Evaluation of Rayleigh-Corrected Reflectance on Remote Detection of Algal Blooms in Optically Complex Coasts of East China Sea
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. GOCI-II Data
Rrc,865 > 0.06 and R(Rrc,745, Rrc,865) < 1.15, or
Rrc,865 > 0.027 and R(Rrc,745, Rrc,865) < 1.15 and S(Rrc,745, Rrc,865) > 0.01.
2.3. Field Data
2.4. Baseline Subtraction Algorithm
2.5. Accuracy Assessment
3. Results and Discussion
3.1. Spectral Characteristics of Rrc
3.2. Comparison of the Effectiveness of Different BLIs for Algal Bloom Detection
3.3. Algorithm Development of HABs Detection
3.4. Validation during the 2021–2023 Bloom Events
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, D.M.; Cembella, A.D.; Hallegraeff, G.M. Progress in Understanding Harmful Algal Blooms: Paradigm Shifts and New Technologies for Research, Monitoring, and Management. Annu. Rev. Mar. Sci. 2012, 4, 143–176. [Google Scholar] [CrossRef] [PubMed]
- Hallegraeff, G.M.; Anderson, D.M.; Belin, C.; Bottein, M.-Y.D.; Bresnan, E.; Chinain, M.; Enevoldsen, H.; Iwataki, M.; Karlson, B.; McKenzie, C.H.; et al. Perceived Global Increase in Algal Blooms Is Attributable to Intensified Monitoring and Emerging Bloom Impacts. Commun. Earth Environ. 2021, 2, 117. [Google Scholar] [CrossRef] [PubMed]
- IOCCG. Observation of Harmful Algal Blooms with Ocean Colour Radiometry; IOCCG Report Series; IOCCG: Dartmouth, NS, Canada, 2021. [Google Scholar] [CrossRef]
- Cannizzaro, J.P.; Carder, K.L.; Chen, F.R.; Heil, C.A.; Vargo, G.A. A Novel Technique for Detection of the Toxic Dinoflagellate, Karenia Brevis, in the Gulf of Mexico from Remotely Sensed Ocean Color Data. Cont. Shelf Res. 2008, 28, 137–158. [Google Scholar] [CrossRef]
- Carvalho, G.A.; Minnett, P.J.; Fleming, L.E.; Banzon, V.F.; Baringer, W. Satellite Remote Sensing of Harmful Algal Blooms: A New Multi-Algorithm Method for Detecting the Florida Red Tide (Karenia brevis). Harmful Algae 2010, 9, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Schofield, O.; Grzymski, J.; Bissett, W.P.; Kirkpatrick, G.J.; Millie, D.F.; Moline, M.; Roesler, C.S. Optical Monitoring and Forecasting Systems for Harmful Algal Blooms: Possibility or Pure Dream? J. Phycol. 1999, 35, 1477–1496. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Holderied, K.; Sinclair, M. Determination of Water Depth with High-resolution Satellite Imagery over Variable Bottom Types. Limnol. Oceanogr. 2003, 48, 547–556. [Google Scholar] [CrossRef]
- Tomlinson, M.C.; Stumpf, R.P.; Ransibrahmanakul, V.; Truby, E.W.; Kirkpatrick, G.J.; Pederson, B.A.; Vargo, G.A.; Heil, C.A. Evaluation of the Use of SeaWiFS Imagery for Detecting Karenia Brevis Harmful Algal Blooms in the Eastern Gulf of Mexico. Remote Sens. Environ. 2004, 91, 293–303. [Google Scholar] [CrossRef]
- Blondeau-Patissier, D.; Gower, J.F.R.; Dekker, A.G.; Phinn, S.R.; Brando, V.E. A Review of Ocean Color Remote Sensing Methods and Statistical Techniques for the Detection, Mapping and Analysis of Phytoplankton Blooms in Coastal and Open Oceans. Prog. Oceanogr. 2014, 123, 123–144. [Google Scholar] [CrossRef]
- Mouw, C.B.; Hardman-Mountford, N.J.; Alvain, S.; Bracher, A.; Brewin, R.J.W.; Bricaud, A.; Ciotti, A.M.; Devred, E.; Fujiwara, A.; Hirata, T.; et al. A Consumer’s Guide to Satellite Remote Sensing of Multiple Phytoplankton Groups in the Global Ocean. Front. Mar. Sci. 2017, 4, 41. [Google Scholar] [CrossRef]
- Dall’Olmo, G.; Gitelson, A.A. Effect of Bio-Optical Parameter Variability on the Remote Estimation of Chlorophyll-a Concentration in Turbid Productive Waters: Experimental Results—Erratum. Appl. Opt. 2005, 44, 3342. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Dall’Olmo, G.; Moses, W.; Rundquist, D.C.; Barrow, T.; Fisher, T.R.; Gurlin, D.; Holz, J. A Simple Semi-Analytical Model for Remote Estimation of Chlorophyll-a in Turbid Waters: Validation. Remote Sens. Environ. 2008, 112, 3582–3593. [Google Scholar] [CrossRef]
- Hu, C.; Mullerkarger, F.; Taylor, C.; Carder, K.; Kelble, C.; Johns, E.; Heil, C. Red Tide Detection and Tracing Using MODIS Fluorescence Data: A Regional Example in SW Florida Coastal Waters. Remote Sens. Environ. 2005, 97, 311–321. [Google Scholar] [CrossRef]
- Ahn, Y.-H.; Shanmugam, P. Detecting the Red Tide Algal Blooms from Satellite Ocean Color Observations in Optically Complex Northeast-Asia Coastal Waters. Remote Sens. Environ. 2006, 103, 419–437. [Google Scholar] [CrossRef]
- Sathyendranath, S.; Watts, L.; Devred, E.; Platt, T.; Caverhill, C.; Maass, H. Discrimination of Diatoms from Other Phytoplankton Using Ocean-Colour Data. Mar. Ecol. Prog. Ser. 2004, 272, 59–68. [Google Scholar] [CrossRef]
- Westberry, T.K.; Siegel, D.A.; Subramaniam, A. An Improved Bio-optical Model for the Remote Sensing of Trichodesmium Spp. Blooms. J. Geophys. Res. 2005, 110, 2004JC002517. [Google Scholar] [CrossRef]
- Ishizaka, J.; Kitaura, Y.; Touke, Y.; Sasaki, H.; Tanaka, A.; Murakami, H.; Suzuki, T.; Matsuoka, K.; Nakata, H. Satellite Detection of Red Tide in Ariake Sound, 1998–2001. J. Oceanogr. 2006, 62, 37–45. [Google Scholar] [CrossRef]
- Lubac, B.; Loisel, H.; Guiselin, N.; Astoreca, R.; Felipe Artigas, L.; Mériaux, X. Hyperspectral and Multispectral Ocean Color Inversions to Detect Phaeocystis globosa Blooms in Coastal Waters. J. Geophys. Res. 2008, 113, 2007JC004451. [Google Scholar] [CrossRef]
- Amin, S.A.; Green, D.H.; Hart, M.C.; Küpper, F.C.; Sunda, W.G.; Carrano, C.J. Photolysis of Iron–Siderophore Chelates Promotes Bacterial–Algal Mutualism. Proc. Natl. Acad. Sci. USA 2009, 106, 17071–17076. [Google Scholar] [CrossRef]
- Siswanto, E.; Ishizaka, J.; Tripathy, S.C.; Miyamura, K. Detection of Harmful Algal Blooms of Karenia Mikimotoi Using MODIS Measurements: A Case Study of Seto-Inland Sea, Japan. Remote Sens. Environ. 2013, 129, 185–196. [Google Scholar] [CrossRef]
- Kurekin, A.A.; Miller, P.I.; Van Der Woerd, H.J. Satellite Discrimination of Karenia Mikimotoi and Phaeocystis Harmful Algal Blooms in European Coastal Waters: Merged Classification of Ocean Colour Data. Harmful Algae 2014, 31, 163–176. [Google Scholar] [CrossRef]
- Kim, Y.; Yoo, S.; Son, Y.B. Optical Discrimination of Harmful Cochlodinium Polykrikoides Blooms in Korean Coastal Waters. Opt. Express 2016, 24, A1471. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Ishizaka, J.; Saitoh, K.; Mine, T.; Yamashita, H. A Novel Method Based on Backscattering for Discriminating Summer Blooms of the Raphidophyte (Chattonella spp.) and the Diatom (Skeletonema spp.) Using MODIS Images in Ariake Sea, Japan. Remote Sens. 2020, 12, 1504. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Kim, B.; Kim, V.N. Re-Evaluation of the Roles of DROSHA, Exportin 5, and DICER in microRNA Biogenesis. Proc. Natl. Acad. Sci. USA 2016, 113, E1881–E1889. [Google Scholar] [CrossRef] [PubMed]
- Gordon, H.R. Atmospheric Correction of Ocean Color Imagery in the Earth Observing System Era. J. Geophys. Res. 1997, 102, 17081–17106. [Google Scholar] [CrossRef]
- Gordon, H.R.; Wang, M. Retrieval of Water-Leaving Radiance and Aerosol Optical Thickness over the Oceans with SeaWiFS: A Preliminary Algorithm. Appl. Opt. 1994, 33, 443. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Carder, K.L.; Muller-Karger, F.E. Atmospheric Correction of SeaWiFS Imagery: Assessment of the Use of Alternative Bands. Appl. Opt. 2000, 39, 3573. [Google Scholar] [CrossRef] [PubMed]
- Ruddick, K.G.; Ovidio, F.; Rijkeboer, M. Atmospheric Correction of SeaWiFS Imagery for Turbid Coastal and Inland Waters. Appl. Opt. 2000, 39, 897. [Google Scholar] [CrossRef] [PubMed]
- King, M.D.; Platnick, S.; Menzel, W.P.; Ackerman, S.A.; Hubanks, P.A. Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3826–3852. [Google Scholar] [CrossRef]
- Hu, C.; Feng, L. Modified MODIS Fluorescence Line Height Data Product to Improve Image Interpretation for Red Tide Monitoring in the Eastern Gulf of Mexico. J. Appl. Remote Sens. 2016, 11, 012003. [Google Scholar] [CrossRef]
- Gower, J.; King, S.; Borstad, G.; Brown, L. Detection of Intense Plankton Blooms Using the 709 Nm Band of the MERIS Imaging Spectrometer. Int. J. Remote Sens. 2005, 26, 2005–2012. [Google Scholar] [CrossRef]
- Hu, C.; Lee, Z.; Ma, R.; Yu, K.; Li, D.; Shang, S. Moderate Resolution Imaging Spectroradiometer (MODIS) Observations of Cyanobacteria Blooms in Taihu Lake, China. J. Geophys. Res. 2010, 115, 2009JC005511. [Google Scholar] [CrossRef]
- Hu, C. An Empirical Approach to Derive MODIS Ocean Color Patterns under Severe Sun Glint. Geophys. Res. Lett. 2011, 38, L01603. [Google Scholar] [CrossRef]
- Duan, H.; Ma, R.; Zhang, Y.; Loiselle, S.A. Are Algal Blooms Occurring Later in Lake Taihu? Climate Local Effects Outcompete Mitigation Prevention. J. Plankton Res. 2014, 36, 866–871. [Google Scholar] [CrossRef]
- Feng, L.; Hou, X.; Li, J.; Zheng, Y. Exploring the Potential of Rayleigh-Corrected Reflectance in Coastal and Inland Water Applications: A Simple Aerosol Correction Method and Its Merits. ISPRS J. Photogramm. Remote Sens. 2018, 146, 52–64. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Han, X.; Chen, X.; Qi, L. Long-Term Distribution Patterns of Chlorophyll-a Concentration in China’s Largest Freshwater Lake: MERIS Full-Resolution Observations with a Practical Approach. Remote Sens. 2014, 7, 275–299. [Google Scholar] [CrossRef]
- Chen, S.; Hu, C.; Barnes, B.B.; Xie, Y.; Lin, G.; Qiu, Z. Improving Ocean Color Data Coverage through Machine Learning. Remote Sens. Environ. 2019, 222, 286–302. [Google Scholar] [CrossRef]
- Matthews, M.W.; Bernard, S.; Robertson, L. An Algorithm for Detecting Trophic Status (Chlorophyll-a), Cyanobacterial-Dominance, Surface Scums and Floating Vegetation in Inland and Coastal Waters. Remote Sens. Environ. 2012, 124, 637–652. [Google Scholar] [CrossRef]
- Matthews, M.W.; Odermatt, D. Improved Algorithm for Routine Monitoring of Cyanobacteria and Eutrophication in Inland and Near-Coastal Waters. Remote Sens. Environ. 2015, 156, 374–382. [Google Scholar] [CrossRef]
- Hu, C.; Li, D.; Chen, C.; Ge, J.; Muller-Karger, F.E.; Liu, J.; Yu, F.; He, M. On the Recurrent Ulva Prolifera Blooms in the Yellow Sea and East China Sea. J. Geophys. Res. 2010, 115, 2009JC005561. [Google Scholar] [CrossRef]
- Qi, L.; Hu, C.; Cannizzaro, J.; Corcoran, A.A.; English, D.; Le, C. VIIRS Observations of a Karenia Brevis Bloom in the Northeastern Gulf of Mexico in the Absence of a Fluorescence Band. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2213–2217. [Google Scholar] [CrossRef]
- Cannizzaro, J.P.; Barnes, B.B.; Hu, C.; Corcoran, A.A.; Hubbard, K.A.; Muhlbach, E.; Sharp, W.C.; Brand, L.E.; Kelble, C.R. Remote Detection of Cyanobacteria Blooms in an Optically Shallow Subtropical Lagoonal Estuary Using MODIS Data. Remote Sens. Environ. 2019, 231, 111227. [Google Scholar] [CrossRef]
- Lou, X.; Hu, C. Diurnal Changes of a Harmful Algal Bloom in the East China Sea: Observations from GOCI. Remote Sens. Environ. 2014, 140, 562–572. [Google Scholar] [CrossRef]
- Shang, S.; Wu, J.; Huang, B.; Lin, G.; Lee, Z.; Liu, J.; Shang, S. A New Approach to Discriminate Dinoflagellate from Diatom Blooms from Space in the East China Sea. J. Geophys. Res. Ocean. 2014, 119, 4653–4668. [Google Scholar] [CrossRef]
- Tang, D.; Kawamura, H.; Oh, I.S.; Baker, J. Satellite Evidence of Harmful Algal Blooms and Related Oceanographic Features in the Bohai Sea during Autumn 1998. Adv. Space Res. 2006, 37, 681–689. [Google Scholar] [CrossRef]
- Tao, B.; Mao, Z.; Lei, H.; Pan, D.; Bai, Y.; Zhu, Q.; Zhang, Z. A Semianalytical MERIS Green-red Band Algorithm for Identifying Phytoplankton Bloom Types in the E Ast C Hina S Ea. J. Geophys. Res. Ocean. 2017, 122, 1772–1788. [Google Scholar] [CrossRef]
- Tao, B.; Mao, Z.; Lei, H.; Pan, D.; Shen, Y.; Bai, Y.; Zhu, Q.; Li, Z. A Novel Method for Discriminating Prorocentrum Donghaiense from Diatom Blooms in the East China Sea Using MODIS Measurements. Remote Sens. Environ. 2015, 158, 267–280. [Google Scholar] [CrossRef]
- Hou, X.; Feng, L.; Dai, Y.; Hu, C.; Gibson, L.; Tang, J.; Lee, Z.; Wang, Y.; Cai, X.; Liu, J.; et al. Global Mapping Reveals Increase in Lacustrine Algal Blooms over the Past Decade. Nat. Geosci. 2022, 15, 130–134. [Google Scholar] [CrossRef]
- Dai, Y.; Yang, S.; Zhao, D.; Hu, C.; Xu, W.; Anderson, D.M.; Li, Y.; Song, X.-P.; Boyce, D.G.; Gibson, L.; et al. Coastal Phytoplankton Blooms Expand and Intensify in the 21st Century. Nature 2023, 615, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Dai, Y.; Hou, X.; Xu, Y.; Liu, J.; Zheng, C. Concerns about Phytoplankton Bloom Trends in Global Lakes. Nature 2021, 590, E35–E47. [Google Scholar] [CrossRef]
- Zhou, M.; Shen, Z.; Yu, R. Responses of a Coastal Phytoplankton Community to Increased Nutrient Input from the Changjiang (Yangtze) River. Cont. Shelf Res. 2008, 28, 1483–1489. [Google Scholar] [CrossRef]
- Chen, C.-T.A. Chemical and Physical Fronts in the Bohai, Yellow and East China Seas. J. Mar. Syst. 2009, 78, 394–410. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, W.; Landry, M.R.; Chiang, K.-P.; Wang, L.; Huang, B. Responses of Phytoplankton Communities to Environmental Variability in the East China Sea. Ecosystems 2016, 19, 832–849. [Google Scholar] [CrossRef]
- Qi, L.; Hu, C.; Xing, Q.; Shang, S. Long-Term Trend of Ulva Prolifera Blooms in the Western Yellow Sea. Harmful Algae 2016, 58, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Hu, C.; Wang, M.; Shang, S.; Wilson, C. Floating Algae Blooms in the East China Sea. Geophys. Res. Lett. 2017, 44, 11501–11509. [Google Scholar] [CrossRef]
- Wynne, T.T.; Stumpf, R.P.; Briggs, T.O. Comparing MODIS and MERIS Spectral Shapes for Cyanobacterial Bloom Detection. Int. J. Remote Sens. 2013, 34, 6668–6678. [Google Scholar] [CrossRef]
- Shen, F.; Tang, R.; Sun, X.; Liu, D. Simple Methods for Satellite Identification of Algal Blooms and Species Using 10-Year Time Series Data from the East China Sea. Remote Sens. Environ. 2019, 235, 111484. [Google Scholar] [CrossRef]
- Ahn, J.-H.; Park, Y.-J.; Kim, W.; Lee, B. Simple Aerosol Correction Technique Based on the Spectral Relationships of the Aerosol Multiple-Scattering Reflectances for Atmospheric Correction over the Oceans. Opt. Express 2016, 24, 29659. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.-H.; Park, Y.-J. Estimating Water Reflectance at Near-Infrared Wavelengths for Turbid Water Atmospheric Correction: A Preliminary Study for GOCI-II. Remote Sens. 2020, 12, 3791. [Google Scholar] [CrossRef]
- Li, C.; Tao, B.; Liu, Y.; Zhang, S.; Zhang, Z.; Song, Q.; Jiang, Z.; He, S.; Huang, H.; Mao, Z. Assessment of VIIRS on the Identification of Harmful Algal Bloom Types in the Coasts of the East China Sea. Remote Sens. 2022, 14, 2089. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, J.; Gao, Y.; Zhai, H.; Jin, H.; Zhou, F.; Shou, L.; Yan, X.; Chen, Q. Regulation of Spatial Changes in Phytoplankton Community by Water Column Stability and Nutrients in the Southern Yellow Sea. J. Geophys. Res. Biogeosci. 2019, 124, 2610–2627. [Google Scholar] [CrossRef]
- Jiang, Z.; Liao, Y.; Liu, J.; Shou, L.; Chen, Q.; Yan, X.; Zhu, G.; Zeng, J. Effects of Fish Farming on Phytoplankton Community under the Thermal Stress Caused by a Power Plant in a Eutrophic, Semi-Enclosed Bay: Induce Toxic Dinoflagellate (Prorocentrum minimum) Blooms in Cold Seasons. Mar. Pollut. Bull. 2013, 76, 315–324. [Google Scholar] [CrossRef] [PubMed]
- GB 17378.7–2007; Marine Monitoring Specification Seventh Part: Coastal Pollution Ecological Investigation and Biological Monitoring. China Standard Press: Beijing, China, 2007.
- Barnes, B.B.; Cannizzaro, J.P.; English, D.C.; Hu, C. Validation of VIIRS and MODIS Reflectance Data in Coastal and Oceanic Waters: An Assessment of Methods. Remote Sens. Environ. 2019, 220, 110–123. [Google Scholar] [CrossRef]
- Wynne, T.T.; Stumpf, R.P.; Tomlinson, M.C.; Warner, R.A.; Tester, P.A.; Dyble, J.; Fahnenstiel, G.L. Relating Spectral Shape to Cyanobacterial Blooms in the Laurentian Great Lakes. Int. J. Remote Sens. 2008, 29, 3665–3672. [Google Scholar] [CrossRef]
Algal Bloom Type | Date | Center Longitude | Center Latitude | Cell Abundance (×106 cell/L) |
---|---|---|---|---|
P. donghaiense | 27 April–17 May 2021 | 121.0866 | 28.0246 | 0.01–41.6 |
4–7 June 2021 | 120.8045 | 27.3679 | 3.43–4.59 | |
7–26 May 2022 | 120.9105 | 27.4302 | 0.15–28.4 | |
2–13 June 2022 | 120.7438 | 27.3579 | 0.02–74.6 | |
18 August 2022 | 121.3583 | 27.6750 | 0.72 | |
29 April–28 May 2023 | 120.9378 | 27.4363 | 0.07–9.85 | |
30 August 2023 | 120.5241 | 27.2764 | 0.95 | |
A. sanguinea | 17–28 September 2021 | 121.1573 | 27.8136 | 0.55–6.10 |
Diatom | 1–8 September 2021 | 121.2145 | 27.9651 | 5.02–6.71 |
24 August 2022 | 120.9358 | 27.9675 | 4.00 | |
3 July 2023 | 120.5435 | 27.3049 | 0.08 | |
27 August 2023 | 120.5241 | 26.4276 | 11.48 | |
6 July 2023 | 121.0812 | 27.7982 | 0.08 |
Index | Algorithm | GOCI-II | Reference |
---|---|---|---|
SS490 | λ− = 443, λ = 490, λ+ = 555 | Cannizzaro et al., 2019 [42] | |
CI | λ− = 490, λ = 555, λ+ = 620 | Hu et al., 2011 [33] | |
DI | λ− = 555, λ = 620, λ+ = 660 | Tao et al., 2015 [47] | |
FLH | λ− = 660, λ = 680, λ+ = 745 | Hu et al., 2005 [13] | |
MCI | λ− = 660, λ = 709, λ+ = 745 | Gower et al., 2005 [31] |
Algorithms | Threshold(s) | A (b-B) | B (b-NB) | C (nb-B) | D (nb-NB) | Sensitivity A/(A + B) | Precision A/(A + C) | False Neg. % B/(A + B) | False Pos. % C/(C + D) | FM |
---|---|---|---|---|---|---|---|---|---|---|
SS490 | 0.002 | 23 | 3 | 0 | 9 | 0.88 | 1 | 0.12 | 0 | 0.97 |
CI | 0.005 | 18 | 8 | 5 | 4 | 0.69 | 0.78 | 0.31 | 0.56 | 0.76 |
DI | 0.000 | 18 | 8 | 7 | 2 | 0.69 | 0.72 | 0.31 | 0.78 | 0.71 |
FLH | 0.001 | 10 | 16 | 3 | 6 | 0.38 | 0.77 | 0.62 | 0.33 | 0.64 |
MCI | 0.000 | 20 | 6 | 2 | 7 | 0.77 | 0.91 | 0.23 | 0.22 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Tao, B.; Li, Y.; Ai, L.; Zhu, Y.; Liang, L.; Huang, H.; Li, C. Evaluation of Rayleigh-Corrected Reflectance on Remote Detection of Algal Blooms in Optically Complex Coasts of East China Sea. Remote Sens. 2024, 16, 2304. https://doi.org/10.3390/rs16132304
Zhang C, Tao B, Li Y, Ai L, Zhu Y, Liang L, Huang H, Li C. Evaluation of Rayleigh-Corrected Reflectance on Remote Detection of Algal Blooms in Optically Complex Coasts of East China Sea. Remote Sensing. 2024; 16(13):2304. https://doi.org/10.3390/rs16132304
Chicago/Turabian StyleZhang, Chengxin, Bangyi Tao, Yunzhou Li, Libo Ai, Yixian Zhu, Liansong Liang, Haiqing Huang, and Changpeng Li. 2024. "Evaluation of Rayleigh-Corrected Reflectance on Remote Detection of Algal Blooms in Optically Complex Coasts of East China Sea" Remote Sensing 16, no. 13: 2304. https://doi.org/10.3390/rs16132304
APA StyleZhang, C., Tao, B., Li, Y., Ai, L., Zhu, Y., Liang, L., Huang, H., & Li, C. (2024). Evaluation of Rayleigh-Corrected Reflectance on Remote Detection of Algal Blooms in Optically Complex Coasts of East China Sea. Remote Sensing, 16(13), 2304. https://doi.org/10.3390/rs16132304