Next Article in Journal
Temporal Patterns of Vegetation Greenness for the Main Forest-Forming Tree Species in the European Temperate Zone
Previous Article in Journal
SHAP-Driven Explainable Artificial Intelligence Framework for Wildfire Susceptibility Mapping Using MODIS Active Fire Pixels: An In-Depth Interpretation of Contributing Factors in Izmir, Türkiye
Previous Article in Special Issue
Propagation of Meteorological Drought to Agricultural and Hydrological Droughts in the Tropical Lancang–Mekong River Basin
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
Article

The Impact of Meteorological Drought at Different Time Scales from 1986 to 2020 on Vegetation Changes in the Shendong Mining Area

School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
*
Author to whom correspondence should be addressed.
Remote Sens. 2024, 16(15), 2843; https://doi.org/10.3390/rs16152843
Submission received: 19 June 2024 / Revised: 27 July 2024 / Accepted: 1 August 2024 / Published: 2 August 2024

Abstract

The Shendong Mining Area, being the largest coal base in the world, has significant challenges in the intensive development and utilization of coal resources, as well as the impact of a dry climate, which can have serious negative effects on the growth of flora in the region. Investigating the spatial and temporal patterns of how meteorological drought affects vegetation in the Shendong Mining Area at various time scales can offer a scientific foundation for promoting sustainable development and ecological restoration in the region. This study utilizes the Standardized Precipitation Evapotranspiration Index (SPEI) and Normalized Difference Vegetation Index (NDVI) data from 1986 to 2020 in the Shendong Mining Area. It employs Slope trend analysis, a Mann–Kendall test, a Geographic Detector, and other methods to examine the spatiotemporal distribution characteristics of meteorological drought at various time scales. Additionally, the study investigates the influence of these drought patterns on vegetation growth in the Shendong Mining Area. Across the mining area, there was a general decrease in the monthly average SPEI on an annual basis. However, on a seasonal, semi-annual, and annual basis, there was a gradual increase in the annual average SPEI, with a higher rate of increase in the southern region compared to the northern region. When considering the spatial variation trend in different seasons, both positive and negative trends were observed in winter and summer. The negative trend was mainly observed in the western part of the mining area, while the positive trend was observed in the eastern part. In spring, the mining area generally experienced drought, while in autumn, it generally experienced more precipitation. The mining area exhibits a prevailing distribution of vegetation, with a greater extent in the southeast and a lesser extent in the northwest. The vegetation coverage near the mine is insufficient, resulting in a low NDVI value, which makes the area prone to drought. Over the past few years, the mining area has experienced a significant increase in vegetation coverage, indicating successful ecological restoration efforts. Various forms of land use exhibit distinct responses to drought, with forests displaying the most positive correlation and barren land displaying the strongest negative correlation. Various types of landforms exhibit varying responses to drought. Loess ridge and hill landforms demonstrate the most pronounced positive association with monthly-scale SPEI values, whereas alluvial and floodplain landforms display the poorest positive correlation with yearly scale SPEI values. The general findings of this research can be summarized as follows: (1) The mining area exhibits a general pattern of increased humidity, with the pace of humidity increase having intensified in recent times. Seasonal variations exhibit consistent cyclic patterns. (2) There are distinct regional disparities in NDVI values, with a notable peak in the southeast and a decline in the northwest. The majority of the mining area exhibits a positive trend in vegetation recovery. (3) Regional meteorological drought is a significant element that influences changes in vegetation coverage in the Shendong Mining Area. Nevertheless, it displays complexity and is more obviously impacted by other factors at a small scale. (4) It should be noted that forests and barren land exert a more significant influence on SPEI values, despite their relatively lesser spatial coverage. The predominant land use type in most locations is grasslands; however, they have a relatively minor influence on SPEI. (5) A shorter time period, higher elevation, and steeper slope gradient all contribute to a larger correlation with drought.
Keywords: SPEI; meteorological drought; correlation analysis; spatiotemporal dynamic changes SPEI; meteorological drought; correlation analysis; spatiotemporal dynamic changes

Share and Cite

MDPI and ACS Style

Chen, Z.; Qin, H.; Zhang, X.; Xue, H.; Wang, S.; Zhang, H. The Impact of Meteorological Drought at Different Time Scales from 1986 to 2020 on Vegetation Changes in the Shendong Mining Area. Remote Sens. 2024, 16, 2843. https://doi.org/10.3390/rs16152843

AMA Style

Chen Z, Qin H, Zhang X, Xue H, Wang S, Zhang H. The Impact of Meteorological Drought at Different Time Scales from 1986 to 2020 on Vegetation Changes in the Shendong Mining Area. Remote Sensing. 2024; 16(15):2843. https://doi.org/10.3390/rs16152843

Chicago/Turabian Style

Chen, Zhichao, He Qin, Xufei Zhang, Huazhu Xue, Shidong Wang, and Hebing Zhang. 2024. "The Impact of Meteorological Drought at Different Time Scales from 1986 to 2020 on Vegetation Changes in the Shendong Mining Area" Remote Sensing 16, no. 15: 2843. https://doi.org/10.3390/rs16152843

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop