Forest Habitat Mapping in Natura2000 Regions in Cyprus Using Sentinel-1, Sentinel-2 and Topographical Features
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Paphos State Forest: CY2000006
2.1.2. Akamas Peninsula (CY4000010)
2.1.3. Troodos (CY5000004)
2.2. Datasets
2.2.1. Sentinel-1
2.2.2. Sentinel-2
2.2.3. Auxiliary Data
2.3. Method
Satellite | Vegetation Indices | Abbreviation | Equation | Reference |
---|---|---|---|---|
S2 | Normalised Difference Vegetation Index | NDVI | [74] | |
Normalised Difference Red Edge Index | NDRE | [79] | ||
Enhanced Vegetation Index | EVI | [80] | ||
Soil-Adjusted Vegetation Index | SAVI | [81] | ||
Normalised Difference Moisture Index | NDMI | [75] | ||
S1 | Radar Vegetation Index | RVI | [82] | |
Normalised Difference Polarisation Index | NDPI | [83] |
2.4. Random Forest
2.5. Accuracy Assessment
3. Results
3.1. Impact of Spectral Indices and Backscatter Coefficient on Mapping Accuracy
3.1.1. Troodos
3.1.2. Paphos
3.1.3. Akamas
3.2. Impact of Seasonal Variations on Mapping Accuracy
Troodos
3.3. Spatial Distribution of Forest Habitats
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Habitat | Habitat Type | Deciduous/Evergreens | Months of the Year | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||||
H5330 | Thermo-Mediterranean pre-steppe scrub with | Genista fasselata | Deciduous | ||||||||||||
H5420 | Phrygana of the eastern Mediterranean | Thymbra capitata | - | ||||||||||||
Sarcopoterium spinosum | |||||||||||||||
Cistus sp. | |||||||||||||||
H8140 | Eastern Mediterranean moraine | - | - | - | - | - | - | - | - | - | - | - | - | - | |
H92C0 | Eastern sycamore riparian forests | Platanus orientalis | Deciduous (November to March without foliage) | ||||||||||||
Alnus orientalis | |||||||||||||||
H92D0 | Riverside Shrubs | Nerium oleander | Deciduous | ||||||||||||
Tamarix sp. | Deciduous | ||||||||||||||
Vitex agnus-castus | Evergreens | ||||||||||||||
H9320 | Evergreen sclerophyll shrubs | Olea europaea | Deciduous | ||||||||||||
Ceratonia siliqua | Deciduous | ||||||||||||||
Pistacia lentiscus | Deciduous | ||||||||||||||
H9390 | Shrubs of Quercus alnifolia | Quercus alnifolia | Deciduous | ||||||||||||
H9540 | Pinus brutia Forest | Pinus brutia | Evergreens | ||||||||||||
H9590 | Cedrus brevifolia Forest | Cedrus brevifolia | Deciduous | ||||||||||||
H9560 | Juniperus spp. Forest | J. foeditissima | Evergreens | ||||||||||||
J. excelsa | Evergreens | ||||||||||||||
J. phoenicea | Evergreens | ||||||||||||||
J. oxycedrus | Evergreens | ||||||||||||||
H9530 | Pinus nigra Forest | Pinus nigra | Evergreens | ||||||||||||
H9290 | Cupressus Forest | Cupressus sempervirens | Deciduous |
References
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of Studies on Tree Species Classification from Remotely Sensed Data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Spurr, S.H. Aerial Photographs in Forestry; Ronald Press Company: New York, NY, USA, 1948. [Google Scholar]
- Wan, H.; Tang, Y.; Jing, L.; Li, H.; Qiu, F.; Wu, W. Tree Species Classification of Forest Stands Using Multisource Remote Sensing Data. Remote Sens. 2021, 13, 144. [Google Scholar] [CrossRef]
- Prodromou, M.; Gitas, I.; Themistocleous, K.; Nisantzi, A.; Mamouri, R.-E.; Ene, D.; Danezis, C.; Bühl, J.; Hadjimitsis, D. The Use of Remote Sensing Data for the Fire Damage Assessment in a Burnt Area in Cyprus. In Proceedings of the Ninth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2023), Ayia Napa, Cyprus, 3–5 April 2023; Volume 12786, p. 1278608. [Google Scholar]
- Theocharidis, C.; Gitas, I.; Danezis, C.; Hadjimitsis, D. Satellite Times-Series Analysis and Assessment of the BFAST Algorithm to Detect Possible Abrupt Changes in Forest Seasonality Utilising Sentinel-1 and Sentinel-2 Data. Case Study: Paphos Forest, Cyprus. In Proceedings of the EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023. [Google Scholar]
- Prodromou, M.; Gitas, I.; Themistocleous, K.; Hadjimitsis, D. The Implementation of the Forest Canopy Density (FCD) Model for Coniferous Ecosystems in Cyprus Forests, Using Landsat-8 and Sentinel-2 Satellite Data. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 3–8 April 2022; p. EGU2219865. [Google Scholar]
- European Commission. The Natura 2000 Protected Areas Network 2018. Available online: https://ec.europa.eu/environment/nature/natura2000/ (accessed on 30 November 2023).
- Pandoteira. What Is Natura 2000? Available online: https://pandoteira.cy/what-is-natura-2000/# (accessed on 2 October 2023).
- Tsintides, T.; Christodoulou, C.S.; Delipetrou, P.; Georghiou, K. The Red Data Book of the Flora of Cyprus; Cyprus Forestry Association: Lefkosia, Cyprus, 2007; Volume 465. [Google Scholar]
- Nila, M.U.S.; Beierkuhnlein, C.; Jaeschke, A.; Hoffmann, S.; Hossain, M.L. Predicting the Effectiveness of Protected Areas of Natura 2000 under Climate Change. Ecol. Process. 2019, 8, 13. [Google Scholar] [CrossRef]
- Ma, M.; Liu, J.; Liu, M.; Zeng, J.; Li, Y. Tree Species Classification Based on Sentinel-2 Imagery and Random Forest Classifier in the Eastern Regions of the Qilian Mountains. Forests 2021, 12, 1736. [Google Scholar] [CrossRef]
- Immitzer, M.; Atzberger, C.; Koukal, T. Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data. Remote Sens. 2012, 4, 2661–2693. [Google Scholar] [CrossRef]
- Tariq, A.; Jiango, Y.; Li, Q.; Gao, J.; Lu, L.; Soufan, W.; Almutairi, K.F.; Habib-ur-Rahman, M. Modelling, Mapping and Monitoring of Forest Cover Changes, Using Support Vector Machine, Kernel Logistic Regression and Naive Bayes Tree Models with Optical Remote Sensing Data. Heliyon 2023, 9, e13212. [Google Scholar] [CrossRef] [PubMed]
- Cengiz, A.; Budak, M.; Yağmur, N.; Balçik, F. Comparison between Random Forest and Support Vector Machine Algorithms for LULC Classification. Int. J. Eng. Geosci. 2023, 8, 1–10. [Google Scholar]
- Zagajewski, B.; Kluczek, M.; Raczko, E.; Njegovec, A.; Dabija, A.; Kycko, M. Comparison of Random Forest, Support Vector Machines, and Neural Networks for Post-Disaster Forest Species Mapping of the Krkonoše/Karkonosze Transboundary Biosphere Reserve. Remote Sens. 2021, 13, 2581. [Google Scholar] [CrossRef]
- Raczko, E.; Zagajewski, B. Comparison of Support Vector Machine, Random Forest and Neural Network Classifiers for Tree Species Classification on Airborne Hyperspectral APEX Images. Eur. J. Remote Sens. 2017, 50, 144–154. [Google Scholar] [CrossRef]
- Knauer, U.; von Rekowski, C.S.; Stecklina, M.; Krokotsch, T.; Pham Minh, T.; Hauffe, V.; Kilias, D.; Ehrhardt, I.; Sagischewski, H.; Chmara, S. Tree Species Classification Based on Hybrid Ensembles of a Convolutional Neural Network (CNN) and Random Forest Classifiers. Remote Sens. 2019, 11, 2788. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, L.; Zhang, X. Three-Dimensional Convolutional Neural Network Model for Tree Species Classification Using Airborne Hyperspectral Images. Remote Sens. Environ. 2020, 247, 111938. [Google Scholar] [CrossRef]
- Xi, Y.; Ren, C.; Tian, Q.; Ren, Y.; Dong, X.; Zhang, Z. Exploitation of Time Series Sentinel-2 Data and Different Machine Learning Algorithms for Detailed Tree Species Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7589–7603. [Google Scholar] [CrossRef]
- Reuß, F.; Greimeister-Pfeil, I.; Vreugdenhil, M.; Wagner, W. Comparison of Long Short-Term Memory Networks and Random Forest for Sentinel-1 Time Series Based Large Scale Crop Classification. Remote Sens. 2021, 13, 5000. [Google Scholar] [CrossRef]
- He, T.; Zhou, H.; Xu, C.; Hu, J.; Xue, X.; Xu, L.; Lou, X.; Zeng, K.; Wang, Q. Deep Learning in Forest Tree Species Classification Using Sentinel-2 on Google Earth Engine: A Case Study of Qingyuan County. Sustainability 2023, 15, 2741. [Google Scholar] [CrossRef]
- Chang, T.; Rasmussen, B.; Dickson, B.; Zachmann, L. Chimera: A Multi-Task Recurrent Convolutional Neural Network for Forest Classification and Structural Estimation. Remote Sens. 2019, 11, 768. [Google Scholar] [CrossRef]
- Sumsion, G.R.; Bradshaw, M.S.; Hill, K.T.; Pinto, L.D.G.; Piccolo, S.R. Remote Sensing Tree Classification with a Multilayer Perceptron. PeerJ 2019, 7, e6101. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.; Stow, D.; Chen, H.; Lewison, R.; An, L.; Shi, L. Mapping Vegetation and Land Use Types in Fanjingshan National Nature Reserve Using Google Earth Engine. Remote Sens. 2018, 10, 927. [Google Scholar] [CrossRef]
- Aji, M.A.P.; Kamal, M.; Farda, N.M. Mangrove Species Mapping through Phenological Analysis Using Random Forest Algorithm on Google Earth Engine. Remote Sens. Appl. 2023, 30, 100978. [Google Scholar] [CrossRef]
- Bessinger, M.; Lück-Vogel, M.; Skowno, A.; Conrad, F. Landsat-8 Based Coastal Ecosystem Mapping in South Africa Using Random Forest Classification in Google Earth Engine. S. Afr. J. Bot. 2022, 150, 928–939. [Google Scholar] [CrossRef]
- Teluguntla, P.; Thenkabail, P.S.; Oliphant, A.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K.; Huete, A. A 30-m Landsat-Derived Cropland Extent Product of Australia and China Using Random Forest Machine Learning Algorithm on Google Earth Engine Cloud Computing Platform. ISPRS J. Photogramm. Remote Sens. 2018, 144, 325–340. [Google Scholar] [CrossRef]
- Magidi, J.; Nhamo, L.; Mpandeli, S.; Mabhaudhi, T. Application of the Random Forest Classifier to Map Irrigated Areas Using Google Earth Engine. Remote Sens. 2021, 13, 876. [Google Scholar] [CrossRef]
- Phan, T.N.; Kuch, V.; Lehnert, L.W. Land Cover Classification Using Google Earth Engine and Random Forest Classifier—The Role of Image Composition. Remote Sens. 2020, 12, 2411. [Google Scholar] [CrossRef]
- Antoniadis, K.; Georgopoulos, N.; Katagis, T.; Stavrakoudis, D.; Gitas, I.Z. Classification of Seasonal Sentinel-2 Imagery for Mapping Vegetation in Mediterranean Ecosystems. In Proceedings of the Ninth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2023), Ayia Napa, Cyprus, 3–5 April 2023; p. 12. [Google Scholar]
- Abdel-Rahman, E.M.; Mutanga, O.; Adam, E.; Ismail, R. Detecting Sirex Noctilio Grey-Attacked and Lightning-Struck Pine Trees Using Airborne Hyperspectral Data, Random Forest and Support Vector Machines Classifiers. ISPRS J. Photogramm. Remote Sens. 2014, 88, 48–59. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Chica-Rivas, M. Evaluation of Different Machine Learning Methods for Land Cover Mapping of a Mediterranean Area Using Multi-Seasonal Landsat Images and Digital Terrain Models. Int. J. Digit. Earth 2014, 7, 492–509. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- van Beijma, S.; Comber, A.; Lamb, A. Random Forest Classification of Salt Marsh Vegetation Habitats Using Quad-Polarimetric Airborne SAR, Elevation and Optical RS Data. Remote Sens. Environ. 2014, 149, 118–129. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, Y.; Zhang, Y.; Shang, J. Review of Remote Sensing Applications in Grassland Monitoring. Remote Sens. 2022, 14, 2903. [Google Scholar] [CrossRef]
- Yuan, Y.; Wen, Q.; Zhao, X.; Liu, S.; Zhu, K.; Hu, B. Identifying Grassland Distribution in a Mountainous Region in Southwest China Using Multi-Source Remote Sensing Images. Remote Sens. 2022, 14, 1472. [Google Scholar] [CrossRef]
- Carbonell-Rivera, J.P.; Torralba, J.; Estornell, J.; Ruiz, L.Á.; Crespo-Peremarch, P. Classification of Mediterranean Shrub Species from UAV Point Clouds. Remote Sens. 2022, 14, 199. [Google Scholar] [CrossRef]
- Detka, J.; Coyle, H.; Gomez, M.; Gilbert, G.S. A Drone-Powered Deep Learning Methodology for High Precision Remote Sensing in California’s Coastal Shrubs. Drones 2023, 7, 421. [Google Scholar] [CrossRef]
- Wang, X.; Tan, L.; Fan, J. Performance Evaluation of Mangrove Species Classification Based on Multi-Source Remote Sensing Data Using Extremely Randomized Trees in Fucheng Town, Leizhou City, Guangdong Province. Remote Sens. 2023, 15, 1386. [Google Scholar] [CrossRef]
- Lassalle, G.; Ferreira, M.P.; La Rosa, L.E.C.; Scafutto, R.D.M.; de Souza Filho, C.R. Advances in Multi-and Hyperspectral Remote Sensing of Mangrove Species: A Synthesis and Study Case on Airborne and Multisource Spaceborne Imagery. ISPRS J. Photogramm. Remote Sens. 2023, 195, 298–312. [Google Scholar] [CrossRef]
- Mahdavi, S.; Salehi, B.; Granger, J.; Amani, M.; Brisco, B.; Huang, W. Remote Sensing for Wetland Classification: A Comprehensive Review. GIScience Remote Sens. 2018, 55, 623–658. [Google Scholar] [CrossRef]
- Tiner, R.W.; Lang, M.W.; Klemas, V.V. (Eds.) Remote Sensing of Wetlands; CRC Press: Boca Raton, FL, USA, 2015; ISBN 9781482237382. [Google Scholar]
- Tariq, A.; Yan, J.; Gagnon, A.S.; Riaz Khan, M.; Mumtaz, F. Mapping of Cropland, Cropping Patterns and Crop Types by Combining Optical Remote Sensing Images with Decision Tree Classifier and Random Forest. Geo-Spat. Inf. Sci. 2023, 26, 302–320. [Google Scholar] [CrossRef]
- Davidson, S.; Santos, M.; Sloan, V.; Watts, J.; Phoenix, G.; Oechel, W.; Zona, D. Mapping Arctic Tundra Vegetation Communities Using Field Spectroscopy and Multispectral Satellite Data in North Alaska, USA. Remote Sens. 2016, 8, 978. [Google Scholar] [CrossRef]
- Tzirkalli, E.; Eliades, E.; Chrysopolitou, V.; Hatziiordanou, L.; Panagiotou, N.; Agapiou, A.; Antoniou, A.; Xenophontos, M.; Panayiotou, C.; Hadjicharalambous, H. Natura 2000 Habitat Mapping in Cyprus Using High Resolution Orthophoto Maps. In Proceedings of the Sixth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2018), Paphos, Cyprus, 26–29 March 2018; Volume 10773, pp. 484–492. [Google Scholar]
- Mutanga, O.; Kumar, L. Google Earth Engine Applications. Remote Sens. 2019, 11, 591. [Google Scholar] [CrossRef]
- Kaplan, G. Broad-Leaved and Coniferous Forest Classification in Google Earth Engine Using Sentinel Imagery. In Proceedings of the 1st International Electronic Conference on Forests—Forests for a Better Future: Sustainability, Innovation, Interdisciplinarity, Virtual, 15–30 November 2020; MDPI: Basel, Switzerland, 2020; p. 64. [Google Scholar]
- Praticò, S.; Solano, F.; Di Fazio, S.; Modica, G. Machine Learning Classification of Mediterranean Forest Habitats in Google Earth Engine Based on Seasonal Sentinel-2 Time-Series and Input Image Composition Optimisation. Remote Sens. 2021, 13, 586. [Google Scholar] [CrossRef]
- Kamal, M.; Jamaluddin, I.; Parela, A.; Farda, N.M. Comparison of Google Earth Engine (GEE)-Based Machine Learning Classifiers for Mangrove Mapping. In Proceedings of the 40th Asian Conference Remote Sensing, ACRS, Daejeon, Republic of Korea, 14–18 October 2019; pp. 1–8. [Google Scholar]
- Marcinkowska-Ochtyra, A.; Ochtyra, A.; Raczko, E.; Kopeć, D. Natura 2000 Grassland Habitats Mapping Based on Spectro-Temporal Dimension of Sentinel-2 Images with Machine Learning. Remote Sens. 2023, 15, 1388. [Google Scholar] [CrossRef]
- Feilhauer, H.; Dahlke, C.; Doktor, D.; Lausch, A.; Schmidtlein, S.; Schulz, G.; Stenzel, S. Mapping the Local Variability of Natura 2000 Habitats with Remote Sensing. Appl. Veg. Sci. 2014, 17, 765–779. [Google Scholar] [CrossRef]
- Santoro, A.; Piras, F.; Fiore, B.; Bazzurro, A.; Agnoletti, M. Forest-Cover Changes in European Natura 2000 Sites in the Period 2012–2018. Forests 2024, 15, 232. [Google Scholar] [CrossRef]
- KopeĿ, D.; Michalska-Hejduk, D.; Sſawik, S.; Berezowski, T.; Borowski, M.; Rosadziſski, S.; Chormaſski, J. Application of Multisensoral Remote Sensing Data in the Mapping of Alkaline Fens Natura 2000 Habitat. Ecol. Indic. 2016, 70, 196–208. [Google Scholar] [CrossRef]
- Alexandridis, T.K.; Lazaridou, E.; Tsirika, A.; Zalidis, G.C. Using Earth Observation to Update a Natura 2000 Habitat Map for a Wetland in Greece. J. Environ. Manag. 2009, 90, 2243–2251. [Google Scholar] [CrossRef] [PubMed]
- Sittaro, F.; Hutengs, C.; Semella, S.; Vohland, M. A Machine Learning Framework for the Classification of Natura 2000 Habitat Types at Large Spatial Scales Using MODIS Surface Reflectance Data. Remote Sens. 2022, 14, 823. [Google Scholar] [CrossRef]
- Marcinkowska-Ochtyra, A.; Gryguc, K.; Ochtyra, A.; Kopeć, D.; Jarocińska, A.; Sławik, Ł. Multitemporal Hyperspectral Data Fusion with Topographic Indices—Improving Classification of Natura 2000 Grassland Habitats. Remote Sens. 2019, 11, 2264. [Google Scholar] [CrossRef]
- Čahojová, L.; Ambroz, M.; Jarolímek, I.; Kollár, M.; Mikula, K.; Šibík, J.; Šibíková, M. Exploring Natura 2000 Habitats by Satellite Image Segmentation Combined with Phytosociological Data: A Case Study from the Čierny Balog Area (Central Slovakia). Sci. Rep. 2022, 12, 18375. [Google Scholar] [CrossRef] [PubMed]
- Hadjimitsis, D.G.; Themistokleous, K.; Onoufriou, T. Environmental Monitoring of Spatial Data for the Application of NATURA 2000 Network in Cyprus Using Remote Sensing and GIS. In Proceedings of the International Conference ’PRE9: Protection and Restoration of the Environment, Kefalonia, Greece, 30 June–3 July 2008. [Google Scholar]
- European Environment Agency. Natura 2000, Standard Data form Site CY2000006. Available online: https://natura2000.eea.europa.eu/Natura2000/SDF.aspx?site=CY2000006 (accessed on 30 November 2023).
- European Environment Agency. Natura 2000, Standard Data form Site CY4000010. Available online: https://natura2000.eea.europa.eu/Natura2000/SDF.aspx?site=CY4000010 (accessed on 30 November 2023).
- European Environment Agency. Natura 2000, Standard Data form Site CY5000004. Available online: https://natura2000.eea.europa.eu/Natura2000/SDF.aspx?site=CY5000004 (accessed on 30 November 2023).
- Schubert, A.; Miranda, N.; Geudtner, D.; Small, D. Sentinel-1A/B Combined Product Geolocation Accuracy. Remote Sens. 2017, 9, 607. [Google Scholar] [CrossRef]
- Geudtner, D.; Torres, R.; Snoeij, P.; Davidson, M.; Rommen, B. Sentinel-1 System Capabilities and Applications. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 1457–1460. [Google Scholar]
- European Space Agency. Mission Ends for Copernicus Sentinel-1B Satellite. Available online: https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-1/Mission_ends_for_Copernicus_Sentinel-1B_satellite (accessed on 30 November 2023).
- Spoto, F.; Sy, O.; Laberinti, P.; Martimort, P.; Fernandez, V.; Colin, O.; Hoersch, B.; Meygret, A. Overview of Sentinel-2. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 1707–1710. [Google Scholar]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Xia, J.; Yokoya, N.; Pham, T.D. Probabilistic Mangrove Species Mapping with Multiple-Source Remote-Sensing Datasets Using Label Distribution Learning in Xuan Thuy National Park, Vietnam. Remote Sens. 2020, 12, 3834. [Google Scholar] [CrossRef]
- Mahdavi, S.; Salehi, B.; Amani, M.; Granger, J.; Brisco, B.; Huang, W. A Dynamic Classification Scheme for Mapping Spectrally Similar Classes: Application to Wetland Classification. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101914. [Google Scholar] [CrossRef]
- Ghorbanian, A.; Zaghian, S.; Asiyabi, R.M.; Amani, M.; Mohammadzadeh, A.; Jamali, S. Mangrove Ecosystem Mapping Using Sentinel-1 and Sentinel-2 Satellite Images and Random Forest Algorithm in Google Earth Engine. Remote Sens. 2021, 13, 2565. [Google Scholar] [CrossRef]
- Kpienbaareh, D.; Sun, X.; Wang, J.; Luginaah, I.; Bezner Kerr, R.; Lupafya, E.; Dakishoni, L. Crop Type and Land Cover Mapping in Northern Malawi Using the Integration of Sentinel-1, Sentinel-2, and PlanetScope Satellite Data. Remote Sens. 2021, 13, 700. [Google Scholar] [CrossRef]
- De Luca, G.; Silva, M.N.J.; Di Fazio, S.; Modica, G. Integrated Use of Sentinel-1 and Sentinel-2 Data and Open-Source Machine Learning Algorithms for Land Cover Mapping in a Mediterranean Region. Eur. J. Remote Sens. 2022, 55, 52–70. [Google Scholar] [CrossRef]
- Nasiri, V.; Beloiu, M.; Asghar Darvishsefat, A.; Griess, V.C.; Maftei, C.; Waser, L.T. Mapping Tree Species Composition in a Caspian Temperate Mixed Forest Based on Spectral-Temporal Metrics and Machine Learning. Int. J. Appl. Earth Obs. Geoinf. 2023, 116, 103154. [Google Scholar] [CrossRef]
- Papachristoforou, A.; Prodromou, M.; Hadjimitsis, D.; Christoforou, M. Detecting and Distinguishing between Apicultural Plants Using UAV Multispectral Imaging. PeerJ 2023, 11, e15065. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Huntjr, E.; Rock, B. Detection of Changes in Leaf Water Content Using Near- and Middle-Infrared Reflectances. Remote Sens. Environ. 1989, 30, 43–54. [Google Scholar] [CrossRef]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T.; et al. Coincident Detection of Crop Water Stress, Nitrogen Status and Canopy Density Using Ground Based Multispectral Data. In Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000. [Google Scholar]
- Kumar, D.; Rao, S.; Sharma, J.R. Radar Vegetation Index as an Alternative to NDVI for Monitoring of Soyabean and Cotton. In Proceedings of the XXXIII INCA International Congress (Indian Cartographer), Jodhpur, India, 19–21 September 2013; pp. 91–96. [Google Scholar]
- Jain, S.; Batra, K.U.; Mishra, P. Land Cover Classification by Decision Based Classifier Using Dual Polarimetric SAR Observables. In Proceedings of the 2022 IEEE 9th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Allahabad, India, 2–4 December 2022; pp. 1–6. [Google Scholar]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assessment in Higher Plant Leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Kim, Y.; Jackson, T.; Bindlish, R.; Lee, H.; Hong, S. Radar Vegetation Index for Estimating the Vegetation Water Content of Rice and Soybean. IEEE Geosci. Remote Sens. Lett. 2012, 9, 564–568. [Google Scholar] [CrossRef]
- Mitchard, E.T.A.; Saatchi, S.S.; White, L.J.T.; Abernethy, K.A.; Jeffery, K.J.; Lewis, S.L.; Collins, M.; Lefsky, M.A.; Leal, M.E.; Woodhouse, I.H.; et al. Mapping Tropical Forest Biomass with Radar and Spaceborne LiDAR in Lopé National Park, Gabon: Overcoming Problems of High Biomass and Persistent Cloud. Biogeosciences 2012, 9, 179–191. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Vorpahl, P.; Elsenbeer, H.; Märker, M.; Schröder, B. How Can Statistical Models Help to Determine Driving Factors of Landslides? Ecol. Model. 2012, 239, 27–39. [Google Scholar] [CrossRef]
- Ließ, M.; Glaser, B.; Huwe, B. Uncertainty in the Spatial Prediction of Soil Texture. Geoderma 2012, 170, 70–79. [Google Scholar] [CrossRef]
- Löw, F.; Dimov, D.; Kenjabaev, S.; Zaitov, S.; Stulina, G.; Dukhovny, V. Land Cover Change Detection in the Aralkum with Multi-Source Satellite Datasets. GIsci Remote Sens. 2022, 59, 17–35. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, B.; Ponce-Campos, G.; Zhang, M.; Chang, S.; Tian, F. Mapping Up-to-Date Paddy Rice Extent at 10 M Resolution in China through the Integration of Optical and Synthetic Aperture Radar Images. Remote Sens. 2018, 10, 1200. [Google Scholar] [CrossRef]
- Deines, J.M.; Kendall, A.D.; Crowley, M.A.; Rapp, J.; Cardille, J.A.; Hyndman, D.W. Mapping Three Decades of Annual Irrigation across the US High Plains Aquifer Using Landsat and Google Earth Engine. Remote Sens. Environ. 2019, 233, 111400. [Google Scholar] [CrossRef]
- Zeng, H.; Wu, B.; Wang, S.; Musakwa, W.; Tian, F.; Mashimbye, Z.E.; Poona, N.; Syndey, M. A Synthesizing Land-Cover Classification Method Based on Google Earth Engine: A Case Study in Nzhelele and Levhuvu Catchments, South Africa. Chin. Geogr. Sci. 2020, 30, 397–409. [Google Scholar] [CrossRef]
- Tran, V.A.; Le, T.L.; Nguyen, N.H.; Le, T.N.; Tran, H.H. Monitoring Vegetation Cover Changes by Sentinel-1 Radar Images Using Random Forest Classification Method. Inz. Miner. 2021, 1, 441–452. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. A Survey of Image Classification Methods and Techniques for Improving Classification Performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Lee, J.S.H.; Wich, S.; Widayati, A.; Koh, L.P. Detecting Industrial Oil Palm Plantations on Landsat Images with Google Earth Engine. Remote Sens. Appl. 2016, 4, 219–224. [Google Scholar] [CrossRef]
- Vorovencii, I.; Dincă, L.; Crișan, V.; Postolache, R.-G.; Codrean, C.-L.; Cătălin, C.; Greșiță, C.I.; Chima, S.; Gavrilescu, I. Local-Scale Mapping of Tree Species in a Lower Mountain Area Using Sentinel-1 and -2 Multitemporal Images, Vegetation Indices, and Topographic Information. Front. For. Glob. Chang. 2023, 6, 1220253. [Google Scholar] [CrossRef]
- Lechner, M.; Dostálová, A.; Hollaus, M.; Atzberger, C.; Immitzer, M. Combination of Sentinel-1 and Sentinel-2 Data for Tree Species Classification in a Central European Biosphere Reserve. Remote Sens. 2022, 14, 2687. [Google Scholar] [CrossRef]
- Hościło, A.; Lewandowska, A. Mapping Forest Type and Tree Species on a Regional Scale Using Multi-Temporal Sentinel-2 Data. Remote Sens. 2019, 11, 929. [Google Scholar] [CrossRef]
- Mngadi, M.; Odindi, J.; Peerbhay, K.; Mutanga, O. Examining the Effectiveness of Sentinel-1 and 2 Imagery for Commercial Forest Species Mapping. Geocarto Int. 2021, 36, 1–12. [Google Scholar] [CrossRef]
- Sibanda, M.; Mutanga, O.; Rouget, M. Comparing the Spectral Settings of the New Generation Broad and Narrow Band Sensors in Estimating Biomass of Native Grasses Grown under Different Management Practices. GIScience Remote Sens. 2016, 53, 614–633. [Google Scholar] [CrossRef]
- Dube, T.; Mutanga, O. Investigating the Robustness of the New Landsat-8 Operational Land Imager Derived Texture Metrics in Estimating Plantation Forest Aboveground Biomass in Resource Constrained Areas. ISPRS J. Photogramm. Remote Sens. 2015, 108, 12–32. [Google Scholar] [CrossRef]
- Deng, S.; Katoh, M.; Guan, Q.; Yin, N.; Li, M. Interpretation of Forest Resources at the Individual Tree Level at Purple Mountain, Nanjing City, China, Using WorldView-2 Imagery by Combining GPS, RS and GIS Technologies. Remote Sens. 2013, 6, 87–110. [Google Scholar] [CrossRef]
- Valdivieso-Ros, C.; Alonso-Sarria, F.; Gomariz-Castillo, F. Effect of the Synergetic Use of Sentinel-1, Sentinel-2, LiDAR and Derived Data in Land Cover Classification of a Semiarid Mediterranean Area Using Machine Learning Algorithms. Remote Sens. 2023, 15, 312. [Google Scholar] [CrossRef]
- Waśniewski, A.; Hościło, A.; Aune-Lundberg, L. The Impact of Selection of Reference Samples and DEM on the Accuracy of Land Cover Classification Based on Sentinel-2 Data. Remote Sens. Appl. 2023, 32, 101035. [Google Scholar] [CrossRef]
- Polykretis, C.; Grillakis, M.; Alexakis, D. Exploring the Impact of Various Spectral Indices on Land Cover Change Detection Using Change Vector Analysis: A Case Study of Crete Island, Greece. Remote Sens. 2020, 12, 319. [Google Scholar] [CrossRef]
- Yu, X.; Lu, D.; Jiang, X.; Li, G.; Chen, Y.; Li, D.; Chen, E. Examining the Roles of Spectral, Spatial, and Topographic Features in Improving Land-Cover and Forest Classifications in a Subtropical Region. Remote Sens. 2020, 12, 2907. [Google Scholar] [CrossRef]
- Liu, X.; Frey, J.; Munteanu, C.; Still, N.; Koch, B. Mapping Tree Species Diversity in Temperate Montane Forests Using Sentinel-1 and Sentinel-2 Imagery and Topography Data. Remote Sens. Environ. 2023, 292, 113576. [Google Scholar] [CrossRef]
- Grabska, E.; Socha, J. Evaluating the Effect of Stand Properties and Site Conditions on the Forest Reflectance from Sentinel-2 Time Series. PLoS ONE 2021, 16, e0248459. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Chavana-Bryant, C.; Prohaska, N.; Serbin, S.P.; Guan, K.; Albert, L.P.; Yang, X.; van Leeuwen, W.J.D.; Garnello, A.J.; Martins, G.; et al. Convergence in Relationships between Leaf Traits, Spectra and Age across Diverse Canopy Environments and Two Contrasting Tropical Forests. New Phytol. 2017, 214, 1033–1048. [Google Scholar] [CrossRef] [PubMed]
Paphos | Akamas | Troodos | ||||||
---|---|---|---|---|---|---|---|---|
Code | Habitat | No. of Pixels Per Class | Code | Habitat | No. of Pixels Per Class | Code | Habitat | No. of Pixels Per Class |
H5330 | Thermo-Mediterranean and pre-desert scrub | 1357 | H9560 | * Endemic forests with Juniperus spp. | 2269 | H9560 | * Endemic forests with Juniperus spp. | 1501 |
H5420 | Sarcopoterium spinosum phrygana | 2441 | H9540 | Mediterranean pine forests with endemic Mesogean pines | 2660 | H9540 | Mediterranean pine forests with endemic Mesogean pines | 1655 |
H8140 | Eastern Mediterranean screes | 1849 | H92D0 | Southern riparian galleries and thickets (Nerio-Tamaricetea and Securinegion tinctoriae) | 62 | H9530 | Mediterranean pine forests with endemic Mesogean pines | 1534 |
H92C0 | Platanus orientalis and Liquidambar orientalis woods | 1305 | H92C0 | Platanus orientalis and Liquidambar orientalis woods | 177 | H92C0 | Platanus orientalis and Liquidambar orientalis woods (Platanion orientalis) | 124 |
H92D0 | Southern riparian galleries and thickets (Nerio-Tamaricetea and Securinegion tinctoriae) | 188 | H9290 | Cupressus forests (Acero-Cupression) | 230 | H9390 | * Scrub and low forest vegetation with Quercus alnifolia | 367 |
H9320 | Olea and Ceratonia forests | 1002 | H5330 | Thermo-Mediterranean and pre-desert scrub | 712 | H5420 | Sarcopoterium spinosum phrygana | 330 |
H9390 | * Scrub and low forest vegetation with Quercus alnifolia | 3000 | H5420 | Sarcopoterium spinosum phrygana | 1301 | 318 | ||
H9540 | Mediterranean pine forests with endemic Mesogean pines | 2148 | H9320 | Olea and Ceratonia forests | 778 | 104 | ||
H9590 | * Cedrus brevifolia forests (Cedrosetum brevifoliae) | 935 |
Code | Sentinel-2 Image | |
H9540 | ||
H92C0 | ||
H9590 | ||
H9390 | ||
H9320 |
Sentinel-2 MSI | ||
---|---|---|
Band | Wavelength (mm) | Resolution (m) |
1 Coastal aerosol | 433–453 | 60 |
2 Blue (B) | 458–523 | 10 |
3 Green (G) | 543–578 | 10 |
4 Red (R) | 650–680 | 10 |
5 Red edge 1 (RE1) | 698–713 | 20 |
6 Red edge 2 (RE2) | 733–748 | 20 |
7 Red edge 3 (RE3) | 773–793 | 20 |
8 Near infrared (NIR) | 785–900 | 10 |
8a Near infrared narrow (NIRn) | 855–875 | 20 |
9 Water vapour | 935–955 | 60 |
10 Shortwave infrared/cirrus | 1360–1390 | 60 |
11 Shortwave infrared 1 (SWIR1) | 1565–1655 | 20 |
12 Shortwave infrared 2 (SWIR2) | 2100–2280 | 20 |
Dataset | Band Combination |
---|---|
Dataset 1 | S2 (VIS + NIR) |
Dataset 2 | S2 (VIS + SWIRs) |
Dataset 3 | S2 (VIS + REs) |
Dataset 4 | S2 (Bands 10 m and 20 m) |
Dataset 5 | S2 Bands + S2 Spectral Indices |
Dataset 6 | Dataset 5 + Topographical Features |
Dataset 7 | S1 (VV and VH) |
Dataset 8 | Dataset 7 + Topographical Features |
Dataset 9 | Dataset 7 + S1 Spectral Indices |
Dataset 10 | Dataset 9 + Topographical Features |
Dataset 11 | Dataset 4 + Dataset 7 |
Dataset 12 | Dataset 5 + Dataset 9 |
Dataset 13 | Dataset 12 + Topographical Features |
Dataset | OA (%) | Kappa | F1 Score (%) | |||||
---|---|---|---|---|---|---|---|---|
H9560 | H9540 | H9530 | H92C0 | H9390 | H5420 | |||
1 | 72.42 | 0.62 | 86.32 | 73.51 | 67.13 | 52.06 | 50.96 | 44.29 |
2 | 86.25 | 0.81 | 92.07 | 87.51 | 85.18 | 45.68 | 69.64 | 77.49 |
3 | 82.89 | 0.77 | 90.04 | 84.09 | 80.00 | 59.22 | 64.43 | 58.68 |
4 | 88.12 | 0.84 | 93.42 | 88.55 | 85.87 | 53.64 | 77.24 | 85.84 |
5 | 83.71 | 0.78 | 91.44 | 83.98 | 81.93 | 51.98 | 66.19 | 73.81 |
6 | 94.04 | 0.92 | 94.50 | 96.31 | 93.47 | 70.46 | 87.07 | 91.82 |
7 | 43.10 | 0.21 | 51.27 | 48.00 | 39.57 | 2.08 | 14.47 | 10.41 |
8 | 93.06 | 0.91 | 94.09 | 95.10 | 93.21 | 12.73 | 88.74 | 89.83 |
9 | 41.64 | 0.2 | 49.04 | 46.27 | 39.51 | 1.75 | 13.60 | 8.75 |
10 | 89.02 | 0.85 | 90.02 | 93.07 | 88.16 | 7.91 | 82.12 | 81.89 |
11 | 86.69 | 0.82 | 92.88 | 86.28 | 84.16 | 50.34 | 78.38 | 83.92 |
12 | 85.03 | 0.8 | 91.92 | 84.95 | 82.38 | 50.50 | 71.67 | 81.54 |
13 | 93.80 | 0.92 | 94.73 | 95.80 | 93.36 | 61.06 | 86.58 | 92.19 |
Dataset | OA (%) | Kappa | F1 Score (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
H5330 | H5420 | H8140 | H92C0 | H92D0 | H9320 | H9390 | H9540 | H9590 | |||
1 | 72.47 | 0.67 | 57.36 | 67.01 | 84.62 | 62.15 | 24.44 | 44.09 | 86.07 | 71.4 | 76.5 |
2 | 77.98 | 0.74 | 67.68 | 76.54 | 86.04 | 66.27 | 31.99 | 62.46 | 85.87 | 78 | 82.29 |
3 | 76.08 | 0.72 | 65.74 | 74.73 | 87.36 | 65.41 | 38.46 | 56.25 | 86.35 | 76.04 | 78.77 |
4 | 84.08 | 0.81 | 77.42 | 82.8 | 89.19 | 70.83 | 49.65 | 75.89 | 90.39 | 85.1 | 85.18 |
5 | 80.45 | 0.77 | 70.64 | 78.56 | 88.78 | 65.97 | 34.98 | 66.6 | 88.37 | 80.17 | 84.55 |
6 | 91.96 | 0.9 | 87.16 | 91.35 | 93.58 | 87.34 | 77.61 | 89.65 | 95.63 | 91.24 | 94.55 |
7 | 25.73 | 0.11 | 16.61 | 24.48 | 27.33 | 10.46 | 7.97 | 13.4 | 36.42 | 27.8 | 9.94 |
8 | 89.12 | 0.87 | 88.69 | 89.69 | 86.08 | 83.88 | 92.36 | 94.26 | 91.34 | 85.75 | 91.8 |
9 | 24.91 | 0.1 | 15.13 | 24.2 | 25.53 | 9.7 | 4.51 | 14.11 | 35.1 | 28.52 | 9.52 |
10 | 83.81 | 0.81 | 83.52 | 84.29 | 80.84 | 74.91 | 79.62 | 89.02 | 87.55 | 79.27 | 87.2 |
11 | 84.54 | 0.82 | 77.63 | 84 | 89.58 | 70.51 | 49.82 | 74.81 | 90.56 | 86.44 | 86.26 |
12 | 81.34 | 0.78 | 70.58 | 79.32 | 89.44 | 65.51 | 33.8 | 70.05 | 88.45 | 83.15 | 85.03 |
13 | 91.64 | 0.9 | 88.17 | 90.82 | 93.95 | 86.38 | 77.63 | 89.89 | 94.64 | 91.55 | 92.76 |
Dataset | OA (%) | Kappa | F1 Score (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
H9560 | H9540 | H92D0 | H92C0 | H9290 | H5330 | H5420 | H9320 | |||
1 | 78.84 | 0.72 | 77.36 | 86.15 | 56.45 | 75.38 | 53.43 | 74.05 | 79.50 | 65.37 |
2 | 73.26 | 0.65 | 70.11 | 82.07 | 17.88 | 64.59 | 52.09 | 68.30 | 75.60 | 59.89 |
3 | 79.17 | 0.73 | 77.75 | 85.09 | 18.44 | 72.28 | 61.65 | 78.22 | 80.98 | 65.22 |
4 | 86.51 | 0.82 | 85.95 | 90.67 | 31.44 | 79.16 | 74.37 | 86.23 | 87.89 | 77.92 |
5 | 83.17 | 0.78 | 81.94 | 88.59 | 29.19 | 69.22 | 65.31 | 81.66 | 85.04 | 73.64 |
6 | 91.03 | 0.88 | 90.96 | 93.25 | 28.64 | 80.19 | 81.14 | 92.92 | 93.72 | 84.02 |
7 | 47.12 | 0.28 | 49.06 | 60.89 | 11.67 | 1.80 | 5.45 | 13.63 | 44.73 | 16.68 |
8 | 88.84 | 0.85 | 90.73 | 90.15 | 49.09 | 59.42 | 82.66 | 89.36 | 88.71 | 85.69 |
9 | 35.96 | 0.14 | 36.16 | 52.02 | 0.00 | 1.68 | 7.42 | 12.48 | 27.78 | 9.59 |
10 | 81.51 | 0.76 | 84.48 | 83.09 | 27.50 | 35.57 | 74.45 | 81.91 | 81.29 | 75.00 |
11 | 85.04 | 0.8 | 83.42 | 89.10 | 23.60 | 74.32 | 73.60 | 83.17 | 87.87 | 78.00 |
12 | 83.37 | 0.78 | 81.94 | 88.38 | 10.20 | 74.11 | 68.55 | 83.16 | 85.44 | 75.53 |
13 | 91.15 | 0.88 | 92.02 | 92.82 | 28.98 | 80.08 | 78.96 | 91.82 | 94.05 | 84.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prodromou, M.; Theocharidis, C.; Gitas, I.Z.; Eliades, F.; Themistocleous, K.; Papasavvas, K.; Dimitrakopoulos, C.; Danezis, C.; Hadjimitsis, D. Forest Habitat Mapping in Natura2000 Regions in Cyprus Using Sentinel-1, Sentinel-2 and Topographical Features. Remote Sens. 2024, 16, 1373. https://doi.org/10.3390/rs16081373
Prodromou M, Theocharidis C, Gitas IZ, Eliades F, Themistocleous K, Papasavvas K, Dimitrakopoulos C, Danezis C, Hadjimitsis D. Forest Habitat Mapping in Natura2000 Regions in Cyprus Using Sentinel-1, Sentinel-2 and Topographical Features. Remote Sensing. 2024; 16(8):1373. https://doi.org/10.3390/rs16081373
Chicago/Turabian StyleProdromou, Maria, Christos Theocharidis, Ioannis Z. Gitas, Filippos Eliades, Kyriacos Themistocleous, Konstantinos Papasavvas, Constantinos Dimitrakopoulos, Chris Danezis, and Diofantos Hadjimitsis. 2024. "Forest Habitat Mapping in Natura2000 Regions in Cyprus Using Sentinel-1, Sentinel-2 and Topographical Features" Remote Sensing 16, no. 8: 1373. https://doi.org/10.3390/rs16081373
APA StyleProdromou, M., Theocharidis, C., Gitas, I. Z., Eliades, F., Themistocleous, K., Papasavvas, K., Dimitrakopoulos, C., Danezis, C., & Hadjimitsis, D. (2024). Forest Habitat Mapping in Natura2000 Regions in Cyprus Using Sentinel-1, Sentinel-2 and Topographical Features. Remote Sensing, 16(8), 1373. https://doi.org/10.3390/rs16081373