Impact of Long-Term Drought on Surface Water and Water Balance Variations in Iran: Insights from Highland and Lowland Regions
Abstract
:1. Introduction
- Track the drought trend in Iran from 2000 to 2021, and assess drought intensity for the entire country, the lowlands, and the highlands.
- Examine the possible impact of drought on surface water and water balance changes in Iran over the last two decades.
- Determine which is more affected by drought: surface water in highlands or lowlands.
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methodology
2.3.1. Drought Monitoring
2.3.2. Surface Water Area Change Tracking
2.3.3. Water Balance Monitoring
2.3.4. Statistical Analyses
3. Results
3.1. Drought Trend
3.2. Surface Water Variation
3.3. Relationship between Drought Trend and Surface Water Variation
3.4. Water Balance
4. Discussion
4.1. Remote Sensing for Drought Monitoring
4.2. Effects of Long-Term Drought on Permanent Surface Water in Highlands and Lowlands
4.3. Analysis of the Effects of Long-Term Drought on Seasonal Surface Water in Highlands and Lowlands
4.4. Limitations of This Study and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Du, L.; Tian, Q.; Yu, T.; Meng, Q.; Jancso, T.; Udvardy, P.; Huang, Y. A comprehensive drought monitoring method integrating MODIS and TRMM data. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 245–253. [Google Scholar] [CrossRef]
- Slette, I.J.; Post, A.K.; Awad, M.; Even, T.; Punzalan, A.; Williams, S.; Smith, M.D.; Knapp, A.K. How ecologists define drought, and why we should do better. Glob. Change Biol. 2019, 25, 3193–3200. [Google Scholar] [CrossRef] [PubMed]
- Adams, H.D.; Zeppel, M.J.; Anderegg, W.R.; Hartmann, H.; Landhäusser, S.M.; Tissue, D.T.; Huxman, T.E.; Hudson, P.J.; Franz, T.E.; Allen, C.D. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 2017, 1, 1285–1291. [Google Scholar] [CrossRef] [PubMed]
- Baldocchi, D.D. How eddy covariance flux measurements have contributed to our understanding of Global Change Biology. Glob. Chang. Biol. 2020, 26, 242–260. [Google Scholar] [CrossRef]
- Li, Q.; Ye, A.; Wada, Y.; Zhang, Y.; Zhou, J. Climate change leads to an expansion of global drought-sensitive area. J. Hydrol. 2024, 632, 130874. [Google Scholar] [CrossRef]
- Bhaga, T.D.; Dube, T.; Shekede, M.D.; Shoko, C. Impacts of climate variability and drought on surface water resources in Sub-Saharan Africa using remote sensing: A review. Remote Sens. 2020, 12, 4184. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, Z.; Yan, H.; Zhao, Y.; Li, Z. Characterizing drought events occurred in the Yangtze River Basin from 1979 to 2017 by reconstructing water storage anomalies based on GRACE and meteorological data. Sci. Total Environ. 2023, 868, 161755. [Google Scholar] [CrossRef]
- Keshavarz, M.R.; Vazifedoust, M.; Alizadeh, A. Drought monitoring using a Soil Wetness Deficit Index (SWDI) derived from MODIS satellite data. Agric. Water Manag. 2014, 132, 37–45. [Google Scholar] [CrossRef]
- Huang, S.; Li, P.; Huang, Q.; Leng, G.; Hou, B.; Ma, L. The propagation from meteorological to hydrological drought and its potential influence factors. J. Hydrol. 2017, 547, 184–195. [Google Scholar] [CrossRef]
- Hagenlocher, M.; Meza, I.; Anderson, C.C.; Min, A.; Renaud, F.G.; Walz, Y.; Siebert, S.; Sebesvari, Z. Drought vulnerability and risk assessments: State of the art, persistent gaps, and research agenda. Environ. Res. Lett. 2019, 14, 083002. [Google Scholar] [CrossRef]
- Jiao, W.; Wang, L.; McCabe, M.F. Multi-sensor remote sensing for drought characterization: Current status, opportunities and a roadmap for the future. Remote Sens. Environ. 2021, 256, 112313. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote sensing of drought: Progress, challenges and opportunities. Rev. Geophys. 2015, 53, 452–480. [Google Scholar] [CrossRef]
- Mokhtari, F.; Honarbakhsh, A.; Soltani, S. Investigation of the effects of climate change on hydrological drought and pattern detection for severe climatic conditions using CCT and SWAT models in the semi-arid region—Case study: Karkheh river basin. Arab. J. Geosci. 2023, 16, 534. [Google Scholar] [CrossRef]
- Masaeli, N.; Afshari, E.; Baniasadi, E.; Baharlou-Houreh, N.; Ghaedamini, M. Experimental analysis of water transfer and thermal–hydraulic performance of membrane humidifiers with three flow field designs. Appl. Energy 2023, 336, 120823. [Google Scholar] [CrossRef]
- Sadeqi, A.; Kahya, E. Spatiotemporal analysis of air temperature indices, aridity conditions, and precipitation in Iran. Theor. Appl. Climatol. 2021, 145, 703–716. [Google Scholar] [CrossRef]
- Moshir Panahi, D.; Kalantari, Z.; Ghajarnia, N.; Seifollahi-Aghmiuni, S.; Destouni, G. Variability and change in the hydro-climate and water resources of Iran over a recent 30-year period. Sci. Rep. 2020, 10, 7450. [Google Scholar] [CrossRef]
- Naboureh, A.; Li, A.; Ebrahimy, H.; Bian, J.; Azadbakht, M.; Amani, M.; Lei, G.; Nan, X. Assessing the effects of irrigated agricultural expansions on Lake Urmia using multi-decadal Landsat imagery and a sample migration technique within Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102607. [Google Scholar] [CrossRef]
- Kazemi Garajeh, M.; Akbari, R.; Aghaei Chaleshtori, S.; Shenavaei Abbasi, M.; Tramutoli, V.; Lim, S.; Sadeqi, A. A Comprehensive Assessment of Climate Change and Anthropogenic Effects on Surface Water Resources in the Lake Urmia Basin, Iran. Remote Sens. 2024, 16, 1960. [Google Scholar] [CrossRef]
- Nasirian, H.; Irvine, K.; Sadeghi, S.M.T.; Mahvi, A.H.; Nazmara, S. Assessment of bed sediment metal contamination in the Shadegan and Hawr Al Azim wetlands, Iran. Environ. Monit. Assess. 2016, 188, 1–15. [Google Scholar] [CrossRef]
- Mozafari, M.; Hosseini, Z.; Fijani, E.; Eskandari, R.; Siahpoush, S.; Ghader, F. Effects of climate change and human activity on lake drying in Bakhtegan Basin, southwest Iran. Sustain. Water Resour. Manag. 2022, 8, 109. [Google Scholar] [CrossRef]
- Kharazmi, R.; Tavili, A.; Rahdari, M.R.; Chaban, L.; Panidi, E.; Rodrigo-Comino, J. Monitoring and assessment of seasonal land cover changes using remote sensing: A 30-year (1987–2016) case study of Hamoun Wetland, Iran. Environ. Monit. Assess. 2018, 190, 356. [Google Scholar] [CrossRef]
- Pouyan, S.; Bordbar, M.; Ravichandran, V.; Tiefenbacher, J.P.; Kherad, M.; Pourghasemi, H.R. Spatiotemporal monitoring of droughts in Iran using remote-sensing indices. Nat. Hazards 2023, 117, 1–24. [Google Scholar] [CrossRef]
- Shojaei, S.; Rahimzadegan, M. Improving a comprehensive remote sensing drought index (CRSDI) in the Western part of Iran. Geocarto Int. 2022, 37, 1318–1336. [Google Scholar] [CrossRef]
- Mikaili, O.; Rahimzadegan, M. Investigating remote sensing indices to monitor drought impacts on a local scale (case study: Fars province, Iran). Nat. Hazards 2022, 111, 2511–2529. [Google Scholar] [CrossRef]
- Jalili, M.; Gharibshah, J.; Ghavami, S.M.; Beheshtifar, M.; Farshi, R. Nationwide prediction of drought conditions in Iran based on remote sensing data. IEEE Trans. Comput. 2013, 63, 90–101. [Google Scholar] [CrossRef]
- Palmer, W. Meteorological Drought; US Weather Bureau Research Paper No. 45; US Weather Bureau: Washington, DC, USA, 1965; 58p. [Google Scholar]
- Mansourihanis, O.; Maghsoodi Tilaki, M.J.; Yousefian, S.; Zaroujtaghi, A. A computational geospatial approach to assessing land-use compatibility in urban planning. Land 2023, 12, 2083. [Google Scholar] [CrossRef]
- Fuentes, I.; Padarian, J.; Vervoort, R.W. Spatial and temporal global patterns of drought propagation. Front. Environ. Sci. 2022, 10, 788248. [Google Scholar] [CrossRef]
- Khan, R.; Gilani, H. Global drought monitoring with drought severity index (DSI) using Google Earth Engine. Theor. Appl. Climatol. 2021, 146, 411–427. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–183. [Google Scholar]
- Kugytė, G.; Valiuškevičius, G. Identification of Hydrological Droughts in Lithuanian Rivers. Geogr. Ir. Edukac 2021, 9, 87–99. [Google Scholar] [CrossRef]
- Singh, R.P.; Roy, S.; Kogan, F. Vegetation and temperature condition indices from NOAA AVHRR data for drought monitoring over India. Int. J. Remote Sens. 2003, 24, 4393–4402. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Lorenzo, M.; Pereira, H.; Alvarez, I.; Dias, J. Standardized Precipitation Index (SPI) evolution over the Iberian Peninsula during the 21st century. Atmos. Res. 2023, 297, 107132. [Google Scholar] [CrossRef]
- Shah, R.; Bharadiya, N.; Manekar, V. Drought index computation using standardized precipitation index (SPI) method for Surat District, Gujarat. Aquat. Procedia 2015, 4, 1243–1249. [Google Scholar] [CrossRef]
- Nguyen-Huy, T.; Kath, J.; Nagler, T.; Khaung, Y.; Aung, T.S.S.; Mushtaq, S.; Marcussen, T.; Stone, R. A satellite-based Standardized Antecedent Precipitation Index (SAPI) for mapping extreme rainfall risk in Myanmar. Remote Sens. Appl. Soc. Environ. 2022, 26, 100733. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, S.; Singh, V.P.; Mu, Z.; Leng, G.; Li, J.; Duan, W.; Ling, H.; Xu, J.; Nie, M. Contrasting characteristics and drivers of dry and warm snow droughts in China’s largest inland river basin. J. Hydrol. Reg. Stud. 2024, 53, 101751. [Google Scholar] [CrossRef]
- Naboureh, A.; Bian, J.; Lei, G.; Li, A. A review of land use/land cover change mapping in the China-Central Asia-West Asia economic corridor countries. Big Earth Data 2021, 5, 237–257. [Google Scholar] [CrossRef]
- Ghazaryan, G.; Dubovyk, O.; Graw, V.; Kussul, N.; Schellberg, J. Local-scale agricultural drought monitoring with satellite-based multi-sensor time-series. GISci. Remote Sens. 2020, 57, 704–718. [Google Scholar] [CrossRef]
- Naboureh, A.; Li, A.; Bian, J.; Lei, G.; Nan, X.; Zhang, Z.; Shami, S.; Lin, X. Green space coverage versus air pollution: A cloud-based remote sensing data analysis in Sichuan, Western China. Int. J. Digit. Earth 2024, 17, 2383454. [Google Scholar] [CrossRef]
- Naboureh, A.; Li, A.; Bian, J.; Lei, G.; Nan, X. Land cover dataset of the China Central-Asia West-Asia Economic Corridor from 1993 to 2018. Sci. Data 2023, 10, 728. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- MacDonald, A.M.; Bell, R.A.; Kebede, S.; Azagegn, T.; Yehualaeshet, T.; Pichon, F.; Young, M.; McKenzie, A.; Lapworth, D.J.; Black, E. Groundwater and resilience to drought in the Ethiopian highlands. Environ. Res. Lett. 2019, 14, 095003. [Google Scholar] [CrossRef]
- Gidey, E.; Mhangara, P.; Gebregergs, T.; Zeweld, W.; Gebretsadik, H.; Dikinya, O.; Mussa, S.; Zenebe, A.; Girma, A.; Fisseha, G. Analysis of drought coping strategies in northern Ethiopian highlands. SN Appl. Sci. 2023, 5, 195. [Google Scholar] [CrossRef]
- Gidey, E.; Dikinya, O.; Sebego, R.; Segosebe, E.; Zenebe, A. Analysis of the long-term agricultural drought onset, cessation, duration, frequency, severity and spatial extent using Vegetation Health Index (VHI) in Raya and its environs, Northern Ethiopia. Environ. Syst. Res. 2018, 7, 1–18. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Garajeh, M.K.; Lakes, T.; Blaschke, T. A deep learning convolutional neural network algorithm for detecting saline flow sources and mapping the environmental impacts of the Urmia Lake drought in Iran. Catena 2021, 207, 105585. [Google Scholar] [CrossRef]
- Eskandari Dameneh, H.; Gholami, H.; Telfer, M.W.; Comino, J.R.; Collins, A.L.; Jansen, J.D. Desertification of Iran in the early twenty-first century: Assessment using climate and vegetation indices. Sci. Rep. 2021, 11, 20548. [Google Scholar] [CrossRef] [PubMed]
- Kheyruri, Y.; Sharafati, A. Spatiotemporal assessment of the NASA POWER satellite precipitation product over different regions of Iran. Pure Appl. Geophys. 2022, 179, 3427–3439. [Google Scholar] [CrossRef]
- Saeidizand, R.; Sabetghadam, S.; Tarnavsky, E.; Pierleoni, A. Evaluation of CHIRPS rainfall estimates over Iran. Q. J. R. Meteorol. Soc. 2018, 144, 282–291. [Google Scholar] [CrossRef]
- Mianabadi, A.; Salari, K.; Pourmohamad, Y. Drought monitoring using the long-term CHIRPS precipitation over Southeastern Iran. Appl. Water Sci. 2022, 12, 183. [Google Scholar] [CrossRef]
- Vélez-Nicolás, M.; García-López, S.; Ruiz-Ortiz, V.; Zazo, S.; Molina, J.L. Precipitation variability and drought assessment using the SPI: Application to long-term series in the strait of Gibraltar Area. Water 2022, 14, 884. [Google Scholar] [CrossRef]
- Edwards, D.C.; McKee, T.B. Characteristics of 20th Century Drought in the United States at Multiple Time Scales; Department of Atmospheric Science, Colorado State University: Fort Collins, CO, USA, 1997. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; American Psychological Association: Washington, DC, USA, 1948. [Google Scholar]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Alexandersson, H. A homogeneity test applied to precipitation data. J. Climatol. 1986, 6, 661–675. [Google Scholar] [CrossRef]
- Kazemi Garajeh, M.; Haji, F.; Tohidfar, M.; Sadeqi, A.; Ahmadi, R.; Kariminejad, N. Spatiotemporal monitoring of climate change impacts on water resources using an integrated approach of remote sensing and Google Earth Engine. Sci. Rep. 2024, 14, 5469. [Google Scholar] [CrossRef] [PubMed]
- Sadeqi, A.; Tabari, H.; Dinpashoh, Y. Spatio-temporal analysis of heating and cooling degree-days over Iran. Stoch. Environ. Res. Risk Assess. 2022, 36, 869–891. [Google Scholar] [CrossRef]
- Helsel, D.R.; Hirsch, R.M. Statistical Methods in Water Resources; Elsevier: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Peña-Guerrero, M.D.; Nauditt, A.; Muñoz-Robles, C.; Ribbe, L.; Meza, F. Drought impacts on water quality and potential implications for agricultural production in the Maipo River Basin, Central Chile. Hydrol. Sci. J. 2020, 65, 1005–1021. [Google Scholar] [CrossRef]
- Apurv, T.; Cai, X. Impact of droughts on water supply in US watersheds: The role of renewable surface and groundwater resources. Earth’s Future 2020, 8, e2020EF001648. [Google Scholar] [CrossRef]
- Javari, M. Spatial variability of rainfall trends in Iran. Arab. J. Geosci. 2017, 10, 78. [Google Scholar] [CrossRef]
- Emadodin, I.; Reinsch, T.; Taube, F. Drought and desertification in Iran. Hydrology 2019, 6, 66. [Google Scholar] [CrossRef]
- Foltz, R.C. Iran’s water crisis: Cultural, political, and ethical dimensions. J. Agric. Environ. Ethics 2002, 15, 357–380. [Google Scholar] [CrossRef]
- Saatsaz, M. A historical investigation on water resources management in Iran. Environ. Dev. Sustain. 2020, 22, 1749–1785. [Google Scholar] [CrossRef]
- Farrokhzadeh, S.; Hashemi Monfared, S.A.; Azizyan, G.; Sardar Shahraki, A.; Ertsen, M.W.; Abraham, E. Sustainable water resources management in an arid area using a coupled optimization-simulation modeling. Water 2020, 12, 885. [Google Scholar] [CrossRef]
- Sadeqi, A.; Irannezhad, M.; Bahmani, S.; Jelodarlu, K.A.; Varandili, S.A.; Pham, Q.B. Long-Term Variability and Trends in Snow Depth and Cover Days Throughout Iranian Mountain Ranges. Water Resour. Res. 2024, 60, e2023WR035411. [Google Scholar] [CrossRef]
Variable | Product | Spatial Resolution (m) | Temporal Resolution | Google Earth Engine ID |
---|---|---|---|---|
Surface water | JRC Yearly Water Classification History, v1.4 | 30 | Yearly | JRC/GSW1_4/YearlyHistory |
Evapotranspiration | MOD16A2GF.061: Terra Net Evapotranspiration | 500 | 8-day | MOD16A2GF Version 6.1 |
Precipitation | CHIRPS Daily: Climate Hazards Group InfraRed Precipitation with Station Data (V2.0) | 5566 | Daily | UCSB-CHG/CHIRPS/DAILY |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazemi Garajeh, M.; Abdoli, N.; Seyedebrahimi, E.; Naboureh, A.; Kurdpour, I.; Bakhshi Lomer, A.R.; Sadeqi, A.; Mirzaei, S. Impact of Long-Term Drought on Surface Water and Water Balance Variations in Iran: Insights from Highland and Lowland Regions. Remote Sens. 2024, 16, 3636. https://doi.org/10.3390/rs16193636
Kazemi Garajeh M, Abdoli N, Seyedebrahimi E, Naboureh A, Kurdpour I, Bakhshi Lomer AR, Sadeqi A, Mirzaei S. Impact of Long-Term Drought on Surface Water and Water Balance Variations in Iran: Insights from Highland and Lowland Regions. Remote Sensing. 2024; 16(19):3636. https://doi.org/10.3390/rs16193636
Chicago/Turabian StyleKazemi Garajeh, Mohammad, Nastaran Abdoli, Ebrahim Seyedebrahimi, Amin Naboureh, Iman Kurdpour, Amir Reza Bakhshi Lomer, Amin Sadeqi, and Saham Mirzaei. 2024. "Impact of Long-Term Drought on Surface Water and Water Balance Variations in Iran: Insights from Highland and Lowland Regions" Remote Sensing 16, no. 19: 3636. https://doi.org/10.3390/rs16193636
APA StyleKazemi Garajeh, M., Abdoli, N., Seyedebrahimi, E., Naboureh, A., Kurdpour, I., Bakhshi Lomer, A. R., Sadeqi, A., & Mirzaei, S. (2024). Impact of Long-Term Drought on Surface Water and Water Balance Variations in Iran: Insights from Highland and Lowland Regions. Remote Sensing, 16(19), 3636. https://doi.org/10.3390/rs16193636