A Framework Based on LIDs and Storage Pumping Stations for Urban Waterlogging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Framework
2.2. Study Area
2.3. Data Sources
2.3.1. Data for Modeling
2.3.2. Waterlogging Site Survey
2.4. Remote Sensing
2.4.1. Data Preprocessing
2.4.2. Image Feature Extraction
2.5. SWMM
2.5.1. Model Setup
2.5.2. Calibration and Validation
2.5.3. Design Rainfall
2.5.4. LID Implementation
2.5.5. Storage Pumping Station Setup
2.5.6. Design Schemes
3. Results
3.1. Surface Runoff Reduction
3.2. Peak Outflow Reduction
3.3. Peak Time of Outflow
3.4. Outflow Process
3.5. Scheme Selection
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Data | Source | Content | Usage |
---|---|---|---|
DEM | Download from Geospatial Data Cloud | 30 m spatial resolution | Sub-catchment division |
Land use planning map | Norendar International LTD. | Impermeable rate, area, slope, etc. | Sub-catchment division |
Pipe network data | Norendar International LTD. | Pipeline network slope, diameter, length, direction, etc. | Digitization of pipeline network |
Precipitation | The Bureau of Hydrology and Water Resources Survey of Baoding | 5 min/rainfall intensity monitored by Tilting rain gauge | Calibration and validation |
Waterlogging data | Site survey | Waterlogging points, maximumwaterlogging depth | Calibration and validation |
Parameter Type | Parameter | Value Range | Value |
---|---|---|---|
Manning constant | N-imp | 0.011~0.015 | 0.013 |
N-perv | 0.05~0.8 | 0.17 | |
Manning roughness coefficient | 0~3 | 0.014 | |
D-store | S-imp/mm | 1.27~2.54 | 1.56 |
S-prev/mm | 2.54~7.62 | 3.5 | |
Horton constant | Max-rate/(mm·h−1) | 0~100 | 43 |
Min-rate/(mm·h−1) | 0~10 | 6 | |
Decay/(1·h−1) | 0~7 | 3 | |
Dry time/d | 1~7 | 7 | |
the comprehensive runoff coefficient | 0.692 |
LID Layer | Parameter | Permeable Pavements | Sunken Greenbelts | Rain Barrels |
---|---|---|---|---|
Surface layer | Berm Height/(mm) | 2 | 200 | - |
Vegetative Volume Fraction | 0 | 0.85 | - | |
Surface Slope | 1% | 1% | - | |
Surface Roughness | 0.24 | 0.1 | - | |
Pavement layer | Thickness/(mm) | 150 | - | - |
Void Ratio | 0.15 | - | - | |
Impervious Surface Fraction | 0 | - | - | |
Permeability/(mm/h) | 200 | - | - | |
Clogging Factor | 0 | - | - | |
Soil layer | Thickness/(mm) | - | 250 | - |
Porosity | - | 0.45 | - | |
Field Capacity | - | 0.2 | - | |
Wilting Point | - | 0.1 | - | |
Conductivity/(mm/h) | - | 125 | - | |
Conductivity Slope | - | 10 | - | |
Suction Head/(mm) | - | 50 | - | |
Storage layer | Barrel Height/(mm) | 300 | 300 | 1500 |
Void Ratio | 0.4 | 0.45 | - | |
Seepage Rate/(mm/h) | 3.19 | 125 | - | |
Clogging Factor | 0 | - | - |
References
- Raymond, C.; Horton, R.M.; Zscheischler, J.; Martius, O.; AghaKouchak, A.; Balch, J.; Bowen, S.G.; Camargo, S.J.; Hess, J.; Kornhuber, K.; et al. Understanding and managing connected extreme events. Nat. Clim. Chang. 2020, 10, 611–621. [Google Scholar] [CrossRef]
- Richard, P.; Allan, B.; Soden, J. Atmospheric warming and the amplification of precipitation extremes. Science 2008, 321, 1481–1484. [Google Scholar]
- Fischer, E.; Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Chang. 2015, 5, 560–564. [Google Scholar] [CrossRef]
- Guo, B.; Xie, T.; Zhang, W.; Wu, H.; Zhang, D.; Zhu, X.; Ma, X.; Wu, M.; Luo, P. Rasterizing CO2 emissions and characterizing their trends via an enhanced population-light index at multiple scales in China during 2013–2019. Sci. Total. Environ. 2023, 905, 167309. [Google Scholar] [CrossRef]
- Wei, W.; Zou, S.; Duan, W.; Chen, Y.; Li, S.; Zhou, Y. Spatiotemporal variability in extreme precipitation and associated large-scale climate mechanisms in Central Asia from 1950 to 2019. J. Hydrol. 2023, 620, 129417. [Google Scholar] [CrossRef]
- Zhu, W.; Zha, X.; Luo, P.; Wang, S.; Cao, Z.; Lyu, J.; Zhou, M.; He, B.; Nover, D. A Quantitative Analysis of Research Trends in Flood Hazard Assessment. Stoch. Environ. Res. Risk Assess. 2023, 37, 413–428. [Google Scholar] [CrossRef]
- Zhang, G.; Mao, J.; Hua, W.; Wu, X.; Sun, R.; Yan, Z.; Liu, Y.; Wu, G. Synergistic effect of the planetary-scale disturbance, typhoon and Meso-β-scale convective vortex on the extremely intense rainstorm on 20 July 2021 in Zhengzhou. Adv. Atmos. Sci. 2023, 40, 428–446. [Google Scholar] [CrossRef]
- Wang, S.; Luo, P.; Xu, C.; Zhu, W.; Cao, Z.; Steven, L. Reconstruction of Historical Land Use and Urban Flood Simulation in Xi’an, Shannxi, China. Remote Sens. 2022, 14, 6067. [Google Scholar] [CrossRef]
- Luo, P.; Wang, X.; Zhang, L.; Zainol, M.; Duan, W.; Hu, M.; Guo, B.; Zhang, Y.; Wang, Y.; Daniel, N. Future Land Use and Flood Risk Assessment in the Guanzhong Plain, China: Scenario Analysis and the Impact of Climate Change. Remote Sens. 2023, 15, 5778. [Google Scholar] [CrossRef]
- Loperfido, J.V.; Gregory, B.; Noe, S.; Taylor, J.; Dianna, M.H. Effects of distributed and centralized stormwater best management practices and land cover on urban stream hydrology at the catchment scale. J. Hydrol. 2014, 519, 2584–2595. [Google Scholar] [CrossRef]
- Qi, W.; Ma, C.; Xu, H.; Chen, Z.; Zhao, K.; Han, H. Low Impact Development measures spatial arrangement for urban flood mitigation: An exploratory optimal framework based on source tracking. Water Resour Manag. 2015, 35, 3755–3770. [Google Scholar] [CrossRef]
- Andersson, E.; Barthel, S.; Borgström, S.; Colding, J.; Elmqvist, T.; Folke, C.; Gren, Å. Reconnecting cities to the Biosphere: Stewardship of green infrastructure and urban ecosystem services. AMBIO 2014, 43, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Cotterill, S.; Bracken, L.J. Assessing the effectiveness of Sustainable Drainage Systems (SuDS): Interventions, impacts and challenges. Water 2020, 12, 3160. [Google Scholar] [CrossRef]
- Wu, W.; Behzad, J.; Zhang, K.; Lucy, M.; Ana, D. Water Sensitive Urban Design (WSUD) Spatial Prioritisation through Global Sensitivity Analysis for effective urban pluvial flood mitigation. Water Res. 2023, 235, 119888. [Google Scholar] [CrossRef] [PubMed]
- Marjorie, R.V.R. Water sensitive residential developments: Application of LIUDD principles and methods in the Netherlands, Australia and New Zealand. Urban Water J. 2011, 8, 325–335. [Google Scholar]
- Chen, S.; Van de Ven, F.H.M.; Zevenbergen, C.; Verbeeck, S.; Ye, Q.; Zhang, W.; Wei, L. Revisiting China’s Sponge City Planning Approach: Lessons from a Case Study on Qinhuai District, Nanjing. Environ. Sci. 2021, 9, 748231. [Google Scholar] [CrossRef]
- Luo, P.; Yan, P.; Wang, X.; Wu, Y.; Lyu, J.; He, B.; Duan, W.; Wang, S.; Zha, X. Historical and Comparative Overview of Sponge Campus Construction and Future Challenges. Sci. Total Environ. 2024, 907, 167477. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Chen, X.; Li, M.; Shen, Y.; Zhao, H. Discussion on the Reconstruction Design of Rainwater Pumping Station by Using Existing Underground Space for Regulation and Storage. China Water Wastewater 2019, 35, 64–67. [Google Scholar] [CrossRef]
- Kim, Y.; Han, M. Rainwater Storage Tank as a Remedy for a Local Urban Flood Control. Water Sci. Tech. Water Supply 2008, 8, 31–36. [Google Scholar] [CrossRef]
- Li, J.; Meng, G.; Che, W. On regulation, reservation and practical calculation in urban rainwater utilization. WaterWastewater Eng. 2007, 33, 42–46. [Google Scholar]
- Di Matteo, M.; Liang, R.; Maier, H.R.; Thyer, M.A.; Simpson, A.R.; Dandy, G.C.; Ernst, B. Controlling rainwater storage as a system: An opportunity to reduce urban flood peaks for rare, long duration storms. Environ. Model. Softw. 2019, 111, 34–41. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, K.; Luo, Y.; Zhang, Q.; Zhou, J.; Fan, Y.; Huang, P.; Yao, C.; Chao, L.; Bao, H. A Distributed Hydrological Model for Semi-humid Watersheds with a Thick Unsaturated Zone Under Strong Anthropogenic Impacts: A Case Study in Haihe River Basin. J. Hydrol. 2023, 623, 129765. [Google Scholar] [CrossRef]
- Wang, S.; Yi, B.; Wang, J.; Zheng, Q.; Gao, R.; Jing, M.; Qu, D. Infoworks simulation and plan design of urban rainwater storage pumping station. China Water Wastewater 2019, 35, 47–52. [Google Scholar] [CrossRef]
- Baek, S.S.; Choi, D.H.; Jung, J.W.; Lee, H.J.; Lee, H.; Yoon, K.S.; Cho, K.H. Optimizing low impact development (LID) for stormwater runoff treatment in urban area, Korea: Experimental and modeling approach. Water Res. 2015, 86, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Kwak, D.; Kim, H.; Han, M.; Kim, J.H.; Kim, H.S.; Yoo, D.G.; Jung, D.; Song, C.G. Runoff control potential for design types of Low Impact Development in small developing area using XP SWMM. Procedia Eng. 2016, 154, 1324–1332. [Google Scholar] [CrossRef]
- Kim, H.; Mallari, K.J.B.; Baek, J.; Pak, G.; Choi, H.I.; Yoon, J. Considering the effect of groundwater on bioretention using the Storm Water Management Model. J. Environ. Manag. 2019, 231, 1270–1276. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Hou, J.; Shen, T.; Zhang, Y.; Li, D.; Wang, J.; Zhang, J. An optimal design method for low-impact development (LID) facilities based on the hydrodynamic model and genetic algorithm-assisted decision-making. Water Policy 2023, 25, 313–337. [Google Scholar] [CrossRef]
- Chen, Y.; Tan, M.; Wan, J.; Weise, T.; Wu, Z. Effectiveness evaluation of the coupled LIDs from the watershed scale based on remote sensing image processing and SWMM simulation. Eur. J. Remote Sens. 2020, 54, 77–91. [Google Scholar] [CrossRef]
- Tansar, H.; Duan, H.F.; Mark, O. Catchment-scale and local-scale based evaluation of LID effectiveness on urban drainage system performance. Water Resour. Manag. 2022, 36, 507–526. [Google Scholar] [CrossRef]
- Chen, P.Y.; Tung, C.P.; Li, Y.H. Low Impact Development planning and adaptation decision-making under climate change for a community against pluvial flooding. Water 2017, 9, 756. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Lee, J.M.; Jang, H.S.; Park, M.; Min, J.H.; Na, E.H. Analyzing the impacts of sewer type and spatial distribution of LID facilities on urban runoff and non-point source pollution using the Storm Water Management Model (SWMM). Water 2022, 14, 2776. [Google Scholar] [CrossRef]
- Wang, Z.; Li, S.; Wu, X.; Lin, G.; Lai, C. Impact of spatial discretization resolution on the hydrological performance of layout optimization of LID practices. J. Hydrol. 2022, 612, 128113. [Google Scholar] [CrossRef]
- Du, Y.; Hou, J.; Ma, H.; Liu, Q.; Wang, X.; Zhang, Z.; Chen, G. Spatial Pattern Optimization of LID Facility Based on SWMM. China Water Wastewater 2021, 37, 120–125. [Google Scholar]
- Khoa Bui, X.; Marlim, M.S.; Kang, D. Water Network Partitioning into District Metered Areas: A State-of-the-Art Review. Water 2020, 12, 1002. [Google Scholar] [CrossRef]
- Borzì, I. Evaluating Sustainability Improvement of Pressure Regime in Water Distribution Systems Due to Network Partitioning. Water 2022, 14, 1787. [Google Scholar] [CrossRef]
- Di Nardo, A.; Di Natale, M.; Giudicianni, C.; Santonastaso, G.F.; Tzatchkov, V.; Varela, J.M.R.; Yamanaka, V.H.A. Water Supply Network Partitioning Based on Simultaneous Cost and Energy Optimization. Procedia Eng. 2016, 162, 238–245. [Google Scholar] [CrossRef]
- Luan, Q.; Qin, Z.; Wang, D.; Liu, J.; Fu, X. Review on monitoring technology of urban road waterlogging after rainstorm and its application. Water Resour. Prot. 2022, 38, 106–116+140. [Google Scholar]
- Liu, L.; Chen, M.; Luo, P.; Duan, W.; Hu, M.; Elbeltagi, A. A Novel Integrated Spatiotemporal-Variable Model of Landscape Changes in Traditional Villages in the Jinshaan Gorge, Yellow River Basin. Land 2023, 12, 1666. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, K.; Chao, L.; Chen, G.; Xia, Y.; Zhang, C. Investigating the feasibility of using satellite rainfall for the integrated prediction of flood and landslide hazards over Shaanxi Province in northwest China. Remote Sens. 2023, 15, 2457. [Google Scholar] [CrossRef]
- Deng, H.; Pepin, N.C.; Chen, Y.; Guo, B.; Zhang, S.; Zhang, Y.; Chen, X.; Gao, L.; Liu, M.; Chen, Y. Dynamics of Diurnal Precipitation Differences and Their Spatial Variations in China. J. Appl. Meteorol. Climatol. 2022, 61, 1015–1027. [Google Scholar] [CrossRef]
- Zhu, W.; Cao, Z.; Luo, P.; Tang, Z.; Zhang, Y.; Hu, M.; He, B. Urban Flood-Related Remote Sensing: Research Trends, Gaps and Opportunities. Remote Sens. 2022, 14, 5505. [Google Scholar] [CrossRef]
- Liu, L.; Chen, M.; Luo, P.; Duan, W.; Hu, M. Quantitative Model Construction for Sustainable Security Patterns in Social–Ecological Links Using Remote Sensing and Machine Learning. Remote Sens. 2023, 15, 3837. [Google Scholar] [CrossRef]
- Zhao, L.; Li, H.; Huang, W.; Dong, Y.; Geng, Y.; Ma, H.; Chen, J. Outbreak Mechanism of Locust Plagues under Dynamic Drought and Flood Environments Based on Time Series Remote Sensing Data: Implication for Identifying Potential High-Risk Locust Areas. Remote Sens. 2023, 15, 5206. [Google Scholar] [CrossRef]
- Mei, C.; Liu, J.; Wang, H.; Li, Z.; Xia, L.; Wang, Y. Introduction of basic principle and application prospect for SWMM. Water Resour. Hydropower Eng. 2017, 48, 33–42. [Google Scholar]
- Fu, X.; Wang, D.; Luan, Q.; Liu, J.; Wang, H. SWMM-based rainfall-runoff simulations in large-scale urban area with no pipeline-flow observations: Ⅱ: Model calibration and analysis of rainfall-runoff simulations. Adv. Water Sci. 2020, 31, 51–60. [Google Scholar]
- Su, X.; Yang, C.; Luan, Q.; Zhang, K.; Zhang, W. Simulation of flood control and storm drainage in typical northern urban district through MIKE URBAN. J. Beijing Norm. Univ. (Nat. Sci.) 2020, 56, 368–375. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Y.; Fu, X.; Wang, D.; Luan, Q. Urban flood modeling and risk assessment with limited observation data: The Beijing future science city of China. Int. J. Environ. Res. Public Health 2023, 20, 4640. [Google Scholar] [CrossRef] [PubMed]
- Lewis, A.R. Storm Water Management Model User’s Manual Version 5.1; The United States Environmental Protection Agency (USEPA): Washington, DC, USA, 2015. [Google Scholar]
- Lu, X.; Chan, F.K.S.; Li, N.; Chen, C.K.; Chen, W.Q.; Chan, H.K. Improving urban flood resilience via GDELT GKG analyses in China’s Sponge Cities. Sci. Rep. 2022, 12, 20317. [Google Scholar] [CrossRef]
- Abdul Jaleel, Y.; Demissie, Y. Identifying cost-effective Low-Impact Development (LID) under climate change: A multi-objective optimization approach. Water 2022, 14, 3017. [Google Scholar] [CrossRef]
- Huo, Y. Study on the Effectiveness of Runoff Reducing and Control through Concave Greenbelt Measures; Hebei University of Engineering: Handan, China, 2019. [Google Scholar]
- Wei, Y. Study on Risk Assessment of Urban Rainwater Pipelines and Optimized Operation of Rainwater Pump Station; Hefei University of Technology: Hefei, China, 2019. [Google Scholar]
- Peng, J.; Yu, L.; Zhong, X.; Dong, T. Study on runoff control effect of different drainage schemes in sponge airport. Water Resour. Manag. 2022, 36, 1043–1055. [Google Scholar] [CrossRef]
- Wu, Y.; She, D.; Xia, J.; Song, J.; Xiao, T.; Zhou, Y. The quantitative assessment of impact of pumping capacity and LID on urban flood susceptibility based on machine learning. J. Hydrol. 2023, 617, 129116. [Google Scholar] [CrossRef]
Storage Pumping Station | Startup Depth/(m) | Shutoff Depth/(m) | Maximum Depth of Surface Waterlogging/(m) | |
---|---|---|---|---|
10-Year Return Period | 20-Year Return Period | |||
1 | 1.4 | 0.7 | 0.10 | 0.11 |
2 | 1.4 | 0.5 | 0.06 | 0.07 |
3 | 2.2 | 0.8 | 0 | 0.00 |
4 | 1.3 | 0.6 | 0.12 | 0.13 |
5 | 1.7 | 0.6 | 0 | 0.01 |
6 | 1.2 | 0.7 | 0.11 | 0.14 |
7 | 1.2 | 0.5 | 0.02 | 0.04 |
8 | 1.3 | 0.7 | 0 | 0.00 |
Measures | 2a | 5a | 10a | 20a |
---|---|---|---|---|
no measures | 52 min | 52 min | 52 min | 52 min |
Scheme 1 | 54 min | 54 min | 53 min | 53 min |
Scheme 2 | 57 min | 56 min | 55 min | 54 min |
Scheme 3 | 61 min | 57 min | 55 min | 54 min |
Scheme 4 | 75 min | 79 min | 66 min | 57 min |
Scheme 5 | 103 min | 91 min | 86 min | 79 min |
Scheme 6 | 84 min | 75 min | 77 min | 67 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Luan, Q.; Liu, J.; Gao, C.; Zhou, H. A Framework Based on LIDs and Storage Pumping Stations for Urban Waterlogging. Remote Sens. 2024, 16, 1207. https://doi.org/10.3390/rs16071207
Li H, Luan Q, Liu J, Gao C, Zhou H. A Framework Based on LIDs and Storage Pumping Stations for Urban Waterlogging. Remote Sensing. 2024; 16(7):1207. https://doi.org/10.3390/rs16071207
Chicago/Turabian StyleLi, Huayue, Qinghua Luan, Jiahong Liu, Cheng Gao, and Hong Zhou. 2024. "A Framework Based on LIDs and Storage Pumping Stations for Urban Waterlogging" Remote Sensing 16, no. 7: 1207. https://doi.org/10.3390/rs16071207
APA StyleLi, H., Luan, Q., Liu, J., Gao, C., & Zhou, H. (2024). A Framework Based on LIDs and Storage Pumping Stations for Urban Waterlogging. Remote Sensing, 16(7), 1207. https://doi.org/10.3390/rs16071207