Leveraging Deep Learning as a New Approach to Layer Detection and Cloud–Aerosol Classification Using ICESat-2 Atmospheric Data
Abstract
:1. Introduction
2. Methods
2.1. ICESat-2 Atmospheric Data Products
2.2. ICESat-2 Atmosphere L3A Algorithms
2.3. CNN Technique
2.4. Dataset Preparation
2.5. Model Optimization and Evaluation
2.6. Implementation Details
3. Results
3.1. Layer Detection
3.2. Cloud–Aerosol Discrimination
3.3. Role of CNN Receptive Field
3.4. Ensemble CNN Single Profile Comparisons
3.5. Test Evaluation of Ensemble CNN Approach
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Levin, J.; Pacala, S.; Arvizu, D.; Deser, C.; Dabiri, J.; Duffie, D.; Emanuel, K.; Fung, I.; Litterman, B.; Schneider, T.; et al. Extreme Weather Risk in a Changing Climate: Enhancing Prediction and Protecting Communities; President’s Council of Advisors on Science and Technology: Washington, DC, USA, 2023. Available online: https://www.whitehouse.gov/wp-content/uploads/2023/04/PCAST_Extreme-Weather-Report_April2023.pdf (accessed on 20 June 2024).
- Forouzanfar, M.H.; Afshin, A.; Alexander, L.T.; Anderson, H.R.; Bhutta, Z.A.; Biryukov, S.; Brauer, M.; Burnett, R.; Cercy, K.; Charlson, F.J.; et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. [Google Scholar] [CrossRef] [PubMed]
- Muller, N.Z.; Mendelsohn, R. Measuring the damages of air pollution in the United States. J. Environ. Econ. Manag. 2007, 54, 1–14. [Google Scholar] [CrossRef]
- Oh, H.J.; Ma, Y.; Kim, J. Human Inhalation Exposure to Aerosol and Health Effect: Aerosol Monitoring and Modelling Regional Deposited Doses. Int. J. Environ. Res. Public Health 2020, 17, 1923. [Google Scholar] [CrossRef] [PubMed]
- Arfin, T.; Pillai, A.M.; Mathew, N.; Tirpude, A.; Bang, R.; Mondal, P. An overview of atmospheric aerosol and their effects on human health. Environ. Sci. Pollut. Res. 2023, 30, 125347–125369. [Google Scholar] [CrossRef] [PubMed]
- ECMWF. Air Quality, Climate Change and Public Health; European Centre for Medium-Range Weather Forecasts: Berkshire, UK, 2023. [Google Scholar]
- EPA. Climate Change Impacts on Air Quality; United States Environmental Protection Agency: Washington, DC, USA, 2023. Available online: https://www.epa.gov/climateimpacts/climate-change-impacts-air-quality (accessed on 20 June 2024).
- Sokhi, R.S.; Moussiopoulos, N.; Baklanov, A.; Bartzis, J.; Coll, I.; Finardi, S.; Friedrich, R.; Geels, C.; Grönholm, T.; Halenka, T.; et al. Advances in air quality research–current and emerging challenges. Atmos. Chem. Phys. Discuss. 2021, 2021, 1–133. [Google Scholar] [CrossRef]
- Lin, Y.; Takano, Y.; Gu, Y.; Wang, Y.; Zhou, S.; Zhang, T.; Zhu, K.; Wang, J.; Zhao, B.; Chen, G.; et al. Characterization of the aerosol vertical distributions and their impacts on warm clouds based on multi-year ARM observations. Sci. Total. Environ. 2023, 904, 166582. [Google Scholar] [CrossRef] [PubMed]
- Ratnam, M.V.; Prasad, P.; Raj, S.T.A.; Raman, M.R.; Basha, G. Changing patterns in aerosol vertical distribution over South and East Asia. Sci. Rep. 2021, 11, 308. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, S.E.; Harshvardhan; Benkovitz, C.M. Influence of anthropogenic aerosol on cloud optical depth and albedo shown by satellite measurements and chemical transport modeling. Proc. Natl. Acad. Sci. USA 2002, 99, 1784–1789. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Wang, Y.; Rosenfeld, D.; Liu, X. Review of Aerosol–Cloud Interactions: Mechanisms, Significance, and Challenges. J. Atmos. Sci. 2016, 73, 4221–4252. [Google Scholar] [CrossRef]
- Khatri, P.; Hayasaka, T.; Holben, B.N.; Singh, R.P.; Letu, H.; Tripathi, S.N. Increased aerosols can reverse Twomey effect in water clouds through radiative pathway. Sci. Rep. 2022, 12, 20666, Erratum in Sci. Rep. 2023, 13, 22. [Google Scholar] [CrossRef]
- Leung, L.R.; Terando, A.; Joseph, R.; Tselioudis, G.; Bruhwiler, L.M.; Cook, B.; Deser, C.; Hall, A.; Hamlington, B.D.; Hoell, A.; et al. Chapter 3. Earth systems processes. In Fifth National Climate Assessment; Crimmins, A.R., Avery, C.W., Easterling, D.R., Kunkel, K.E., Stewart, B.C., Maycock, T.K., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2023. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Zhao, C.; Zhou, Y.; Yang, Y.; Yang, X.; Fan, H.; Zhao, X.; Yang, J. Vertical dependency of aerosol impacts on local scale convective precipitation. Geophys. Res. Lett. 2023, 50, e2022GL102186. [Google Scholar] [CrossRef]
- Zhang, M.; Deng, X.; Zhu, R.; Ren, Y.; Xue, H. The impact of aerosol vertical distribution on a deep convective cloud. Atmosphere 2021, 12, 675. [Google Scholar] [CrossRef]
- Abdalati, W.; Zwally, H.J.; Bindschadler, R.; Csatho, B.; Farrell, S.L.; Fricker, H.A.; Harding, D.; Kwok, R.; Lefsky, M.; Markus, T.; et al. The ICESat-2 laser altimetry mission. Proc. IEEE 2010, 98, 735–751. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Lolli, S. Machine Learning Techniques for Vertical Lidar-Based Detection, Characterization, and Classification of Aerosols and Clouds: A Comprehensive Survey. Remote Sens. 2023, 15, 4318. [Google Scholar] [CrossRef]
- McGill, M.J.; Yorks, J.E.; Scott, V.S.; Kupchock, A.W.; Selmer, P.A. The cloud-aerosol transport system (CATS): A technology demonstration on the international space station. In Proceedings of the Lidar Remote Sensing for Environmental Monitoring XV. SPIE, San Diego, CA, USA, 9–13 August 2015; Volume 9612, pp. 34–39. [Google Scholar]
- Yorks, J.E.; Selmer, P.A.; Kupchock, A.; Nowottnick, E.P.; Christian, K.E.; Rusinek, D.; Dacic, N.; McGill, M.J. Aerosol and cloud detection using machine learning algorithms and space-based lidar data. Atmosphere 2021, 12, 606. [Google Scholar] [CrossRef]
- McGill, M.J.; Selmer, P.A.; Kupchock, A.W.; Yorks, J.E. Machine learning-enabled real-time detection of cloud and aerosol layers using airborne lidar. Front. Remote Sens. 2023, 4, 1116817. [Google Scholar] [CrossRef]
- Hunt, W.H.; Winker, D.M.; Vaughan, M.A.; Powell, K.A.; Lucker, P.L.; Weimer, C. CALIPSO lidar description and performance assessment. J. Atmos. Ocean. Technol. 2009, 26, 1214–1228. [Google Scholar] [CrossRef]
- McGill, M.J.; Hlavka, D.L.; Hart, W.D.; Scott, V.S.; Spinhirne, J.D.; Schmid, B. The Cloud Physics Lidar: Instrument description and initial measurement results. Appl. Opt. 2002, 41, 3725–3734. [Google Scholar] [CrossRef]
- Jimenez, C.; Ansmann, A.; Engelmann, R.; Haarig, M.; Schmidt, J.; Wandinger, U. Polarization lidar: An extended three-signal calibration approach. Atmos. Meas. Tech. 2019, 12, 1077–1093. [Google Scholar] [CrossRef]
- Xian, J.; Sun, D.; Xu, W.; Tian, C.; Tan, Q.; Han, Y.; Yang, S. Calibration and calculation of polarization Lidar. Earth Space Sci. 2019, 6, 1161–1170. [Google Scholar] [CrossRef]
- Palm, S.; Yang, Y.; Herzfeld, U.; Hancock, D. ICESat-2 Algorithm Theoretical Basis Document for the Atmosphere, Part I: Level 2 and 3 Data Products; National Snow and Ice Data Center: Boulder, CO, USA, 2018; 107p. [Google Scholar] [CrossRef]
- Palm, S.P.; Yang, Y.; Herzfeld, U.; Hancock, D.; Hayes, A.; Selmer, P.; Hart, W.; Hlavka, D. ICESat-2 atmospheric channel description, data processing and first results. Earth Space Sci. 2021, 8, e2020EA001470. [Google Scholar] [CrossRef]
- Herzfeld, U.C.; Trantow, T.M.; Harding, D.; Dabney, P.W. Surface-height determination of crevassed glaciers—Mathematical principles of an autoadaptive density-dimension algorithm and validation using ICESat-2 simulator (SIMPL) data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1874–1896. [Google Scholar] [CrossRef]
- Herzfeld, U.; Hayes, A.; Palm, S.; Hancock, D.; Vaughan, M.; Barbieri, K. Detection and height measurement of tenuous clouds and blowing snow in ICESat-2 ATLAS data. Geophys. Res. Lett. 2021, 48, e2021GL093473. [Google Scholar] [CrossRef]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- NSIDC. ICESat-2 Product Overviews; National Snow and Ice Data Center: Boulder, CO, USA, 2024. [Google Scholar]
- Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Sørensen, T.J. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol. Skr. 1948, 5, 1–34. [Google Scholar]
- Milletari, F.; Navab, N.; Ahmadi, S.A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8026–8037. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Harris, C.R.; Millman, K.J.; Van Der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.H. A brief introduction to weakly supervised learning. Natl. Sci. Rev. 2018, 5, 44–53. [Google Scholar] [CrossRef]
- Frénay, B.; Verleysen, M. Classification in the presence of label noise: A survey. IEEE Trans. Neural Netw. Learn. Syst. 2013, 25, 845–869. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Yao, Q.; Liu, T.; Niu, G.; Tsang, I.W.; Kwok, J.T.; Sugiyama, M. A survey of label-noise representation learning: Past, present and future. arXiv 2020, arXiv:2011.04406. [Google Scholar]
- Rolnick, D.; Veit, A.; Belongie, S.; Shavit, N. Deep learning is robust to massive label noise. arXiv 2017, arXiv:1705.10694. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oladipo, B.; Gomes, J.; McGill, M.; Selmer, P. Leveraging Deep Learning as a New Approach to Layer Detection and Cloud–Aerosol Classification Using ICESat-2 Atmospheric Data. Remote Sens. 2024, 16, 2344. https://doi.org/10.3390/rs16132344
Oladipo B, Gomes J, McGill M, Selmer P. Leveraging Deep Learning as a New Approach to Layer Detection and Cloud–Aerosol Classification Using ICESat-2 Atmospheric Data. Remote Sensing. 2024; 16(13):2344. https://doi.org/10.3390/rs16132344
Chicago/Turabian StyleOladipo, Bolaji, Joseph Gomes, Matthew McGill, and Patrick Selmer. 2024. "Leveraging Deep Learning as a New Approach to Layer Detection and Cloud–Aerosol Classification Using ICESat-2 Atmospheric Data" Remote Sensing 16, no. 13: 2344. https://doi.org/10.3390/rs16132344
APA StyleOladipo, B., Gomes, J., McGill, M., & Selmer, P. (2024). Leveraging Deep Learning as a New Approach to Layer Detection and Cloud–Aerosol Classification Using ICESat-2 Atmospheric Data. Remote Sensing, 16(13), 2344. https://doi.org/10.3390/rs16132344