Next Article in Journal
Shoreliner: A Sub-Pixel Coastal Waterline Extraction Pipeline for Multi-Spectral Satellite Optical Imagery
Previous Article in Journal
Is Your Training Data Really Ground Truth? A Quality Assessment of Manual Annotation for Individual Tree Crown Delineation
Previous Article in Special Issue
Classical and Atomic Gravimetry
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
Article

Vegetation Water Content Retrieval from Spaceborne GNSS-R and Multi-Source Remote Sensing Data Using Ensemble Machine Learning Methods

by
Yongfeng Zhang
1,
Jinwei Bu
1,*,
Xiaoqing Zuo
1,
Kegen Yu
2,
Qiulan Wang
1 and
Weimin Huang
3
1
Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
2
School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
3
Department of Electrical and Computer Engineering, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada
*
Author to whom correspondence should be addressed.
Remote Sens. 2024, 16(15), 2793; https://doi.org/10.3390/rs16152793 (registering DOI)
Submission received: 6 July 2024 / Revised: 24 July 2024 / Accepted: 29 July 2024 / Published: 30 July 2024

Abstract

Abstract: Vegetation water content (VWC) is a crucial parameter for evaluating vegetation growth, climate change, natural disasters such as forest fires, and drought prediction. Spaceborne global navigation satellite system reflectometry (GNSS-R) has become a valuable tool for soil moisture (SM) and biomass remote sensing (RS) due to its higher spatial resolution compared with microwave measurements. Although previous studies have confirmed the enormous potential of spaceborne GNSS-R for vegetation monitoring, the utilization of this technology to fuse multiple RS parameters to retrieve VWC is not yet mature. For this purpose, this paper constructs a local high-spatiotemporal-resolution spaceborne GNSS-R VWC retrieval model that integrates key information, such as bistatic radar cross section (BRCS), effective scattering area, CYGNSS variables, and surface auxiliary parameters based on five ensemble machine learning (ML) algorithms (i.e., bagging tree (BT), gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), random forest (RF), and light gradient boosting machine (LightGBM)). We extensively tested the performance of different models using SMAP ancillary data as validation data, and the results show that the root mean square errors (RMSEs) of the BT, XGBoost, RF, and LightGBM models in VWC retrieval are better than 0.50 kg/m2. Among them, the BT and RF models performed the best in localized VWC retrieval, with RMSE values of 0.50 kg/m2. Conversely, the XGBoost model exhibits the worst performance, with an RMSE of 0.85 kg/m2. In terms of RMSE, the RF model demonstrates improvements of 70.00%, 52.00%, and 32.00% over the XGBoost, LightGBM, and GBDT models, respectively.
Keywords: cyclone global navigation satellite system (CYGNSS); delay-Doppler map (DDM); global navigation satellite system reflectometry (GNSS-R); remote sensing data; VWC; ensemble machine learning cyclone global navigation satellite system (CYGNSS); delay-Doppler map (DDM); global navigation satellite system reflectometry (GNSS-R); remote sensing data; VWC; ensemble machine learning

Share and Cite

MDPI and ACS Style

Zhang, Y.; Bu, J.; Zuo, X.; Yu, K.; Wang, Q.; Huang, W. Vegetation Water Content Retrieval from Spaceborne GNSS-R and Multi-Source Remote Sensing Data Using Ensemble Machine Learning Methods. Remote Sens. 2024, 16, 2793. https://doi.org/10.3390/rs16152793

AMA Style

Zhang Y, Bu J, Zuo X, Yu K, Wang Q, Huang W. Vegetation Water Content Retrieval from Spaceborne GNSS-R and Multi-Source Remote Sensing Data Using Ensemble Machine Learning Methods. Remote Sensing. 2024; 16(15):2793. https://doi.org/10.3390/rs16152793

Chicago/Turabian Style

Zhang, Yongfeng, Jinwei Bu, Xiaoqing Zuo, Kegen Yu, Qiulan Wang, and Weimin Huang. 2024. "Vegetation Water Content Retrieval from Spaceborne GNSS-R and Multi-Source Remote Sensing Data Using Ensemble Machine Learning Methods" Remote Sensing 16, no. 15: 2793. https://doi.org/10.3390/rs16152793

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Article metric data becomes available approximately 24 hours after publication online.
Back to TopTop