 5 | |||||
Precision | Recall | Specificity | F1 Score | Accuracy | |
Sinkhole | 97.242 | 96.372 | 99.93 | 96.805 | 99.752 |
Edge | 16.498 | 15.63 | 99.997 | 16.052 | 99.989 |
Background | 99.913 | 99.94 | 96.783 | 99.927 | 99.798 |
Weighted CE | |||||
Precision | Recall | Specificity | F1 Score | Accuracy | |
Sinkhole | 89.547 | 90.642 | 99.73 | 90.091 | 99.273 |
Edge | 7.809 | 10.79 | 99.995 | 9.06 | 99.987 |
Background | 99.806 | 99.708 | 92.138 | 99.757 | 99.243 |
Non-weighted CE | |||||
Precision | Recall | Specificity | F1 Score | Accuracy | |
Sinkhole | 97.364 | 96.791 | 99.933 | 97.077 | 99.776 |
Edge | 18.31 | 17.244 | 99.997 | 17.761 | 99.99 |
Background | 99.921 | 99.942 | 97.077 | 99.932 | 99.81 |
(B) Phase II—Fine-Tune the Best Drone Model using Satellite Images | |||||
Freezing Initial Encoder Layers | |||||
Precision | Recall | Specificity | F1 Score | Accuracy | |
Sinkhole | 90.415 | 92.055 | 99.973 | 91.228 | 99.95 |
Background | 99.959 | 99.977 | 88.948 | 99.968 | 99.937 |
Freezing Half of the Encoder Layers | |||||
Precision | Recall | Specificity | F1 Score | Accuracy | |
Sinkhole | 88.668 | 91.341 | 99.967 | 89.985 | 99.943 |
Background | 99.956 | 99.969 | 88.203 | 99.963 | 99.925 |
Freezing the Entire Encoder | |||||
Precision | Recall | Specificity | F1 Score | Accuracy | |
Sinkhole | 85.088 | 82.049 | 99.96 | 83.541 | 99.909 |
Background | 99.928 | 99.952 | 80.636 | 99.94 | 99.88 |
Unfreezing the Entire Encoder | |||||
Precision | Recall | Specificity | F1 Score | Accuracy | |
Sinkhole | 90.119 | 91.898 | 99.972 | 91 | 99.949 |
Background | 99.959 | 99.975 | 88.843 | 99.967 | 99.934 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrabayah, O.; Caus, D.; Watson, R.A.; Schulten, H.Z.; Weigel, T.; Rüpke, L.; Al-Halbouni, D. Deep-Learning-Based Automatic Sinkhole Recognition: Application to the Eastern Dead Sea. Remote Sens. 2024, 16, 2264. https://doi.org/10.3390/rs16132264
Alrabayah O, Caus D, Watson RA, Schulten HZ, Weigel T, Rüpke L, Al-Halbouni D. Deep-Learning-Based Automatic Sinkhole Recognition: Application to the Eastern Dead Sea. Remote Sensing. 2024; 16(13):2264. https://doi.org/10.3390/rs16132264
Chicago/Turabian StyleAlrabayah, Osama, Danu Caus, Robert Alban Watson, Hanna Z. Schulten, Tobias Weigel, Lars Rüpke, and Djamil Al-Halbouni. 2024. "Deep-Learning-Based Automatic Sinkhole Recognition: Application to the Eastern Dead Sea" Remote Sensing 16, no. 13: 2264. https://doi.org/10.3390/rs16132264
APA StyleAlrabayah, O., Caus, D., Watson, R. A., Schulten, H. Z., Weigel, T., Rüpke, L., & Al-Halbouni, D. (2024). Deep-Learning-Based Automatic Sinkhole Recognition: Application to the Eastern Dead Sea. Remote Sensing, 16(13), 2264. https://doi.org/10.3390/rs16132264