LOD2-Level+ Low-Rise Building Model Extraction Method for Oblique Photography Data Using U-NET and a Multi-Decision RANSAC Segmentation Algorithm
Abstract
:1. Introduction
2. Background
3. Materials and Methods
3.1. Study Area and Auxiliary Data
3.2. Scenario Data Collection
3.3. Methods
3.3.1. Building Monolith Point Cloud Extraction
- (1)
- U-NET-based building extraction
- (2)
- Precisely extract building outlines using the main building orientation and centroid
- (1)
- Calculation of the center of gravity of the main direction and profile of the building [34]
- (2)
- Contour line optimization
- (3)
- Point cloud segmentation of single building
3.3.2. Building Fine Modeling
- (1)
- Roof Extraction
- (2)
- Eaves and pat wall extraction
- (3)
- Balcony Extraction
- (4)
- Façade Extraction
- (5)
- Fine-grained 3D modeling of buildings
4. Results and Discussion
4.1. Building Contour Accurate Extraction Results
4.2. Fine Modeling Results of Single Building Point Cloud
4.2.1. Single Building Point Cloud Segmentation Results
4.2.2. Detailed Extraction
4.2.3. Building Refinement 3D Model Construction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Florent, L. Some New Research Directions to Explore in Urban Reconstruction. In Proceedings of the 2015 Joint Urban Remote Sensing Event (JURSE), Lausanne, Switzerland, 30 March–1 April 2015. [Google Scholar]
- Bo, M.; Ban, Y.; Harrie, L. A Multiple Representation Data Structure for Dynamic Visualisation of Generalised 3d City Models. ISPRS J. Photogramm. Remote Sens. 2011, 66, 198–208. [Google Scholar]
- Gao, M.; Xu, X.; Klinger, Y.; Van Der Woerd, J.; Tapponnier, P. High-Resolution Mapping Based on an Unmanned Aerial Vehicle (Uav) to Capture Paleoseismic Offsets Along the Altyn-Tagh Fault, China. Sci. Rep. 2017, 7, 8281. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Furukawa, Y.; Snavely, N.; Simon, I.; Curless, B.; Seitz, S.M.; Szeliski, R. Building Rome in a Day. Commun. ACM 2011, 54, 105–112. [Google Scholar] [CrossRef]
- Kristian, S.; Guarnieri, P.; Stemmerik, L. From Oblique Photogrammetry to a 3d Model–Structural Modeling of Kilen, Eastern North Greenland. Comput. Geosci. 2015, 83, 120–126. [Google Scholar]
- Guler, Y.; Selcuk, O. 3d City Modelling with Oblique Photogrammetry Method. Procedia Technol. 2015, 19, 424–431. [Google Scholar]
- Sun, Y.; Sun, H.; Yan, L.; Fan, S.; Chen, R. Rba: Reduced Bundle Adjustment for Oblique Aerial Photogrammetry. ISPRS J. Photogramm. Remote Sens. 2016, 121, 128–142. [Google Scholar] [CrossRef]
- Xiao, J.; Gerke, M.; Vosselman, G. Automatic Detection of Buildings with Rectangular Flat Roofs from Multi-View Oblique Imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, 251–256. [Google Scholar]
- Xie, F.; Lin, Z.; Gui, D.; Lin, H. Study on Construction of 3d Building Based on Uav Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, 469–473. [Google Scholar] [CrossRef]
- Lin, J.; Jing, W.; Song, H.; Chen, G. Esfnet: Efficient Network for Building Extraction from High-Resolution Aerial Images. IEEE Access 2019, 7, 54285–54294. [Google Scholar] [CrossRef]
- Kutzner, T.; Chaturvedi, K.; Kolbe, T.H. Citygml 3.0: New Functions Open up New Applications. PFG–J. Photogramm. Remote Sens. Geoinf. Sci. 2020, 88, 43–61. [Google Scholar] [CrossRef]
- Filip, B.; Ledoux, H.; Stoter, J. An Improved Lod Specification for 3d Building Models. Comput. Environ. Urban Syst. 2016, 59, 25–37. [Google Scholar]
- Dahlke, D.; Linkiewicz, M.; Meissner, H. True 3d Building Reconstruction: Façade, Roof and Overhang Modelling from Oblique and Vertical Aerial Imagery. Int. J. Image Data Fusion 2015, 6, 314–329. [Google Scholar] [CrossRef]
- Li, M.; Nan, L.; Smith, N.; Wonka, P. Reconstructing Building Mass Models from Uav Images. Comput. Graph. 2016, 54, 84–93. [Google Scholar] [CrossRef]
- Simonyan, K. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Adam, P.; Chaurasia, A.; Kim, S.; Culurciello, E. Enet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. arXiv 2016, arXiv:1606.02147. [Google Scholar]
- Olaf, R.; Fischer, P.; Brox, T. U-NET: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015. [Google Scholar]
- Vijay, B.; Kendall, A.; Cipolla, R. Segnet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar]
- Eduardo, R.; Alvarez, J.M.; Bergasa, L.M.; Arroyo, R. Erfnet: Efficient Residual Factorized Convnet for Real-Time Semantic Segmentation. IEEE Trans. Intell. Transp. Syst. 2017, 19, 263–272. [Google Scholar]
- Zhang, X.; Sun, J.; Gao, J. An Algorithm for Building Exterior Facade Corner Point Extraction Based on Uav Images and Point Clouds. Remote Sens. 2023, 15, 4166. [Google Scholar] [CrossRef]
- Liang, H.; Lee, S.-C.; Bae, W.; Kim, J.; Seo, S. Towards Uavs in Construction: Advancements, Challenges, and Future Directions for Monitoring and Inspection. Drones 2023, 7, 202. [Google Scholar] [CrossRef]
- De Farias, T.M.; Roxin, A.; Nicolle, C. A Rule-Based Methodology to Extract Building Model Views. Autom. Constr. 2018, 92, 214–229. [Google Scholar] [CrossRef]
- Claudio, M.; Gholamzadehmir, M.; Daniotti, B.; Pavan, A. Semantic Enrichment of Bim: The Role of Machine Learning-Based Image Recognition. Buildings 2024, 14, 1122. [Google Scholar] [CrossRef]
- Xiao, J.; Gerke, M.; Vosselman, G. Building Extraction from Oblique Airborne Imagery Based on Robust Façade Detection. ISPRS J. Photogramm. Remote Sens. 2012, 68, 56–68. [Google Scholar] [CrossRef]
- Zhang, R.; Candra, S.A.; Vetter, K.; Zakhor, A. Sensor Fusion for Semantic Segmentation of Urban Scenes. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015. [Google Scholar]
- Gerke, M.; Xiao, J. Supervised and Unsupervised Mrf Based 3d Scene Classification in Multiple View Airborne Oblique Images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 2, 25–30. [Google Scholar] [CrossRef]
- Nan, L.; Wonka, P. Polyfit: Polygonal Surface Reconstruction from Point Clouds. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017. [Google Scholar]
- Wang, Y.; Xu, H.; Cheng, L.; Li, M.; Wang, Y.; Xia, N.; Chen, Y.; Tang, Y. Three-Dimensional Reconstruction of Building Roofs from Airborne Lidar Data Based on a Layer Connection and Smoothness Strategy. Remote Sens. 2016, 8, 415. [Google Scholar] [CrossRef]
- Malihi, S.; Valadan Zoej, M.J.; Hahn, M.; Mokhtarzade, M.; Arefi, H. 3d Building Reconstruction Using Dense Photogrammetric Point Cloud. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 71–74. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- George, V.; Gorte, B.G.H.; Sithole, G.; Rabbani, T. Recognising Structure in Laser Scanner Point Clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 46, 33–38. [Google Scholar]
- John, C. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 6, 679–698. [Google Scholar]
- Yin, S.; Yan, X.; Yan, X. Simplification method of building polygon based on feature edges reconstruction. Acta Geod. Cartogr. Sin. 2020, 49, 703–710. [Google Scholar] [CrossRef]
- Alberto, G.-G.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Garcia-Rodriguez, J. A Review on Deep Learning Techniques Applied to Semantic Segmentation. arXiv 2017, arXiv:1704.06857. [Google Scholar]
- Liu, B.; Wang, X.; Dixit, M.; Kwitt, R.; Vasconcelos, N. Feature Space Transfer for Data Augmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Cheng, J.; Deng, C.; Su, Y.; An, Z.; Wang, Q. Methods and Datasets on Semantic Segmentation for Unmanned Aerial Vehicle Remote Sensing Images: A Review. ISPRS J. Photogramm. Remote Sens. 2024, 211, 1–34. [Google Scholar] [CrossRef]
Parameter Name | Value |
---|---|
UAV type | Consumer quadcopter Elf 4 Pro |
Maximum flight time | About 30min |
Gimbal | Gimbal: 3-axis gimbal (pitch, roll, yaw) |
Pitch Angle: | −90° to 30 |
Camera | FC6310S |
Lens parameters | FOV 84°8.8 mm/24 mm (35 mm) |
Camera focal length | 9 mm |
Photometry mode | Off-centre averaging |
Satellite positioning module: | GPS/GLONASS dual mode |
Image sensor | 1-inch CMOS, effective pixels 20 million |
Operation | |
---|---|
Aerial photography time | 2019.10.7 |
Operation Software | DJI GO |
Aerial Route Software | DJI GSpro |
Preset Flight Hight | 120 m |
Number of Strips | 8 |
Heading Overlap | 80% |
Overlap inside direction | 75% |
Operation time | 3 h |
Method | IoU (%) | Precision (%) | Recall (%) | F1 (%) |
---|---|---|---|---|
ENet | 80.10 | 83.73 | 94.13 | 88.63 |
SegNet | 80.13 | 78.77 | 94.00 | 85.71 |
ERFNet | 83.55 | 85.59 | 94.42 | 89.79 |
U-NET | 86.50 | 87.69 | 94.56 | 91.00 |
U-NET + contour optimized (our method) | 90.34 | 95.04 | 94.81 | 92.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Wu, X.; Pan, W.; Chen, H.; Zhou, S.; Lei, S.; Gong, X.; Xu, H.; Sheng, Y. LOD2-Level+ Low-Rise Building Model Extraction Method for Oblique Photography Data Using U-NET and a Multi-Decision RANSAC Segmentation Algorithm. Remote Sens. 2024, 16, 2404. https://doi.org/10.3390/rs16132404
He Y, Wu X, Pan W, Chen H, Zhou S, Lei S, Gong X, Xu H, Sheng Y. LOD2-Level+ Low-Rise Building Model Extraction Method for Oblique Photography Data Using U-NET and a Multi-Decision RANSAC Segmentation Algorithm. Remote Sensing. 2024; 16(13):2404. https://doi.org/10.3390/rs16132404
Chicago/Turabian StyleHe, Yufeng, Xiaobian Wu, Weibin Pan, Hui Chen, Songshan Zhou, Shaohua Lei, Xiaoran Gong, Hanzeyu Xu, and Yehua Sheng. 2024. "LOD2-Level+ Low-Rise Building Model Extraction Method for Oblique Photography Data Using U-NET and a Multi-Decision RANSAC Segmentation Algorithm" Remote Sensing 16, no. 13: 2404. https://doi.org/10.3390/rs16132404
APA StyleHe, Y., Wu, X., Pan, W., Chen, H., Zhou, S., Lei, S., Gong, X., Xu, H., & Sheng, Y. (2024). LOD2-Level+ Low-Rise Building Model Extraction Method for Oblique Photography Data Using U-NET and a Multi-Decision RANSAC Segmentation Algorithm. Remote Sensing, 16(13), 2404. https://doi.org/10.3390/rs16132404