Assessing Stone Material Recession of Cultural Heritage: New Approach Based on Satellite-Based Rainfall Data and Dose-Response Functions—Case of UNESCO Site of Matera
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Analysis of Rainfall Data
2.2.1. Rainfall Dataset
2.2.2. Data Processing
- Trend: Identifies and isolates the long-term trend in the time series, showing the direction and speed of change in the data over time, beyond seasonal or irregular fluctuations.
- Seasonality: Extracts the seasonal component, which represents regular and predictable variations that occur at specific intervals, such as daily, monthly, yearly, etc.
- Residual: The residual component includes fluctuations in the data that cannot be explained by either trends or seasonality, offering insight into anomalies or shocks that were not expected.
- Pk is the k-th percentile you are trying to determine.
- X is the data ordered from least to greatest.
- n is the total number of observations in the data.
- k is the desired percentile (e.g., 90, 95, 99).
- (i)
- removal of negative (values attributed by ARPAB stations in the case of corrupted data) and no-data values;
- (ii)
- creation of monthly averages;
- (iii)
- removal of outliers (e.g., under the 10th percentile and above the 99th percentile). This operation was done as a preliminary action prior to the correlation activity. In fact, the removal of extreme events and outliers was useful to avoid considering phenomena recorded only in one of the two datasets (e.g., very local phenomena that occurred at the La Martella weather station) since there is a large spatial acquisition discrepancy between the CHIRPS satellite data and the local ARPAB station data;
- (iv)
- normalization of the two datasets and application of Pearson’s correlation coefficient [89].
- γ is the dependent variable that we are trying to predict or explain.
- x is the independent variable used to predict y.
- β0 is the intercept, i.e., the value of y when x is zero.
- β1 is the coefficient of the independent variable x, and it represents the slope of the regression line. This coefficient indicates how much y changes on average with a unit increase in x.
- ∈ is the error term that captures all other influences on γ that are not explained by x.
2.3. Dose-Response Functions
- L represents the annual surface recession (μm/year),
- R is the annual amount of precipitation (m/year),
- K is an empirical coefficient that varies according to the concentration of atmospheric CO2.
- K1 = 18.8 μm/m, corresponding to a CO2 concentration of 330 ppm, used to represent historical conditions;
- K2 = 21.8 μm/m, relating to a CO2 concentration of 750 ppm, used for future projections, assuming an increase in atmospheric CO2 concentration.
3. Results
3.1. Analysis of Precipitation Trends in Matera
- Early 1980s: Annual precipitation levels were moderate, ranging from 500 to 700 mm.
- 1990s and early 2000s: In these decades, precipitation fluctuated, alternating between particularly rainy years and years with reduced rainfall, without any evident trend of an increase or decrease.
- Recent years: In recent years, a slight reduction in the average annual precipitation has been noted, although significant variations continue to occur from year to year.
- 8 October 1989: 67.06 mm
- 26 January 1996: 67.04 mm
- 2 October 2000: 78.25 mm
- 26 September 2006: 63.78 mm
- 13 October 2010: 66.76 mm
3.2. Damage Evaluation and Future Prediction
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bonazza, A.; Sardella, A. Climate Change and Cultural Heritage: Methods and Approaches for Damage and Risk Assessment Addressed to a Practical Application. Heritage 2023, 6, 3578–3589. [Google Scholar] [CrossRef]
- Sabbioni, C.; Cassar, M.; Brimblecombe, P.; Tidblad, J.; Kozlowski, R.; Drdácký, M.; Saiz-Jimenez, C.; Grøntoft, T.; Wainwright, I.; Ariño, X. Global Climate Change Impact on Built Heritage and Cultural Landscapes. In Proceedings of the International Conference on Heritage, Weathering and Conservation, HWC 2006, Madrid, Spain, 21–24 June 2006. [Google Scholar]
- Richards, J.; Brimblecombe, P. Tuning and Effectiveness in Heritage Models. Heritage 2023, 6, 5516–5523. [Google Scholar] [CrossRef]
- Sesana, E.; Gagnon, A.S.; Ciantelli, C.; Cassar, J.; Hughes, J.J. Climate Change Impacts on Cultural Heritage: A Literature Review. WIREs Clim. Change 2021, 12, e710. [Google Scholar] [CrossRef]
- Leissner, J.; Kilian, R.; Kotova, L.; Jacob, D.; Mikolajewicz, U.; Broström, T.; Ashley-Smith, J.; Schellen, H.L.; Martens, M.; Van Schijndel, J.; et al. Climate for Culture: Assessing the Impact of Climate Change on the Future Indoor Climate in Historic Buildings Using Simulations. Herit. Sci. 2015, 3, 38. [Google Scholar] [CrossRef]
- Haugen, A.; Mattsson, J. Preparations for Climate Change’s Influences on Cultural Heritage. Int. J. Clim. Change Strateg. Manag. 2011, 3, 386–401. [Google Scholar] [CrossRef]
- Hart, S.; Raymond, K.; Williams, C.J.; Rutherford, W.A.; DeGayner, J. Modeling Earthen Treatments for Climate Change Effects. Heritage 2023, 6, 4214–4226. [Google Scholar] [CrossRef]
- Bretti, G.; Ceseri, M. Climate Change Effects on Carbonation Process: A Scenario-Based Study. Heritage 2023, 6, 236–257. [Google Scholar] [CrossRef]
- Thickett, D. Practical Use of Damage Functions for Environmental Preventive Conservation and Sustainability—Examples from Naturally Ventilated Buildings. Heritage 2023, 6, 2633–2649. [Google Scholar] [CrossRef]
- Sardella, A.; Palazzi, E.; von Hardenberg, J.; Del Grande, C.; De Nuntiis, P.; Sabbioni, C.; Bonazza, A. Risk Mapping for the Sustainable Protection of Cultural Heritage in Extreme Changing Environments. Atmosphere 2020, 11, 700. [Google Scholar] [CrossRef]
- Lafrenz Samuels, K.; Platts, E.J. Global Climate Change and UNESCO World Heritage. Int. J. Cult. Prop. 2022, 29, 409–432. [Google Scholar] [CrossRef]
- Dastgerdi, A.S.; Sargolini, M.; Pierantoni, I. Climate Change Challenges to Existing Cultural Heritage Policy. Sustainability 2019, 11, 5227. [Google Scholar] [CrossRef]
- Fatorić, S.; Seekamp, E. Securing the Future of Cultural Heritage by Identifying Barriers to and Strategizing Solutions for Preservation under Changing Climate Conditions. Sustainability 2017, 9, 2143. [Google Scholar] [CrossRef]
- Sulaj, A.; Kadiu, B.; Terpollari, A. The Need to Safeguard Cultural Heritage against Climate Change. Tech. Ann. 2023, 1, 28–42. [Google Scholar] [CrossRef]
- Bonazza, A.; Messina, P.; Sabbioni, C.; Grossi, C.M.; Brimblecombe, P. Mapping the Impact of Climate Change on Surface Recession of Carbonate Buildings in Europe. Sci. Total Environ. 2009, 407, 2039–2050. [Google Scholar] [CrossRef]
- Bonazza, A.; Sabbioni, C.; Messina, P.; Guaraldi, C.; De Nuntiis, P. Climate Change Impact: Mapping Thermal Stress on Carrara Marble in Europe. Sci. Total Environ. 2009, 407, 4506–4512. [Google Scholar] [CrossRef]
- Brimblecombe, P.; Grossi, C.M.; Harris, I. Climate Change Critical to Cultural Heritage. In Proceedings of the Heritage, Weathering and Conservation; Taylor & Francis Group: Milton Park, UK, 2006; pp. 387–393. [Google Scholar]
- Grossi, C.M.; Bonazza, A.; Brimblecombe, P.; Harris, I.; Sabbioni, C. Predicting Twenty-First Century Recession of Architectural Limestone in European Cities. Environ. Geol. 2008, 56, 455–461. [Google Scholar] [CrossRef]
- Natali, I.; Tomasin, P.; Becherini, F.; Bernardi, A.; Ciantelli, C.; Favaro, M.; Favoni, O.; Pérez, V.J.F.; Olteanu, I.D.; Sanchez, M.D.R.; et al. Innovative Consolidating Products for Stone Materials: Field Exposure Tests as a Valid Approach for Assessing Durability. Herit. Sci. 2015, 3, 6. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H. The Synergic Impacts of Salt Mixture and Frost Damage on Rock Decay: Implications for the Deterioration of Rock-Hewn. Heritages 2023, 11, 209. [Google Scholar] [CrossRef]
- Kandolkar, V.P. Rain in the Basilica: Protecting Goa’s Bom Jesus from the Ravages of Climate Change. eTropic 2021, 20, 95–113. [Google Scholar] [CrossRef]
- Angın, M.; Çubukçuoğlu, B.; Gökçekuş, H. Case Studies on the Impacts of Climate Change on Historical Buildings in Northern Cyprus. Int. J. BES 2019, 7, 57–65. [Google Scholar] [CrossRef]
- Coletti, C. Climate Change Threats to Stone Cultural Heritage: State of the Art of Quantitative Damage Functions and New Challenges for a Sustainable Future. Heritage 2024, 7, 3276–3290. [Google Scholar] [CrossRef]
- Strlič, M.; Thickett, D.; Taylor, J.; Cassar, M. Damage Functions in Heritage Science. Stud. Conserv. 2013, 58, 80–878. [Google Scholar] [CrossRef]
- Camuffo, D. Weathering of Building Materials. In Urban Pollution and Changes to Materials and Building Surface; Brimblecombe, P., Ed.; Imperial College Press: London, UK, 2015; pp. 19–64. ISBN 978-1-78326-885-6. [Google Scholar]
- Abd El Aal, A. Climate changes and its impact on monumental and historical buildings towards conservation and documentation ammon temple, siwa oasis, Egypt. J. Earth Sci. Clim. Chang. 2016, 7, 339. [Google Scholar]
- Brimblecombe, P. Refining Climate Change Threats to Heritage. J. Inst. Conserv. 2014, 37, 85–93. [Google Scholar] [CrossRef]
- Cassar, M.; Pender, R. The Impact of Climate Change on Cultural Heritage: Evidence and Response. In 14th Triennial Meeting, The Hague, 12–16 September 2005. Preprints (Volume 2); Verger, I., Ed.; James & James: London, UK; pp. 610–616. ISBN 9781844072538.
- Kucera, V.; Tidblad, J.; Kreislova, K.; Knotkova, D.; Faller, M.; Reiss, D.; Snethlage, R.; Yates, T.; Henriksen, J.; Schreiner, M.; et al. UN/ECE ICP Materials Dose-Response Functions for the Multi-Pollutant Situation. Water Air Soil Pollut Focus 2007, 7, 249–258. [Google Scholar] [CrossRef]
- Inkpen, R.; Viles, H.A.; Moses, C.; Baily, B. Modelling the Impact of Changing Atmospheric Pollution Levels on Limestone Erosion Rates in Central London, 1980–2010. Atmos. Environ. 2012, 61, 476–481. [Google Scholar] [CrossRef]
- Brimblecombe, P.; Grossi, C.M. Millennium-Long Damage to Building Materials in London. Sci. Total Environ. 2009, 407, 1354–1361. [Google Scholar] [CrossRef]
- Amoroso, G.G.; Fasina, V. Stone Decay and Conservation; Atmospheric Pollution, Cleaning; and Consolidation; Elsevier Science: New York, NY, USA, 1983. [Google Scholar]
- Lazzarini, L.; Tabasso, M.L. Il Restauro Della Pietra; CEDAM: Lansing, MI, USA, 1986; ISBN 978-88-13-15958-0. [Google Scholar]
- Lipfert, F.W. Atmospheric Damage to Calcareous Stones: Comparison and Reconciliation of Recent Experimental Findings. Atmos. Environ. 1989, 23, 415–429. [Google Scholar] [CrossRef]
- Baedecker, P.A.; Reddy, M.M. The Erosion of Carbonate Stone by Acid Rain: Laboratory and Field Investigations. J. Chem. Educ. 1993, 70, 104–108. [Google Scholar] [CrossRef]
- Baedecker, P.A.; Reddy, M.M.; Reimann, K.J.; Sciammarella, C.A. Effects of Acidic Deposition on the Erosion of Carbonate Stone—Experimental Results from the U.S. National Acid Precipitation Assessment Program (NAPAP). Atmos. Environ. Part B. Urban. Atmos. 1992, 26, 147–158. [Google Scholar] [CrossRef]
- Gauri, K.L.; Holdren, G.C. Pollutant Effects on Stone Monuments. Environ. Sci. Technol. 1981, 15, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Shirvani Dastgerdi, A.; Sargolini, M.; Broussard Allred, S.; Chatrchyan, A.; De Luca, G. Climate Change and Sustaining Heritage Resources: A Framework for Boosting Cultural and Natural Heritage Conservation in Central Italy. Climate 2020, 8, 26. [Google Scholar] [CrossRef]
- Costanzo, A.; Minasi, M.; Casula, G.; Musacchio, M.; Buongiorno, M. Combined Use of Terrestrial Laser Scanning and IR Thermography Applied to a Historical Building. Sensors 2014, 15, 194–213. [Google Scholar] [CrossRef]
- Costanzo, A.; Ebolese, D.; Ruffolo, S.A.; Falcone, S.; La Piana, C.; La Russa, M.F.; Musacchio, M.; Buongiorno, M.F. Detection of the TiO2 Concentration in the Protective Coatings for the Cultural Heritage by Means of Hyperspectral Data. Sustainability 2020, 13, 92. [Google Scholar] [CrossRef]
- Morero, L.; Visone, F.; Abate, N.; Vitale, V.; Amodio, A.M.; Prodomo, M.; Gioia, D.; Scavone, M.; Sileo, M.; Loperte, A.; et al. Towards the Creation of an Open Source HBIM Tool for Planning Diagnostic and Restoration Activities: The Example of the Troia Cathedral Rose Window. In Proceedings of the 2022 IMEKO TC4 International Conference on Metrology for Archaeology and Cultural Heritage, Consenza, Italy, 19–21 October 2023; pp. 273–277. [Google Scholar]
- Morero, L.; Visone, F.; Abate, N.; Amodio, A.M.; Prodomo, M.; Sileo, M.; Masini, N. The Use of a Heritage Building Information Model as an Effective Tool for Planning Restoration and Diagnostic Activities: The Example of the Troia Cathedral Rose Window. Acta IMEKO 2023, 12, 1–8. [Google Scholar] [CrossRef]
- Bonomo, A.E.; Minervino Amodio, A.; Prosser, G.; Sileo, M.; Rizzo, G. Evaluation of Soft Limestone Degradation in the Sassi UNESCO Site (Matera, Southern Italy): Loss of Material Measurement and Classification. J. Cult. Herit. 2020, 42, 191–201. [Google Scholar] [CrossRef]
- Arévalo, P.; Bullock, E.L.; Woodcock, C.E.; Olofsson, P. A Suite of Tools for Continuous Land Change Monitoring in Google Earth Engine. Front. Clim. 2020, 2, 576740. [Google Scholar] [CrossRef]
- Amini, S.; Saber, M.; Rabiei-Dastjerdi, H.; Homayouni, S. Urban Land Use and Land Cover Change Analysis Using Random Forest Classification of Landsat Time Series. Remote Sens. 2022, 14, 2654. [Google Scholar] [CrossRef]
- Ban, Y.; Zhang, P.; Nascetti, A.; Bevington, A.R.; Wulder, M.A. Near Real-Time Wildfire Progression Monitoring with Sentinel-1 SAR Time Series and Deep Learning. Sci. Rep. 2020, 10, 1322. [Google Scholar] [CrossRef]
- Lasaponara, R.; Fattore, C.; Modica, G. Imaging Burned Areas and Fire Severity in Mediterranean Fragmented Ecosystems Using Sentinel-1 and Sentinel-2: The Case Study of Tortoli–Ogliastra Fire (Sardinia). IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Bleuler, M.; Farina, R.; Francaviglia, R.; di Bene, C.; Napoli, R.; Marchetti, A. Modelling the Impacts of Different Carbon Sources on the Soil Organic Carbon Stock and CO2 Emissions in the Foggia Province (Southern Italy). Agric. Syst. 2017, 157, 258–268. [Google Scholar] [CrossRef]
- El Hajj, M.; Baghdadi, N.; Zribi, M.; Bazzi, H. Synergic Use of Sentinel-1 and Sentinel-2 Images for Operational Soil Moisture Mapping at High Spatial Resolution over Agricultural Areas. Remote Sens. 2017, 9, 1292. [Google Scholar] [CrossRef]
- Battipaglia, G.; De Micco, V.; Brand, W.A.; Saurer, M.; Aronne, G.; Linke, P.; Cherubini, P. Drought Impact on Water Use Efficiency and Intra-annual Density Fluctuations in Erica Arborea on Elba (Italy). Plant Cell Environ. 2014, 37, 382–391. [Google Scholar] [CrossRef]
- Bentivenga, M.; Giano, S.I.; Piccarreta, M. Recent Increase of Flood Frequency in the Ionian Belt of Basilicata Region, Southern Italy: Human or Climatic Changes? Water 2020, 12, 2062. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F.; Pan, M.; Beck, H.; Coccia, G.; Serrat-Capdevila, A.; Verbist, K. Satellite Remote Sensing for Water Resources Management: Potential for Supporting Sustainable Development in Data-Poor Regions. Water Resour. Res. 2018, 54, 9724–9758. [Google Scholar] [CrossRef]
- Illarionova, S.; Tregubova, P.; Shukhratov, I.; Shadrin, D.; Efimov, A.; Burnaev, E. Advancing Forest Carbon Stocks’ Mapping Using a Hierarchical Approach with Machine Learning and Satellite Imagery. Sci. Rep. 2024, 14, 21032. [Google Scholar] [CrossRef]
- Wang, X. Remote Sensing Applications to Climate Change. Remote Sens. 2023, 15, 747. [Google Scholar] [CrossRef]
- Chuvieco, E. (Ed.) Earth Observation of Global Change: The Role of Satellite Remote Sensing in Monitoring Global Environment; Springer: New York, NY, USA, 2008; ISBN 978-1-4020-6357-2. [Google Scholar]
- Wegler, M.; Kuenzer, C. Potential of Earth Observation to Assess the Impact of Climate Change and Extreme Weather Events in Temperate Forests—A Review. Remote Sens. 2024, 16, 2224. [Google Scholar] [CrossRef]
- Lenton, T.M.; Abrams, J.F.; Bartsch, A.; Bathiany, S.; Boulton, C.A.; Buxton, J.E.; Conversi, A.; Cunliffe, A.M.; Hebden, S.; Lavergne, T.; et al. Remotely Sensing Potential Climate Change Tipping Points across Scales. Nat. Commun. 2024, 15, 343. [Google Scholar] [CrossRef]
- Calia, A.; Laurenzi Tabasso, M.; Maria Mecchi, A.; Quarta, G. The Study of Stone for Conservation Purposes: Lecce Stone (Southern Italy). Geol. Soc. Lond. Spec. Publ. 2014, 391, 139–156. [Google Scholar] [CrossRef]
- Urbina Leonor, L.M.; Sosa Echeverría, R.; Perez, N.A.; Vega, E.; Kahl, J.D.W.; Solano Murillo, M.; Soto Ayala, R. Importance of Atmospheric Sciences in Stone Heritage Conservation Study in Italy and Mexico. Sustainability 2023, 15, 5321. [Google Scholar] [CrossRef]
- Santi, P.; Renzulli, A.; Veneri, F.; Tonelli, G.; Tramontana, M.; Taussi, M.; Calcagnile, L.; Quarta, G. Geological Insights on the Calcareous Tufas (Pietra Spugna) Used as Building and Ornamental Stones in the UNESCO Historical Centre of Urbino (Marche Region, Italy). Heritage 2023, 6, 4227–4242. [Google Scholar] [CrossRef]
- Lettieri, M.; Masieri, M.; Aquaro, M.; Dilorenzo, D.; Frigione, M. Eco-Friendly Protective Coating to Extend the Life of Art-Works and Structures Made in Porous Stone Materials. Coatings 2021, 11, 1270. [Google Scholar] [CrossRef]
- Iannone, A.; Pieri, P. Considerazioni Critiche Sui “Tufi Calcarei” Delle Murge. Nuovi Dati Litostratigrafici e Paleoambientali: Critical Considerations and New Lithostratigraphical-Paleoecological Data on the “Tufi Calcarei” of the Murge, Apulia, Italy. Geogr. Fis. E Din. Quat. 1979, 2, 173–186. [Google Scholar]
- Baccelle Scudeler, L.; Lazzarini, L.; Antonelli, F.; Cancelliere, S.; Dessandier, D. La Pietra Del Tempio: Caratterizzazione Mineropetrografica e Geochimica e Determinazione Delle Cave Di Origine. In Il Tempio di Hera (Tavole Palatine) di Metaponto. Archeologia, Archeometria, Conservazione; AGNANO PISANO (PI); Fabrizio Serra: Pisa, Italy, 2010; pp. 37–78. ISBN 88-6227-176-X. [Google Scholar]
- Bonomo, A.E.; Lezzerini, M.; Prosser, G.; Munnecke, A.; Koch, R.; Rizzo, G. Matera Building Stones: Comparison between Bioclastic and Lithoclastic Calcarenites. Mater. Sci. Forum 2019, 972, 40–49. [Google Scholar] [CrossRef]
- Bonomo, A.; Lezzerini, M.; Prosser, G.; Munnecke, A.; Koch, R.; Rizzo, G. Matera building stones: Chemical, mineralogical and petrophysical characterization of the calcarenite di gravina formation. In Proceedings of the 2019 IMEKO TC-4 International Conference on Metrology for Archaeology and Cultural Heritage, Florence, Italy, 4–6 December 2019. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Brimblecombe, P. Heritage Climatology. In Climate Change and Cultural Heritage; Lefevre, R.-A., Sabbioni, C., Eds.; Edipuglia: Bari, Italy, 2010; pp. 57–64. [Google Scholar]
- Fatorić, S.; Seekamp, E. Are Cultural Heritage and Resources Threatened by Climate Change? A Systematic Literature Review. Clim. Change 2017, 142, 227–254. [Google Scholar] [CrossRef]
- Orr, S.; Richards, J.; Fatorić, S. Climate Change and Cultural Heritage: A Systematic Literature Review (2016–2020). Hist. Environ. Policy Pract. 2021, 12, 434–477. [Google Scholar] [CrossRef]
- Fitzner, B.; Heinrichs, K. Damage Diagnosis on Stone Monuments-Weathering Forms, Damage Categories and Damage Indices. Acta-Univ. Carol. Geol. 2001, 1, 12–13. [Google Scholar]
- Gizzi, F.T.; Sileo, M.; Biscione, M.; Danese, M.; Alvarez de Buergo, M. The Conservation State of the Sassi of Matera Site (Southern Italy) and Its Correlation with the Environmental Conditions Analysed through Spatial Analysis Techniques. J. Cult. Herit. 2016, 17, 61–74. [Google Scholar] [CrossRef]
- Bonomo, A.E.; Prosser, G.; Rizzo, G.; Maria, S. Proceedings of the Degradation Diagnosis on Gravina Calcarenite: Classification and Damage Indexes on the Sassi Di Matera Site (Southern Italy). In Proceedings of the IMEKO TC4 International Conference on Metrology for Archaeology and Cultural Heritage., Lecce, Italy, 23–25 October 2017. [Google Scholar]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- Shen, Z.; Yong, B.; Gourley, J.J.; Qi, W.; Lu, D.; Liu, J.; Ren, L.; Hong, Y.; Zhang, J. Recent Global Performance of the Climate Hazards Group Infrared Precipitation (CHIRP) with Stations (CHIRPS). J. Hydrol. 2020, 591, 125284. [Google Scholar] [CrossRef]
- Caroletti, G.N.; Coscarelli, R.; Caloiero, T. Validation of Satellite, Reanalysis and RCM Data of Monthly Rainfall in Calabria (Southern Italy). Remote Sens. 2019, 11, 1625. [Google Scholar] [CrossRef]
- Medina, F.D.; Zossi, B.S.; Bossolasco, A.; Elias, A.G. Performance of CHIRPS Dataset for Monthly and Annual Rainfall-Indices in Northern Argentina. Atmos. Res. 2023, 283, 106545. [Google Scholar] [CrossRef]
- Ahmed, J.S.; Buizza, R.; Dell’Acqua, M.; Demissie, T.; Pè, M.E. Evaluation of ERA5 and CHIRPS Rainfall Estimates against Observations across Ethiopia. Meteorol. Atmos. Phys. 2024, 136, 17. [Google Scholar] [CrossRef]
- Helmi, A.M.; Abdelhamed, M.S. Evaluation of CMORPH, PERSIANN-CDR, CHIRPS V2.0, TMPA 3B42 V7, and GPM IMERG V6 Satellite Precipitation Datasets in Arabian Arid Regions. Water 2023, 15, 92. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Gorelick, N. Google Earth Engine; American Geophysical Union: Vienna, Austria, 2013; p. 11997. [Google Scholar]
- Mutanga, O.; Kumar, L. Google Earth Engine Applications. Remote Sens. 2019, 11, 591. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef]
- Cleveland, R.B.; Cleveland, W.S.; Terpenning, I. STL: A Seasonal-Trend Decomposition Procedure Based on Loess. J. Off. Stat. 1990, 6, 3–37. [Google Scholar]
- Ashkenazy, Y.; Smith, N.R. Data-Driven Analysis of Annual Rain Distributions. Phys. Rev. Res. 2024, 6, 023187. [Google Scholar] [CrossRef]
- Gowri, L.; Manjula, K.R.; Sasireka, K.; Deepa, D. Assessment of Statistical Models for Rainfall Forecasting Using Machine Learning Technique. J. Soft Comput. Civ. Eng. 2022, 6, 51–67. [Google Scholar] [CrossRef]
- He, R.; Zhang, L.; Chew, A.W.Z. Modeling and Predicting Rainfall Time Series Using Seasonal-Trend Decomposition and Machine Learning. Knowl. -Based Syst. 2022, 251, 109125. [Google Scholar] [CrossRef]
- Schär, C.; Ban, N.; Fischer, E.M.; Rajczak, J.; Schmidli, J.; Frei, C.; Giorgi, F.; Karl, T.R.; Kendon, E.J.; Tank, A.M.G.K.; et al. Percentile Indices for Assessing Changes in Heavy Precipitation Events. Clim. Change 2016, 137, 201–216. [Google Scholar] [CrossRef]
- Pearson’s Correlation Coefficient. In Encyclopedia of Public Health; Kirch, W., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 1090–1091. ISBN 978-1-4020-5613-0. Available online: https://link.springer.com/referenceworkentry/10.1007/978-1-4020-5614-7_2569#citeas (accessed on 4 March 2025).
- Ciantelli, C.; Palazzi, E.; Von Hardenberg, J.; Vaccaro, C.; Tittarelli, F.; Bonazza, A. How Can Climate Change Affect the UNESCO Cultural Heritage Sites in Panama? Geosciences 2018, 8, 296. [Google Scholar] [CrossRef]
- Meinshausen, M.; Vogel, E.; Nauels, A.; Lorbacher, K.; Meinshausen, N.; Etheridge, D.M.; Fraser, P.J.; Montzka, S.A.; Rayner, P.J.; Trudinger, C.M.; et al. Historical Greenhouse Gas Concentrations for Climate Modelling (CMIP6). Geosci. Model. Dev. 2017, 10, 2057–2116. [Google Scholar] [CrossRef]
- Meinshausen, M.; Nicholls, Z.R.J.; Lewis, J.; Gidden, M.J.; Vogel, E.; Freund, M.; Beyerle, U.; Gessner, C.; Nauels, A.; Bauer, N.; et al. The Shared Socio-Economic Pathway (SSP) Greenhouse Gas Concentrations and Their Extensions to 2500. Geosci. Model. Dev. 2020, 13, 3571–3605. [Google Scholar] [CrossRef]
- Lange, M. Climate Change in the Mediterranean: Environmental Impacts and Extreme Events; IEMed: Barcelona, Spain, 2020. [Google Scholar]
- Mariani, L.; Parisi, S.G. Extreme Rainfalls in the Mediterranean Area. In Storminess and Environmental Change; Diodato, N., Bellocchi, G., Eds.; Advances in Natural and Technological Hazards Research; Springer: Dordrecht, The Netherlands, 2014; Volume 39, pp. 17–37. ISBN 978-94-007-7947-1. [Google Scholar]
- Piccarreta, M.; Lazzari, M.; Pasini, A. Trends in Daily Temperature Extremes over the Basilicata Region (Southern Italy) from 1951 to 2010 in a Mediterranean Climatic Context. Int. J. Climatol. 2015, 35, 1964–1975. [Google Scholar] [CrossRef]
- Piccarreta, M.; Pasini, A.; Capolongo, D.; Lazzari, M. Changes in Daily Precipitation Extremes in the Mediterranean from 1951 to 2010: The Basilicata Region, Southern Italy. Int. J. Climatol. 2013, 33, 3229–3248. [Google Scholar] [CrossRef]
- Salvini, S.; Coletti, C.; Maritan, L.; Massironi, M.; Pieropan, A.; Spiess, R.; Mazzoli, C. Petrographic Characterization and Durability of Carbonate Stones Used in UNESCO World Heritage Sites in Northeastern Italy. Environ. Earth Sci. 2023, 82, 49. [Google Scholar] [CrossRef]
- Salvini, S.; Bertoncello, R.; Coletti, C.; Germinario, L.; Maritan, L.; Massironi, M.; Pozzobon, R.; Mazzoli, C. Recession Rate of Carbonate Rocks Used in Cultural Heritage: Textural Control Assessed by Accelerated Ageing Tests. J. Cult. Herit. 2022, 57, 154–164. [Google Scholar] [CrossRef]
- Hernández-Montes, E.; Hdz-Gil, L.; Coletti, C.; Dilaria, S.; Germinario, L.; Mazzoli, C. Prediction Model for the Evolution of the Deterioration of Bricks in Heritage Buildings in Venice Caused by Climate Change. Heritage 2023, 6, 483–491. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visone, F.; Abate, N.; Sileo, M.; Masini, N. Assessing Stone Material Recession of Cultural Heritage: New Approach Based on Satellite-Based Rainfall Data and Dose-Response Functions—Case of UNESCO Site of Matera. Remote Sens. 2025, 17, 1443. https://doi.org/10.3390/rs17081443
Visone F, Abate N, Sileo M, Masini N. Assessing Stone Material Recession of Cultural Heritage: New Approach Based on Satellite-Based Rainfall Data and Dose-Response Functions—Case of UNESCO Site of Matera. Remote Sensing. 2025; 17(8):1443. https://doi.org/10.3390/rs17081443
Chicago/Turabian StyleVisone, Francesca, Nicodemo Abate, Maria Sileo, and Nicola Masini. 2025. "Assessing Stone Material Recession of Cultural Heritage: New Approach Based on Satellite-Based Rainfall Data and Dose-Response Functions—Case of UNESCO Site of Matera" Remote Sensing 17, no. 8: 1443. https://doi.org/10.3390/rs17081443
APA StyleVisone, F., Abate, N., Sileo, M., & Masini, N. (2025). Assessing Stone Material Recession of Cultural Heritage: New Approach Based on Satellite-Based Rainfall Data and Dose-Response Functions—Case of UNESCO Site of Matera. Remote Sensing, 17(8), 1443. https://doi.org/10.3390/rs17081443