Previous Article in Journal
Tree Completion Net: A Novel Vegetation Point Clouds Completion Model Based on Deep Learning
Previous Article in Special Issue
Lightweight Design for Infrared Dim and Small Target Detection in Complex Environments
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
Article

DBSF-Net: Infrared Image Colorization Based on the Generative Adversarial Model with Dual-Branch Feature Extraction and Spatial-Frequency-Domain Discrimination

1
PLA Rocket Force University of Engineering, Xi’an 710025, China
2
Department of Automation, Tsinghua University, Beijing 100084, China
*
Author to whom correspondence should be addressed.
Remote Sens. 2024, 16(20), 3766; https://doi.org/10.3390/rs16203766
Submission received: 5 September 2024 / Revised: 30 September 2024 / Accepted: 1 October 2024 / Published: 10 October 2024

Abstract

Thermal infrared cameras can image stably in complex scenes such as night, rain, snow, and dense fog. Still, humans are more sensitive to visual colors, so there is an urgent need to convert infrared images into color images in areas such as assisted driving. This paper studies a colorization method for infrared images based on a generative adversarial model. The proposed dual-branch feature extraction network ensures the stability of the content and structure of the generated visible light image; the proposed discrimination strategy combining spatial and frequency domain hybrid constraints effectively improves the problem of undersaturated coloring and the loss of texture details in the edge area of the generated visible light image. The comparative experiment of the public infrared visible light paired data set shows that the algorithm proposed in this paper has achieved the best performance in maintaining the consistency of the content structure of the generated image, restoring the image color distribution, and restoring the image texture details.
Keywords: image colorization; feature extraction network; frequency-domain discrimination strategy image colorization; feature extraction network; frequency-domain discrimination strategy

Share and Cite

MDPI and ACS Style

Li, S.; Ma, D.; Ding, Y.; Xian, Y.; Zhang, T. DBSF-Net: Infrared Image Colorization Based on the Generative Adversarial Model with Dual-Branch Feature Extraction and Spatial-Frequency-Domain Discrimination. Remote Sens. 2024, 16, 3766. https://doi.org/10.3390/rs16203766

AMA Style

Li S, Ma D, Ding Y, Xian Y, Zhang T. DBSF-Net: Infrared Image Colorization Based on the Generative Adversarial Model with Dual-Branch Feature Extraction and Spatial-Frequency-Domain Discrimination. Remote Sensing. 2024; 16(20):3766. https://doi.org/10.3390/rs16203766

Chicago/Turabian Style

Li, Shaopeng, Decao Ma, Yao Ding, Yong Xian, and Tao Zhang. 2024. "DBSF-Net: Infrared Image Colorization Based on the Generative Adversarial Model with Dual-Branch Feature Extraction and Spatial-Frequency-Domain Discrimination" Remote Sensing 16, no. 20: 3766. https://doi.org/10.3390/rs16203766

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Article metric data becomes available approximately 24 hours after publication online.
Back to TopTop