Atmospheric Correction and Vicarious Calibration of Oceansat-1 Ocean Color Monitor (OCM) Data in Coastal Case 2 Waters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Data Processing Overview
2.2. Atmospheric Correction Procedure
2.2.1. Computation of Rayleigh Path Radiance (Lr(λi))
2.2.2. Computation of Aerosol Path radiance (La(λi))
2.2.3. Computation of Diffuse Transmittance (t(λi))
2.2.4. Computation of Water-Leaving Radiance (Lw(λi))
2.2.5. Computation of Normalized Water-Leaving Radiance (nLw(λi))
2.2.6. Computation of Remote Sensing Reflectance (Rrs(λi))
2.3. Vicarious Calibration
2.4. Destriping
3. Results and Discussion
4. Conclusions
Abbreviations
IRS | Indian Remote Sensing Satellite |
ISRO | Indian Space Research Organisation |
SeaWiFS | Sea-viewing Wide Field-of-View Sensor |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MERIS | Medium Resolution Imaging Spectrometer |
SeaDAS | SeaWiFS Data Analysis System |
OCTS | Ocean Color and Temperature Scanner |
CZCS | Coastal Zone Color Scanner |
CDOM | Chromophoric Dissolved Organic Matter |
FLAASH | Fast line-of-sight atmospheric analysis of spectral hypercubes |
MLAC | Merged local area coverage |
MOBY | Marine Optical Buoy |
NASA | National Aeronautics and Space Agency |
NRSC | National Remote Sensing Center |
OBPG | Ocean Biology Processing Group |
TOA | Top of the atmosphere |
TOMS | Total Ozone Mapping Spectrometer |
VIIRS | Visible Infrared Imager Radiometric Suite |
Acknowledgments
References
- Gould, R.W.; Arnone, R.A. Remote sensing estimates of inherent optical properties in a coastal environment. Remote Sens. Environ 1997, 61, 290–301. [Google Scholar]
- Morel, A.; Prieur, L. Analysis of variations in ocean color. Limnol. Oceanogr 1977, 22, 709–722. [Google Scholar]
- Dash, P.; Walker, N.D.; Mishra, D.R.; Hu, C.; Pinckney, J.L.; D‘Sa, E.J. Estimation of cyanobacterial pigments in a freshwater lake using OCM satellite data. Remote Sens. Environ 2011, 115, 3409–3423. [Google Scholar]
- Garcia, A.C.; Bargu, S.; Dash, P.; Rabalais, N.N.; Sutor, M.; Morrison, W.; Walker, N.D. Evaluating the potential risk of microcystins to blue crab (Callinectes sapidus) fisheries and human health in a eutrophic estuary. Harmful Algae 2010, 9, 134–143. [Google Scholar]
- Ren, L.; Rabalais, N.N.; Morrison, W.; Mendenhall, W.; Turner, R.E. Nutrient limitation on phytoplankton growth in upper Barataria Basin, Louisiana: microcosm bioassays. Estuaries Coasts 2009, 32, 958–974. [Google Scholar]
- Kutser, T. Passive optical remote sensing of cyanobacteria and other intense phytoplankton blooms in coastal and inland waters. Int. J. Remote Sens 2009, 30, 4401–4425. [Google Scholar]
- Hooker, S.B.; McClain, C.R.; Holmes, A. Ocean color imaging: CZCS to SeaWiFS. Marine Technol. Soc 1993, 27, 2–15. [Google Scholar]
- O‘Reilly, J.E.; Maritorena, S.; Mitchell, G.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C. Ocean color algorithms for SeaWiFS. J. Geophys. Res 1998, 103, 24937–24953. [Google Scholar]
- Crowley, M.F.; Bernstein, R.; Prasad, K.; Glenn, S. Oceansat‘s Ocean Color Monitor: An Instrument Whose Time Has Come. Proceedings of Oceans 2003, San Diego, CA, USA, 22–26 September 2003; 3, p. 1581.
- ISRO. Oceansat-2 Meeting Global Demand. Proceedings of 53rd Session of UNCOPUS 2010, Vienna, Austria, 9–18 June 2010; p. 11.
- Hu, C.; Carder, K.L.; Muller-Karger, F.E. Atmospheric correction of SeaWiFS imagery of turbid coastal waters: A practical method. Remote Sens. Environ 2000, 74, 195–206. [Google Scholar]
- Wang, M.; Franz, B.A. Comparing the ocean color measurements between MOS and SeaWiFS: A vicarious intercalibration approach for MOS. IEEE Trans. Geosci. Remote Sens 2000, 38, 184–197. [Google Scholar]
- D‘Sa, E.J.; Hu, C.; Muller-Karger, F.E.; Carder, K.L. Estimation of colored dissolved organic matter and salinity fields in case 2 waters using SeaWiFS: Examples from Florida Bay and Florida Shelf. Proc. Indian Acad. Sci. (Earth Planet. Sci.) 2002, 106, 197–207. [Google Scholar]
- Arnone, R.A.; Martinolich, P.; Gould, R.W., Jr.; Stumpf, R.P.; Ladner, S. Coastal Optical Properties Using SeaWiFS. Proceedings of Ocean Optics XIV 1998, Kailua Kona, HI, USA, 10–13 November 1998.
- Stumpf, R.P.; Arnone, R.A.; Gould, R.W., Jr.; Martinolich, P.M.; Ransibrahmanakul, V. A Partially Coupled Ocean-Atmosphere Model for Retrieval of Water-Leaving Radiance from SeaWiFS in Coastal Waters. In Algorithm Updates for the Fourth SeaWiFS Data Processing. SeaWiFS Postlaunch Technical Report Series; Hooker, S.B., Firestone, E.R., Eds.; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2003; Volume 22, pp. 51–59. [Google Scholar]
- Siegel, D.A.; Wang, M.; Maritorena, S.; Robinson, W. Atmospheric correction of satellite ocean color imagery: The black pixel assumption. Appl. Opt 2000, 39, 3582–3591. [Google Scholar]
- Gordon, H.R. Atmospheric correction of ocean color imagery in the Earth Observing System era. J. Geophys. Res 1997, 102, 17081–17106. [Google Scholar]
- Hu, C.; Chen, Z.; Clayton, T.D.; Swarzenski, P.; Brock, J.C.; Muller-Karger, F.E. Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL. Remote Sens. Environ 2004, 93, 423–441. [Google Scholar]
- Franz, B.A.; Bailey, S.W.; Werdell, P.J.; McClain, C.R. Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry. Appl. Opt 2007, 46, 5068–5082. [Google Scholar]
- McClain, C.R.; Ainsworth, E.J.; Barnes, R.A.; Eplee, R.E.; Patt, F.S.; Robinson, W.D.; Wang, M.; Bailey, S.W. SeaWiFS Postlaunch Calibration and Validation Overview. In SeaWiFS Postlaunch Calibration and Validation Analyses; Hooker, S.B., Firestone, E.R., Eds.; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2000; pp. 4–11. [Google Scholar]
- Barnes, R.A.; Eplee, R.E.; Schmidt, G.M.; Patt, F.S.; McClain, C.R. The calibration of SeaWiFS. I direct techniques. Appl. Opt 2001, 40, 6682–6700. [Google Scholar]
- Eplee, R.E.; Robinson, W.D.; Bailey, S.W.; Clark, D.K.; Werdell, P.J.; Wang, M.; Barnes, R.A.; Mcclain, C.R. The calibration of SeaWiFS. II vicarious techniques. Appl. Opt 2001, 40, 6701–6718. [Google Scholar]
- Suresh, T.; Desa, E.; Mascarenhas, A.; Matondkar, S.G.P.; Naik, P.; Nayak, S.R. Cross Calibration of IRS-P4 OCM Satellite Sensor. Proceedings of SPIE, Goa, India, 13–17 November 2006; 6404, pp. 1–9.
- Gordon, H.R.; Clark, D.K.; Brown, J.W.; Brown, O.B.; Evans, R.; Broenkow, W.W. Phytoplankton pigment concentrations in the Middle Atlantic Bight: Comparison of ship determinations and CZCS estimates. Appl. Opt 1983, 22. [Google Scholar]
- Mishra, D.R.; Narumalani, S.; Rundquist, D.; Lawson, M. High-Resolution ocean color remote sensing of benthic habitats: A case study at the Roatan Island, Honduras. IEEE Trans. Geosci. Remote Sens 2005, 43, 1592–1604. [Google Scholar]
- Gordon, H.R. Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response. Appl. Opt 1995, 34, 8363–8374. [Google Scholar]
- Gregg, W.W.; Carder, K.L. A simple spectral solar irradiance model for cloudless maritime atmospheres. Limnol. Oceanogr 1990, 35, 1657–1675. [Google Scholar]
- Pandya, M.R.; Singh, R.P.; Murali, K.R.; Babu, P.N.; Kirankumar, A.S.; Dadhwal, B.K. Bandpass Solar Exoatmospheric Irradiance and Rayleigh Optical Thickness of Sensors On Board Indian Remote Sensing Satellites-1B, -1C, -1D, and P4. IEEE Trans. Geosci. Remote Sens 2002, 40, 714–718. [Google Scholar]
- Hansen, J.E.; Travis, L.D. Light scattering in planetary atmospheres. Space Sci. Rev 1974, 16, 527–610. [Google Scholar]
- Doerffer, R. Imaging Spectroscopy for Detection of Chlorophyll and Suspended Matter. In Imaging Spectroscopy: Fundamentals and Prospective Applications; Toselli, F., Bodechtel, J., Eds.; Kluwer: London, UK, 1992; pp. 215–257. [Google Scholar]
- Bailey, S.; Franz, B. Personal Communication. 21 October 2009. [Google Scholar]
- Gordon, H.R.; Wang, M.H. Retrieval of water-leaving radiance and aerosol optical-thickness over the oceans with Seawifs—A preliminary algorithm. Appl. Opt 1994, 33, 443–452. [Google Scholar]
- Mohan, M.; Chauhan, P. Atmospheric Correction for Ocean Color Remote Sensing, ISRO Scientific Report; IRS-P4/SATCORE/SAC/RESIPA/MWRG/SR/22/2003; ISRO: Ahmedabad, India, 2003; p. 22. [Google Scholar]
- Gordon, H.R.; Voss, K.J. Modis Normalized Water-Leaving Radiance Algorithm Theoretical Basis Document; Contract Number NAS5-31363; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 1999; pp. 1–2. [Google Scholar]
- Kumar, S.A. Personal Communication. 3 March 2009. [Google Scholar]
- Lyon, P.E. An automated de-striping algorithm for Ocean Color Monitor imagery. Int. J. Remote Sens 2009, 30, 1493–1502. [Google Scholar]
- Gordon, H.R.; Brown, J.W.; Evans, R. Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner. Appl. Opt 1988, 27, 862–871. [Google Scholar]
- Kattawar, G.W.; Plass, G.N.; Hitzfelder, S.J. Multiple scattered radiation emerging from Rayleigh and continental haze layers. 1: Radiance, polarization, and neural points. Appl. Opt 1976, 15, 632. [Google Scholar]
- Wang, M.H. (Ed.) Atmospheric Correction for Remotely-Sensed Ocean-Colour Products; Reports of the International Ocean-Colour Coordinating Group; IOCCG: Dartmouth, Canada, 2010; Volume 10, p. 78.
- Sokoletsky, L.G.; Lunetta, R.S.; Wetz, M.S.; Paerl, H.W. MERIS retrieval of water quality components in the turbid albemarle-pamlico sound estuary, USA. Remote Sens 2011, 3, 684–707. [Google Scholar]
- Chen, H.-W.; Cheng, K.-S. A Conceptual model of surface reflectance estimation for satellite remote sensing images using in situ reference data. Remote Sens 2012, 4, 934–949. [Google Scholar]
- Bagheri, S. Nearshore Water quality estimation using atmospherically corrected AVIRIS data. Remote Sens 2011, 3, 257–269. [Google Scholar]
Parameters | OCM | SeaWiFS | OCM | SeaWiFS | OCM | SeaWiFS |
Date | 5-Nov-04 | 5-Nov-04 | 7-Nov-04 | 7-Nov-04 | 19-Dec-04 | 19-Dec-04 |
Time of pixel scan (UTC) | 18:05:43 | 18:55:33 | 18:06:05 | 18:38:46 | 18:05:47 | 19:09:18 |
Latitude | 28.198 | 28.198 | 26.504 | 26.504 | 27.702 | 27.702 |
Longitude | −92.001 | −92.001 | −89.001 | −89.001 | −91.802 | −91.802 |
Ozone Conc. (DU) | 267 | 267 | 275 | 275 | 280 | 280 |
Satellite Zenith Angle | 37.770 | 25.297 | 22.293 | 22.544 | 36.224 | 42.222 |
Solar Zenith Angle | 44.847 | 46.786 | 44.047 | 45.372 | 51.031 | 53.455 |
Satellite Azimuth Angle | 128.044 | 221.578 | 168.388 | 204.667 | 130.264 | 253.689 |
Solar Azimuth Angle | 184.652 | 201.311 | 188.896 | 200.078 | 180.242 | 198.544 |
Sat_az-180-Sol_az | −236.608 | −159.733 | −200.507 | −175.411 | −229.977 | −124.855 |
Relative Azimuth Angle | 123.391 | −159.733 | 159.492 | −175.411 | 130.022 | −124.855 |
Pressure | 1,023.73 | 1,023.73 | 1,020.44 | 1,020.44 | 1,024.73 | 1,024.73 |
Parameters | OCM | SeaWiFS | OCM | SeaWiFS | OCM | SeaWiFS |
Date | 17-Nov-06 | 17-Nov-06 | 20-Apr-07 | 20-Apr-07 | 21-Jun-07 | 21-Jun-07 |
Time of pixel scan (UTC) | 18:03:58 | 18:54:48 | 18:03:04 | 19:06:09 | 18:02:59 | 19:45:16 |
Latitude | 27.099 | 27.099 | 28 | 28 | 27.54 | 27.54 |
Longitude | −92.1 | −92.1 | −91.001 | −91.001 | −90.55 | −90.55 |
Ozone Conc. (DU) | 278 | 278 | 286 | 286 | 301 | 301 |
Satellite Zenith Angle | 37.110 | 41.733 | 32.523 | 31.258 | 30.426 | 49.963 |
Solar Zenith Angle | 46.643 | 48.527 | 16.588 | 22.102 | 3.879 | 23.191 |
Satellite Azimuth Angle | 129.368 | 125.144 | 135.770 | 140.678 | 142.916 | 260.344 |
Solar Azimuth Angle | 183.151 | 199.511 | 179.826 | 225.2 | 178.569 | 265.533 |
Sat_az-180-Sol_az | −233.782 | −254.367 | −224.055 | −264.522 | −215.653 | −185.189 |
Relative Azimuth Angle | 126.217 | 105.633 | 135.944 | 95.478 | 144.346 | 174.811 |
Pressure | 1,018.01 | 1,018.01 | 1,018.11 | 1,018.11 | 1,015.64 | 1,015.64 |
Bands | Wavelength (nm) | Vicarious Calibration Coefficients | Error in Original TOA Radiance |
---|---|---|---|
Band 1 | 404–424 (414.2) | 1.162430130338560 | 16.2% |
Band 2 | 432–452 (441.4) | 1.099317412022420 | 9.93% |
Band 3 | 479–499 (485.7) | 1.097377164249840 | 9.73% |
Band 4 | 502–522 (510.6) | 1.093961431616450 | 9.39% |
Band 5 | 547–567 (556.4) | 1.085434622452900 | 8.54% |
Band 6 | 660–680 (669.0) | 1.021605349340930 | 2.16% |
Share and Cite
Dash, P.; Walker, N.; Mishra, D.; D’Sa, E.; Ladner, S. Atmospheric Correction and Vicarious Calibration of Oceansat-1 Ocean Color Monitor (OCM) Data in Coastal Case 2 Waters. Remote Sens. 2012, 4, 1716-1740. https://doi.org/10.3390/rs4061716
Dash P, Walker N, Mishra D, D’Sa E, Ladner S. Atmospheric Correction and Vicarious Calibration of Oceansat-1 Ocean Color Monitor (OCM) Data in Coastal Case 2 Waters. Remote Sensing. 2012; 4(6):1716-1740. https://doi.org/10.3390/rs4061716
Chicago/Turabian StyleDash, Padmanava, Nan Walker, Deepak Mishra, Eurico D’Sa, and Sherwin Ladner. 2012. "Atmospheric Correction and Vicarious Calibration of Oceansat-1 Ocean Color Monitor (OCM) Data in Coastal Case 2 Waters" Remote Sensing 4, no. 6: 1716-1740. https://doi.org/10.3390/rs4061716
APA StyleDash, P., Walker, N., Mishra, D., D’Sa, E., & Ladner, S. (2012). Atmospheric Correction and Vicarious Calibration of Oceansat-1 Ocean Color Monitor (OCM) Data in Coastal Case 2 Waters. Remote Sensing, 4(6), 1716-1740. https://doi.org/10.3390/rs4061716