Changes in Vegetation NDVI and Its Response to Climate Change and Human Activities in the Ferghana Basin from 1982 to 2015
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Regions
2.2. Data
2.3. Statistical Analyses
2.3.1. Trend Analysis
2.3.2. Partial Correlation Analysis
2.3.3. Multiple Regression Residual Analysis
2.3.4. Determination and Impact of the Driving Elements of Vegetation NDVI Variation
2.3.5. Criteria for Deciding the Driving Elements of Vegetation NDVI Variation and Calculation Approach for Contribution Rate
2.3.6. Coefficient of Variation (CV) Stability Analysis
3. Results
3.1. Temporal Variation Characteristics of NDVI during the Growing Season
3.2. Characteristics of Spatial Variation of Vegetation NDVI in the Growing Season
3.2.1. Characteristics of Spatial Distribution of Vegetation NDVI in the Growing Season
3.2.2. Analysis of the Trend of NDVI in the Growing Season
3.2.3. Stability Characteristics of NDVI in Growing Season
3.3. Climate Response of NDVI during the Growing Season
Correlation between NDVI and Climatic Factors during Growing Season
3.4. Vegetation Driving Force Analysis
3.4.1. Spatial Distribution of Vegetation Driving Forces
3.4.2. Relative Contributions of Different Drivers to Vegetation NDVI Change
4. Discussion
4.1. Image Element-Based, Temporal, and Spatial Change in Vegetation NDVI
4.2. Vegetation NDVI Response to Climate Variation
4.3. Drivers of Vegetation NDVI from Human Events and Climate Variation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adedeji, O.; Reuben, O.; Olatoye, O. Global Climate Change. J. Geosci. Environ. Prot. 2014, 2, 114. [Google Scholar] [CrossRef]
- Huppert, H.E.; Sparks, R.S.J. Extreme Natural Hazards: Population Growth, Globalization and Environmental Change. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 364, 1875–1888. [Google Scholar] [CrossRef]
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A Review of the Global Climate Change Impacts, Adaptation, and Sustainable Mitigation Measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [Google Scholar] [CrossRef]
- Feng, S.; Liu, X.; Mao, X. Vegetation Dynamics in Arid Central Asia over the Past Two Millennia Linked to NAO Variability and Solar Forcing. Quat. Sci. Rev. 2023, 310, 108134. [Google Scholar] [CrossRef]
- Liu, L.; Peng, J.; Li, G.; Guan, J.; Han, W.; Ju, X.; Zheng, J. Effects of Drought and Climate Factors on Vegetation Dynamics in Central Asia from 1982 to 2020. J. Environ. Manag. 2023, 328, 116997. [Google Scholar] [CrossRef]
- Xu, M.; Wang, X.; Sun, T.; Wu, H.; Li, X.; Kang, S. Water Balance Change and Its Implications to Vegetation in the Tarim River Basin, Central Asia. Quat. Int. 2019, 523, 25–36. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Camarero, J.J.; Olano, J.M.; Martín-Hernández, N.; Peña-Gallardo, M.; Tomás-Burguera, M.; Gazol, A.; Azorin-Molina, C.; Bhuyan, U.; El Kenawy, A. Diverse Relationships between Forest Growth and the Normalized Difference Vegetation Index at a Global Scale. Remote Sens. Environ. 2016, 187, 14–29. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, J.; Chen, C.; Tian, X. NDVI-Net: A fusion network for generating high-resolution normalized difference vegetation index in remote sensing. ISPRS J. Photogramm. Remote Sens. 2020, 168, 182–196. [Google Scholar] [CrossRef]
- Li, H.; Yang, X.; Zhang, K. Understanding global land degradation processes interacted with complex biophysics and socioeconomics from the perspective of the Normalized Difference Vegetation Index (1982–2015). Glob. Planet. Change 2021, 198, 103431. [Google Scholar] [CrossRef]
- Bai, Y.; Li, S.; Zhou, J.; Liu, M.; Guo, Q. Revisiting Vegetation Activity of Mongolian Plateau Using Multiple Remote Sensing Datasets. Agric. For. Meteorol. 2023, 341, 109649. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Y.; Qin, Y.; Bach, E. A Global Assessment of the Effects of Solar Farms on Albedo, Vegetation, and Land Surface Temperature Using Remote Sensing. Sol. Energy 2024, 268, 112198. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, F.; Zhao, C.; Cheng, Z. Attribution of Climate Change and Human Activities to Vegetation NDVI in Jilin Province, China during 1998–2020. Ecol. Indic. 2023, 153, 110415. [Google Scholar] [CrossRef]
- Ding, Y.; He, X.; Zhou, Z.; Hu, J.; Cai, H.; Wang, X.; Li, L.; Xu, J.; Shi, H. Response of Vegetation to Drought and Yield Monitoring Based on NDVI and SIF. CATENA 2022, 219, 106328. [Google Scholar] [CrossRef]
- Zhou, Y.; Batelaan, O.; Guan, H.; Liu, T.; Duan, L.; Wang, Y.; Li, X. Assessing Long-Term Trends in Vegetation Cover Change in the Xilin River Basin: Potential for Monitoring Grassland Degradation and Restoration. J. Environ. Manag. 2024, 349, 119579. [Google Scholar] [CrossRef] [PubMed]
- Yi, K.; Zhao, X.; Zheng, Z.; Zhao, D.; Zeng, Y. Trends of Greening and Browning in Terrestrial Vegetation in China from 2000 to 2020. Ecol. Indic. 2023, 154, 110587. [Google Scholar] [CrossRef]
- Han, Y.; Lu, H.; Qiao, D. Integrated Effects of Meteorological Factors, Edaphic Moisture, Evapotranspiration, and Leaf Area Index on the Net Primary Productivity of Winter Wheat − Summer Maize Rotation System. Field Crops Res. 2023, 302, 109080. [Google Scholar] [CrossRef]
- Huang, X.; Lin, D.; Mao, X.; Zhao, Y. Multi-Source Data Fusion for Estimating Maize Leaf Area Index over the Whole Growing Season under Different Mulching and Irrigation Conditions. Field Crops Res. 2023, 303, 109111. [Google Scholar] [CrossRef]
- Verrelst, J.; Halabuk, A.; Atzberger, C.; Hank, T.; Steinhauser, S.; Berger, K. A Comprehensive Survey on Quantifying Non-Photosynthetic Vegetation Cover and Biomass from Imaging Spectroscopy. Ecol. Indic. 2023, 155, 110911. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, C.; Liu, Y.; Wang, X.; Fang, B.; Yuan, W.; Ge, Q. Spring green-up date derived from GIMMS3g and SPOT-VGT NDVI of winter wheat cropland in the North China Plain. ISPRS J. Photogramm. Remote Sens. 2017, 130, 81–91. [Google Scholar] [CrossRef]
- Fensholt, R.; Rasmussen, K.; Nielsen, T.T.; Mbow, C. Evaluation of Earth Observation Based Long Term Vegetation Trends—Intercomparing NDVI Time Series Trend Analysis Consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT Data. Remote Sens. Environ. 2009, 113, 1886–1898. [Google Scholar] [CrossRef]
- Li, S.; Xu, L.; Chen, J.; Jiang, Y.; Sun, S.; Yu, S.; Tan, Z.; Li, X. Monitoring Vegetation Dynamics (2010–2020) in Shengnongjia Forestry District with Cloud-Removed MODIS NDVI Series by a Spatio-Temporal Reconstruction Method. Egypt. J. Remote Sens. Space Sci. 2023, 26, 527–543. [Google Scholar] [CrossRef]
- Tarnavsky, E.; Garrigues, S.; Brown, M.E. Multiscale Geostatistical Analysis of AVHRR, SPOT-VGT, and MODIS Global NDVI Products. Remote Sens. Environ. 2008, 112, 535–549. [Google Scholar] [CrossRef]
- Santamaria-Artigas, A.; Vermote, E.; Franch, B.; Roger, J.; Skakun, S. Evaluation of the AVHRR surface reflectance long term data record between 1984 and 2011. Int. J. Appl. Earth Obs. Geoin. 2021, 98, 102317. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Luo, L.; Ren, C. Integrating AVHRR and MODIS Data to Monitor NDVI Changes and Their Relationships with Climatic Parameters in Northeast China. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 528–536. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Z.; Liu, Z.; Zeng, Z.; Ciais, P.; Huang, M.; Liu, Y.; Piao, S. Seasonal and Interannual Changes in Vegetation Activity of Tropical Forests in Southeast Asia. Agric. For. Meteorol. 2016, 224, 1–10. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X. An Innovative Index for Separating the Effects of Temperature and Precipitation on Global Vegetation Change. iScience 2023, 26, 106972. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Li, C.; Zhao, C.; Zhang, Y.; Li, S. Grazing decreased water use efficiency in Central Asia from 1979 to 2011. Ecol. Modell. 2018, 388, 72–79. [Google Scholar] [CrossRef]
- Hwang, Y.; Ryu, Y.; Qu, S. Expanding Vegetated Areas by Human Activities and Strengthening Vegetation Growth Concurrently Explain the Greening of Seoul. Landsc. Urban Plan. 2022, 227, 104518. [Google Scholar] [CrossRef]
- Jin, K.; Wang, F.; Li, P. Responses of Vegetation Cover to Environmental Change in Large Cities of China. Sustainability 2018, 10, 270. [Google Scholar] [CrossRef]
- Zhao, A.; Zhang, A.; Liu, X.; Cao, S. Spatiotemporal Changes of Normalized Difference Vegetation Index (NDVI) and Response to Climate Extremes and Ecological Restoration in the Loess Plateau, China. Theor. Appl. Clim. 2018, 132, 555–567. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Li, S.; Motesharrei, S. Spatial and Temporal Patterns of Global NDVI Trends: Correlations with Climate and Human Factors. Remote Sens. 2015, 7, 13233–13250. [Google Scholar] [CrossRef]
- Fang, J.; Song, Y.; Liu, H.; Piao, S. Vegetation-climate relationship and its application in the division of vegetation zone in Chin. Acta Bot. Sin. 2002, 44, 1105–1122. [Google Scholar]
- Wang, A.; Gao, X.; Zhou, Z.; Siddique, K.; Yang, H.; Wang, J.; Zhang, S.; Zhao, X. A novel index for vegetation drought assessment based on plant water metabolism and balance under vegetation restoration on the Loess Plateau. Sci. Total Environ. 2024, 918, 170549. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Yin, G.; Tan, J.; Cheng, L.; Huang, M.; Li, Y.; Liu, R.; Mao, J.; Myneni, R.B.; Peng, S.; et al. Detection and Attribution of Vegetation Greening Trend in China over the Last 30 Years. Glob. Change Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Xiao-Yan, L.I. Research on Spatial and Temporal Changes of Vegetation Cover and Response to Climate Factors in Hanjiang Basin. J. Northwest Norm. Univ. Nat. Sci. 2013, 49, 102–106. [Google Scholar]
- Shi, H.; Li, T.; Wei, J. Evaluation of the Gridded CRU TS Precipitation Dataset with the Point Raingauge Records over the Three-River Headwaters Region. J. Hydrol. 2017, 548, 322–332. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Z.; Li, S.; Meng, X. Indicating Variation of Surface Vegetation Cover Using SPOT NDVI in the Northern Part of North China. Geogr. Res. 2008, 27, 745–754. [Google Scholar] [CrossRef]
- Zhang, Q.; Kong, D.; Singh, V.P.; Shi, P. Response of Vegetation to Different Time-Scales Drought across China: Spatiotemporal Patterns, Causes and Implications. Glob. Planet. Change 2017, 152, 1–11. [Google Scholar] [CrossRef]
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; El Saleous, N. An Extended AVHRR 8-km NDVI Dataset Compatible with MODIS and SPOT Vegetation NDVI Data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Beguería, S.; Trigo, R.; López-Moreno, J.I.; Azorín-Molina, C.; Pasho, E.; Lorenzo-Lacruz, J.; Revuelto, J.; et al. Response of Vegetation to Drought Time-Scales across Global Land Biomes. Proc. Natl. Acad. Sci. USA 2013, 110, 52–57. [Google Scholar] [CrossRef]
- Gouveia, C.M.; Trigo, R.M.; Beguería, S.; Vicente-Serrano, S.M. Drought Impacts on Vegetation Activity in the Mediterranean Region: An Assessment Using Remote Sensing Data and Multi-Scale Drought Indicators. Glob. Planet. Change 2017, 151, 15–27. [Google Scholar] [CrossRef]
- Li, C.; Leal Filho, W.; Yin, J.; Hu, R.; Wang, J.; Yang, C.; Yin, S.; Bao, Y.; Ayal, D.Y. Assessing Vegetation Response to Multi-Time-Scale Drought across Inner Mongolia Plateau. J. Clean. Prod. 2018, 179, 210–216. [Google Scholar] [CrossRef]
- Ma, M.; Wang, Q.; Liu, R.; Zhao, Y.; Zhang, D. Effects of climate change and human activities on vegetation coverage change in northern China considering extreme climate and time-lag and -accumulation effects. Sci. Total Environ. 2023, 860, 160527. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global Land-Cover Product with Fine Classification System at 30 m Using Time-Series Landsat Imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Wang, F.; Ge, Q.; Wang, S.; Li, Q.; Jones, P.D. A New Estimation of Urbanization’s Contribution to the Warming Trend in China. J. Clim. 2015, 28, 8923–8938. [Google Scholar] [CrossRef]
- Zhou, L.; Tucker, C.J.; Kaufmann, R.K.; Slayback, D.; Shabanov, N.V.; Myneni, R.B. Variations in Northern Vegetation Activity Inferred from Satellite Data of Vegetation Index during 1981 to 1999. J. Geophys. Res. Atmos. 2001, 106, 20069–20083. [Google Scholar] [CrossRef]
- Zhong, R.; Wang, P.; Mao, G.; Chen, A.; Liu, J. Spatiotemporal Variation of Enhanced Vegetation Index in the Amazon Basin and Its Response to Climate Change. Phys. Chem. Earth Parts A/B/C 2021, 123, 103024. [Google Scholar] [CrossRef]
- Wessels, K.J.; Prince, S.D.; Malherbe, J.; Small, J.; Frost, P.E.; VanZyl, D. Can Human-Induced Land Degradation Be Distinguished from the Effects of Rainfall Variability? A Case Study in South Africa. J. Arid Environ. 2007, 68, 271–297. [Google Scholar] [CrossRef]
- Evans, J.; Geerken, R. Discrimination between Climate and Human-Induced Dryland Degradation. J. Arid Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- Sun, W.; Song, X.; Mu, X.; Gao, P.; Wang, F.; Zhao, G. Spatiotemporal Vegetation Cover Variations Associated with Climate Change and Ecological Restoration in the Loess Plateau. Agric. For. Meteorol. 2015, 209–210, 87–99. [Google Scholar] [CrossRef]
- Zhao, K.; Shi, Y.; Niu, M. Research on the Temporal and Spatial Changes of Vegetation Coverage in Qinling Mountains Based on Google Earth Engine Platform. Bull. Surv. Mapp. 2022, 5, 49–55. [Google Scholar] [CrossRef]
- Shihua, Z.; Fang, X.; Hang, X.; Xiaoping, X.; Liangxiao, S.; Liangzhong, G. Normalized Difference Vegetation index (NDVI) dynamics of Grassland in Central Asia and Its Response to Climate Change and Human Activities. J. Desert Res. 2022, 42, 229–241. [Google Scholar]
- Yuxia, S.; Zhengxing, W.; Chuang, L.; Bohua, Y.U. Relationship between NDVI and Precipitation and Temperature in Middle Asia during 1982–2002. Resour. Sci. 2009, 31, 1422–1429. [Google Scholar]
- Gong, Z.; Peng, D.; Wen, J.; Cai, Z.; Wang, T.; Hu, Y.; Ma, Y.; Xu, J. Research on Trend of Warm-Humid Climate in Central Asia. IOP Conf. Ser. Earth Environ. Sci. 2017, 74, 012017. [Google Scholar] [CrossRef]
- Chen, T.; Tang, G.; Yuan, Y.; Guo, H.; Xu, Z.; Jiang, G.; Chen, X. Unraveling the Relative Impacts of Climate Change and Human Activities on Grassland Productivity in Central Asia over Last Three Decades. Sci. Total Environ. 2020, 743, 140649. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.; Hu, Z.; Chen, X.; Tiyip, T. Vegetation Dynamics and Its Response to Climate Change in Central Asia. J. Arid Land 2016, 8, 375–388. [Google Scholar] [CrossRef]
- Liu, J.; Wen, Z.; Gang, C. Normalized Difference Vegetation Index of Different Vegetation Cover Types and Its Responses to Climate Change in the Loess Plateau. Acta Ecol. Sin. 2020, 40, 678–691. [Google Scholar]
- Li, J.; Liu, H.; Li, L. Changes of Green-up Day of Vegetation Growing Season Based on GIMMS 3g NDVI in Northern China in Recent 30 Years. Acta Geogr. Sin. 2017, 37, 620–629. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, W.; Liu, Y.; Pereira, P. Impacts of urbanisation on vegetation dynamics in Chinese cities. Environ. Impact Assess. Rev. 2023, 103, 107227. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, P.; Zhao, X. Detecting and Analysis of Spatial and Temporal Variation of Vegetation Cover in the Loess Plateau during 1982-2009. Trans. Chin. Soc. Agric. Eng. 2011, 27, 287–293. [Google Scholar]
- Tian, H. Assessment of Non-Climate Triggered Vegetation Trends in China from Time Series of Remotely Sensed Data: A Case Study of Government-Dominated Forest Construction. Ph.D. Thesis, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China, 2017. [Google Scholar]
- Liu, X.; Zhu, X.; Pan, Y.; Li, S.; Ma, Y.; Nie, J. Vegetation Dynamics in Qinling-Daba Mountains in Relation to Climate Factors between 2000 and 2014. J. Geogr. Sci. 2016, 26, 45–58. [Google Scholar] [CrossRef]
Slope (NDVI) 1 | <−2.0 | −1–0.8 | −0.8–0.4 | −0.4–0.2 | 0.2–1.0 | 1.0–2.0 | ≥2.0 |
---|---|---|---|---|---|---|---|
Level of impact | Great control | Moderate control | Slight control | Basically no influence | Slight driven | Moderately driven | Greatly driven |
Slope (NDVIobs) a | Drivers | Criteria for Dividing the Drivers | Contribution of Drivers (%) | ||
---|---|---|---|---|---|
Slope (NDVICC) b | Slope (NDVIHA) c | Climatic Change | Human Activities | ||
>0 | CC and HA | >0 | >0 | ||
CC | >0 | <0 | 100 | 0 | |
HA | <0 | >0 | 0 | 100 | |
<0 | CC and HA | <0 | <0 | ||
CC | <0 | >0 | 100 | 0 | |
HA | >0 | <0 | 0 | 100 |
Degree of Variation | Range of Variation of Cv | Pixel Percentage (%) |
---|---|---|
Low volatility variations | CV < 0.05 | 1.43 |
Relatively low volatility of variations | 0.05 ≤ CV ≤ 0.10 | 21.18 |
Moderately volatile variations | 0.10 ≤ CV < 0.15 | 25.07 |
Relatively high volatility of variations | 0.15 ≤ CV ≤ 0.20 | 16.66 |
High volatility variations | CV > 0.20 | 35.66 |
Significant Correlation | Pixel Percentage (%) | |||||
---|---|---|---|---|---|---|
Spring Temperature-NDVI | Spring Precipitation-NDVI | Summer Temperature-NDVI | Summer Precipitation-NDVI | Autumn Temperature-NDVI | Autumn Precipitation-NDVI | |
No significant negative correlation | 20.78 | 43.57 | 53.61 | 36.97 | 70.02 | 56.84 |
Significant negative correlation | 0.88 | 3.39 | 5.75 | 0.83 | 2.62 | 17.06 |
Extremely significant negative correlation | 0.44 | 1.32 | 2.43 | 0.36 | 0.08 | 20.27 |
Extremely significant positive correlation | 9.29 | 2.70 | 1.18 | 0.71 | 0.00 | 5.83 |
Significant positive correlation | 14.19 | 5.46 | 2.55 | 3.26 | 0.08 | 0.00 |
No significant positive correlation | 54.43 | 43.57 | 34.48 | 57.88 | 27.20 | 0.00 |
Impact on Vegetation Restoration | Pixel Percentage (%) | ||||||
---|---|---|---|---|---|---|---|
Significant Inhibition | Moderate Inhibition | Slight Inhibition | Basically No Impact | Slight Promoted | Moderately Promoted | Significantly Promoted | |
Climatic change | 41.84 | 16.94 | 21.92 | 3.43 | 2.92 | 4.12 | 8.82 |
Human activities | 6.12 | 6.47 | 12.82 | 8.13 | 12.42 | 12.65 | 41.39 |
NDVI Trend | Driving Force | Pixel Percentage (%) |
---|---|---|
>0 | CC and HA | 44.08 |
CC | 8.70 | |
HA | 6.13 | |
<0 | CC and HA | 27.65 |
CC | 1.09 | |
HA | 12.36 |
Contribution Rate (%) | Pixel Percentage (%) | ||||||
---|---|---|---|---|---|---|---|
≤−20 | −20−0 | 0−20 | 20−40 | 40−60 | 60−80 | 80−100 | |
Climate change | 24.43 | 4.52 | 5.88 | 13.57 | 16.97 | 16.29 | 18.33 |
Human activities | 26.36 | 12.21 | 12.21 | 12.21 | 16.28 | 11.43 | 9.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Li, L.; Zhao, X.; Chen, F.; Wei, J.; Feng, Z.; Hou, T.; Chen, Y.; Yue, W.; Shang, H.; et al. Changes in Vegetation NDVI and Its Response to Climate Change and Human Activities in the Ferghana Basin from 1982 to 2015. Remote Sens. 2024, 16, 1296. https://doi.org/10.3390/rs16071296
Zhang H, Li L, Zhao X, Chen F, Wei J, Feng Z, Hou T, Chen Y, Yue W, Shang H, et al. Changes in Vegetation NDVI and Its Response to Climate Change and Human Activities in the Ferghana Basin from 1982 to 2015. Remote Sensing. 2024; 16(7):1296. https://doi.org/10.3390/rs16071296
Chicago/Turabian StyleZhang, Heli, Lu Li, Xiaoen Zhao, Feng Chen, Jiachang Wei, Zhimin Feng, Tiyuan Hou, Youping Chen, Weipeng Yue, Huaming Shang, and et al. 2024. "Changes in Vegetation NDVI and Its Response to Climate Change and Human Activities in the Ferghana Basin from 1982 to 2015" Remote Sensing 16, no. 7: 1296. https://doi.org/10.3390/rs16071296
APA StyleZhang, H., Li, L., Zhao, X., Chen, F., Wei, J., Feng, Z., Hou, T., Chen, Y., Yue, W., Shang, H., Wang, S., & Hu, M. (2024). Changes in Vegetation NDVI and Its Response to Climate Change and Human Activities in the Ferghana Basin from 1982 to 2015. Remote Sensing, 16(7), 1296. https://doi.org/10.3390/rs16071296