Prediction of Sea Surface Temperature Using U-Net Based Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methods
2.2.1. Multi-Scale Convolutional Feature Block
2.2.2. Multi-Scale Convolutional Fusion Block
2.2.3. Atrous Spatial Pyramid Pooling (ASPP)
2.2.4. ST-UNet
2.3. Data Processing
2.4. Experiments Settings and Evaluation Indices
3. Result
3.1. Accuracy Analysis
3.2. Analysis of Module
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bao, X.; Wan, X.; Gao, G.; Wu, D. The characteristics of the seasonal variability of the sea surface temperature field in the Bohai Sea, the Huanghai Sea and the East China Sea from AVHRR data. Acta Oceanol. Sin. 2002, 24, 125–133. [Google Scholar]
- Cao, L.; Tang, R.; Huang, W.; Wang, Y. Seasonal variability and dynamics of coastal sea surface temperature fronts in the East China Sea. Ocean Dyn. 2021, 71, 237–249. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Branstator, G.W.; Karoly, D.; Kumar, A.; Lau, N.C.; Ropelewski, C. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res. Ocean. 1998, 103, 14291–14324. [Google Scholar] [CrossRef]
- Xie, S.P.; Deser, C.; Vecchi, G.A.; Ma, J.; Teng, H.; Wittenberg, A.T. Global warming pattern formation: Sea surface temperature and rainfall. J. Clim. 2010, 23, 966–986. [Google Scholar] [CrossRef]
- Deser, C.; Alexander, M.A.; Xie, S.P.; Phillips, A.S. Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci. 2010, 2, 115–143. [Google Scholar] [CrossRef]
- Kennedy, J.J.; Rayner, N.; Atkinson, C.; Killick, R. An ensemble data set of sea surface temperature change from 1850: The Met Office Hadley Centre HadSST. 4.0. 0.0 data set. J. Geophys. Res. Atmos. 2019, 124, 7719–7763. [Google Scholar] [CrossRef]
- Donlon, C.; Robinson, I.; Casey, K.; Vazquez-Cuervo, J.; Armstrong, E.; Arino, O.; Gentemann, C.; May, D.; LeBorgne, P.; Piollé, J.; et al. The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bull. Am. Meteorol. Soc. 2007, 88, 1197–1214. [Google Scholar] [CrossRef]
- Oliver, E.C.; Benthuysen, J.A.; Darmaraki, S.; Donat, M.G.; Hobday, A.J.; Holbrook, N.J.; Schlegel, R.W.; Sen Gupta, A. Marine heatwaves. Annu. Rev. Mar. Sci. 2021, 13, 313–342. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Shin, S.I.; Liu, Z.; Liu, Q. Sensitivity of Asian Summer Monsoon precipitation to tropical sea surface temperature anomalies. Clim. Dyn. 2016, 47, 2501–2514. [Google Scholar] [CrossRef]
- Ham, Y.G.; Kug, J.S.; Park, J.Y.; Jin, F.F. Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci. 2013, 6, 112–116. [Google Scholar] [CrossRef]
- Ralph, T.U.; Gough, W.A. The influence of sea-surface temperatures on Eastern North Pacific tropical cyclone activity. Theor. Appl. Climatol. 2009, 95, 257–264. [Google Scholar] [CrossRef]
- Kug, J.S.; Kang, I.S.; Lee, J.Y.; Jhun, J.G. A statistical approach to Indian Ocean sea surface temperature prediction using a dynamical ENSO prediction. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Berliner, L.M.; Wikle, C.K.; Cressie, N. Long-lead prediction of Pacific SSTs via Bayesian dynamic modeling. J. Clim. 2000, 13, 3953–3968. [Google Scholar] [CrossRef]
- Kug, J.S.; Lee, J.Y.; Kang, I.S. Global sea surface temperature prediction using a multimodel ensemble. Mon. Weather Rev. 2007, 135, 3239–3247. [Google Scholar] [CrossRef]
- Repelli, C.A.; Nobre, P. Statistical prediction of sea-surface temperature over the tropical Atlantic. Int. J. Climatol. J. R. Meteorol. 2004, 24, 45–55. [Google Scholar] [CrossRef]
- Borchert, L.F.; Menary, M.B.; Swingedouw, D.; Sgubin, G.; Hermanson, L.; Mignot, J. Improved decadal predictions of North Atlantic subpolar gyre SST in CMIP6. Geophys. Res. Lett. 2021, 48, e2020GL091307. [Google Scholar] [CrossRef]
- Colman, A.; Davey, M. Statistical prediction of global sea-surface temperature anomalies. Int. J. Climatol. J. R. Meteorol. Soc. 2003, 23, 1677–1697. [Google Scholar] [CrossRef]
- Barnett, T.; Graham, N.; Pazan, S.; White, W.; Latif, M.; Flügel, M. ENSO and ENSO-related predictability. Part I: Prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean–atmosphere model. J. Clim. 1993, 6, 1545–1566. [Google Scholar] [CrossRef]
- Davis, R.E. Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr. 1976, 6, 249–266. [Google Scholar] [CrossRef]
- Alexander, M.A.; Matrosova, L.; Penland, C.; Scott, J.D.; Chang, P. Forecasting Pacific SSTs: Linear inverse model predictions of the PDO. J. Clim. 2008, 21, 385–402. [Google Scholar] [CrossRef]
- Gao, G.; Marin, M.; Feng, M.; Yin, B.; Yang, D.; Feng, X.; Ding, Y.; Song, D. Drivers of marine heatwaves in the East China Sea and the South Yellow Sea in three consecutive summers during 2016–2018. J. Geophys. Res. Ocean. 2020, 125, e2020JC016518. [Google Scholar] [CrossRef]
- Costa, P.; Gómez, B.; Venâncio, A.; Pérez, E.; Pérez-Muñuzuri, V. Using the Regional Ocean Modelling System (ROMS) to improve the sea surface temperature predictions of the MERCATOR Ocean System. Sci. Mar. 2012, 76, 165–175. [Google Scholar] [CrossRef]
- Xue, Y.; Leetmaa, A. Forecasts of tropical Pacific SST and sea level using a Markov model. Geophys. Res. Lett. 2000, 27, 2701–2704. [Google Scholar] [CrossRef]
- Collins, D.; Reason, C.; Tangang, F. Predictability of Indian Ocean sea surface temperature using canonical correlation analysis. Clim. Dyn. 2004, 22, 481–497. [Google Scholar] [CrossRef]
- Wolff, S.; O’Donncha, F.; Chen, B. Statistical and machine learning ensemble modelling to forecast sea surface temperature. J. Mar. Syst. 2020, 208, 103347. [Google Scholar] [CrossRef]
- Patil, K.; Deo, M.; Ravichandran, M. Prediction of sea surface temperature by combining numerical and neural techniques. J. Atmos. Ocean. Technol. 2016, 33, 1715–1726. [Google Scholar] [CrossRef]
- Peng, W.; Chen, Q.; Zhou, S.; Huang, P. CMIP6 model-based analog forecasting for the seasonal prediction of sea surface temperature in the offshore area of China. Geosci. Lett. 2021, 8, 8. [Google Scholar] [CrossRef]
- Imani, M.; Chen, Y.C.; You, R.J.; Lan, W.H.; Kuo, C.Y.; Chang, J.C.; Rateb, A. Spatiotemporal prediction of satellite altimetry sea level anomalies in the tropical Pacific ocean. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1126–1130. [Google Scholar] [CrossRef]
- Aparna, S.; D’souza, S.; Arjun, N. Prediction of daily sea surface temperature using artificial neural networks. Int. J. Remote Sens. 2018, 39, 4214–4231. [Google Scholar] [CrossRef]
- Hou, S.; Li, W.; Liu, T.; Zhou, S.; Guan, J.; Qin, R.; Wang, Z. MIMO: A Unified Spatio-Temporal Model for Multi-Scale Sea Surface Temperature Prediction. Remote Sens. 2022, 14, 2371. [Google Scholar] [CrossRef]
- Wei, L.; Guan, L.; Qu, L.; Guo, D. Prediction of sea surface temperature in the China seas based on long short-term memory neural networks. Remote Sens. 2020, 12, 2697. [Google Scholar] [CrossRef]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Jordan, M.I. Serial order: A parallel distributed processing approach. In Advances in Psychology; Elsevier: Amsterdam, The Netherlands, 1997; Volume 121, pp. 471–495. [Google Scholar]
- Xu, S.; Dai, D.; Cui, X.; Yin, X.; Jiang, S.; Pan, H.; Wang, G. A deep learning approach to predict sea surface temperature based on multiple modes. Ocean Model. 2023, 181, 102158. [Google Scholar] [CrossRef]
- Shao, Q.; Li, W.; Han, G.; Hou, G.; Liu, S.; Gong, Y.; Qu, P. A deep learning model for forecasting sea surface height anomalies and temperatures in the South China Sea. J. Geophys. Res. Ocean. 2021, 126, e2021JC017515. [Google Scholar] [CrossRef]
- Kim, M.; Yang, H.; Kim, J. Sea surface temperature and high water temperature occurrence prediction using a long short-term memory model. Remote Sens. 2020, 12, 3654. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Dong, J.; Zhong, G.; Sun, X. Prediction of sea surface temperature using long short-term memory. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1745–1749. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, J.; Yu, J.; Xu, L. An adaptive scale sea surface temperature predicting method based on deep learning with attention mechanism. IEEE Geosci. Remote Sens. Lett. 2019, 17, 740–744. [Google Scholar] [CrossRef]
- Usharani, B. ILF-LSTM: Enhanced loss function in LSTM to predict the sea surface temperature. Soft Comput. 2023, 27, 13129–13141. [Google Scholar] [CrossRef]
- Jia, X.; Ji, Q.; Han, L.; Liu, Y.; Han, G.; Lin, X. Prediction of sea surface temperature in the East China Sea based on LSTM neural network. Remote Sens. 2022, 14, 3300. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention, Proceedings of the MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar] [CrossRef]
- Jiao, L.; Huo, L.; Hu, C.; Tang, P. Refined UNet: UNet-based refinement network for cloud and shadow precise segmentation. Remote Sens. 2020, 12, 2001. [Google Scholar] [CrossRef]
- Lguensat, R.; Sun, M.; Fablet, R.; Tandeo, P.; Mason, E.; Chen, G. EddyNet: A deep neural network for pixel-wise classification of oceanic eddies. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1764–1767. [Google Scholar] [CrossRef]
- Cui, Z.; Chen, W.; Chen, Y. Multi-scale convolutional neural networks for time series classification. arXiv 2016, arXiv:1603.06995. [Google Scholar]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500. [Google Scholar] [CrossRef]
- Xiao, C.; Chen, N.; Hu, C.; Wang, K.; Xu, Z.; Cai, Y.; Xu, L.; Chen, Z.; Gong, J. A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data. Environ. Model. Softw. 2019, 120, 104502. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.G.; Abdellaoui, I.A.; Mehrkanoon, S. Deep coastal sea elements forecasting using UNet-based models. Knowl. Based Syst. 2022, 252, 109445. [Google Scholar] [CrossRef]
- Huang, B.; Liu, C.; Banzon, V.; Freeman, E.; Graham, G.; Hankins, B.; Smith, T.; Zhang, H.M. Improvements of the daily optimum interpolation sea surface temperature (DOISST) version 2.1. J. Clim. 2021, 34, 2923–2939. [Google Scholar] [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Yang, Y.; Dong, J.; Sun, X.; Lima, E.; Mu, Q.; Wang, X. A CFCC-LSTM model for sea surface temperature prediction. IEEE Geosci. Remote Sens. Lett. 2017, 15, 207–211. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Frery, A.C.; Ren, P. Sea surface temperature prediction with memory graph convolutional networks. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
Model | Metrics | Predictions Days | ||
---|---|---|---|---|
1 | 3 | 7 | ||
CFCC-LSTM | MSE (°C) | 0.1334 | 0.3127 | 0.5843 |
MAE (°C) | 0.2347 | 0.4264 | 0.5971 | |
99.73 | 99.44 | 98.85 | ||
GED | MSE (°C) | 0.1305 | 0.3113 | 0.5811 |
MAE (°C) | 0.2459 | 0.4012 | 0.6026 | |
99.74 | 99.45 | 98.86 | ||
MGCN | MSE (°C) | 0.0985 | 0.2517 | 0.5146 |
MAE (°C) | 0.2503 | 0.3779 | 0.5210 | |
99.78 | 99.49 | 98.95 | ||
ST-UNet | MSE (°C) | 0.0823 | 0.2063 | 0.4674 |
MAE (°C) | 0.2085 | 0.3316 | 0.5087 | |
99.83 | 99.59 | 99.05 |
Model | Metrics | Predictions Days | ||
---|---|---|---|---|
1 | 3 | 7 | ||
CFCC-LSTM | MSE (°C) | 0.0714 | 0.1427 | 0.2495 |
MAE (°C) | 0.1778 | 0.2893 | 0.3856 | |
96.97 | 93.16 | 86.01 | ||
GED | MSE (°C) | 0.0681 | 0.1534 | 0.2619 |
MAE (°C) | 0.1718 | 0.2761 | 0.3646 | |
97.00 | 93.18 | 85.73 | ||
MGCN | MSE (°C) | 0.0533 | 0.1273 | 0.2230 |
MAE (°C) | 0.1626 | 0.2481 | 0.3383 | |
97.32 | 94.19 | 88.68 | ||
ST-UNet | MSE (°C) | 0.0286 | 0.0782 | 0.1868 |
MAE (°C) | 0.1192 | 0.2028 | 0.3269 | |
98.62 | 96.15 | 90.50 |
Model | Metrics | Predictions Days | ||
---|---|---|---|---|
1 | 3 | 7 | ||
UNet | MSE (°C) | 0.0918 | 0.2210 | 0.5308 |
MAE (°C) | 0.2205 | 0.3477 | 0.5589 | |
99.78 | 99.53 | 98.96 | ||
UNet-ASPP | MSE (°C) | 0.0901 | 0.2188 | 0.5273 |
MAE (°C) | 0.2172 | 0.3448 | 0.5484 | |
99.80 | 99.54 | 98.97 | ||
UNet-Convblock | MSE (°C) | 0.0876 | 0.2134 | 0.5056 |
MAE (°C) | 0.2149 | 0.3412 | 0.5379 | |
99.82 | 99.57 | 98.99 | ||
ST-UNet | MSE (°C) | 0.0823 | 0.2063 | 0.4674 |
MAE (°C) | 0.2085 | 0.3316 | 0.5087 | |
99.83 | 99.59 | 99.05 |
Model | Metrics | Predictions Days | ||
---|---|---|---|---|
1 | 3 | 7 | ||
UNet | MSE (°C) | 0.0309 | 0.0835 | 0.2098 |
MAE (°C) | 0.1250 | 0.2114 | 0.3382 | |
98.58 | 95.95 | 89.25 | ||
UNet-ASPP | MSE (°C) | 0.0292 | 0.0827 | 0.1989 |
MAE (°C) | 0.1223 | 0.2080 | 0.3322 | |
98.60 | 96.10 | 90.00 | ||
UNet-Convblock | MSE (°C) | 0.0291 | 0.0801 | 0.1912 |
MAE (°C) | 0.1210 | 0.2058 | 0.3289 | |
98.61 | 96.13 | 90.37 | ||
ST-UNet | MSE (°C) | 0.0286 | 0.0782 | 0.1868 |
MAE (°C) | 0.1192 | 0.2028 | 0.3269 | |
98.62 | 96.15 | 90.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, J.; Wang, C.; Sun, L.; Huang, B.; Zhang, D.; Mu, J.; Wu, J. Prediction of Sea Surface Temperature Using U-Net Based Model. Remote Sens. 2024, 16, 1205. https://doi.org/10.3390/rs16071205
Ren J, Wang C, Sun L, Huang B, Zhang D, Mu J, Wu J. Prediction of Sea Surface Temperature Using U-Net Based Model. Remote Sensing. 2024; 16(7):1205. https://doi.org/10.3390/rs16071205
Chicago/Turabian StyleRen, Jing, Changying Wang, Ling Sun, Baoxiang Huang, Deyu Zhang, Jiadong Mu, and Jianqiang Wu. 2024. "Prediction of Sea Surface Temperature Using U-Net Based Model" Remote Sensing 16, no. 7: 1205. https://doi.org/10.3390/rs16071205
APA StyleRen, J., Wang, C., Sun, L., Huang, B., Zhang, D., Mu, J., & Wu, J. (2024). Prediction of Sea Surface Temperature Using U-Net Based Model. Remote Sensing, 16(7), 1205. https://doi.org/10.3390/rs16071205