An Autonomous System to Take Angular Thermal-Infrared Measurements for Validating Satellite Products
Abstract
:1. Introduction: Background and Objectives
2. Experimental System and Setup
2.1. Description of the Autonomous System
2.2. Data Acquisition Procedure
2.3. TIR Radiometer Integrated into the System
2.4. Field Setup: Experimental Sites
3. Data Processing Methods
3.1. Ground-Truth LST Retrieval: Emissivity Correction
Site | Cover/Element | |
---|---|---|
Shrubland site | rosemary | 0.982 ± 0.005 |
gorse | 0.984 ± 0.006 | |
soil (Chromic luvisol, clay-loam) | 0.959 ± 0.006 | |
stone (Lithic Leptosol) | 0.960 ± 0.005 | |
Rice crop site | full vegetation cover | 0.985 ± 0.005 |
dry bare soil1,* | 0.962 ± 0.004 | |
wet bare soil (saturated)2,* | 0.971 ± 0.003 | |
flooded soil (water) | 0.986 ± 0.003 |
Zenith Angle (°) | |
---|---|
0 | 0.985 ± 0.005 |
18 | 0.986 ± 0.005 |
36 | 0.987 ± 0.005 |
54 | 0.989 ± 0.006 |
72 | 0.990 ± 0.006 |
3.2. Emissivity Angular Dependence: Relative-to-Nadir Emissivities
3.3. Satellite Data: EOS-MODIS and ENVISAT-AATSR
4. Results and Discussion
4.1. Evaluation of MODIS-Retrieved LST Products with the System Ground-Truth LSTs
LSTproduct – LSTground (K) | M*D11_L2 1 Pixel | M*D11A1 1 Pixel | M*D11_L2 3 × 3 | M*D11A1 3 × 3 |
---|---|---|---|---|
mean | −0.3 | −0.8 | −0.3 | −0.5 |
SD | 2.0 | 2.5 | 2.0 | 2.4 |
RMSE | 2.0 | 2.7 | 2.0 | 2.5 |
median | −0.12 | −0.5 | −0.11 | −0.3 |
RSD | 1.8 | 2.4 | 1.9 | 2.4 |
R−RMSE | 1.8 | 2.4 | 1.9 | 2.4 |
Skewness | −0.14 | −0.40 | −0.30 | −0.42 |
Kurtosis | 0.16 | −0.11 | 0.01 | −0.27 |
LSTproduct –LSTground (K) | M*D11_L2 1 Pixel | M*D11_L2 3 × 3 |
---|---|---|
mean | −0.2 | −0.4 |
SD | 2.1 | 2.2 |
RMSE | 2.1 | 2.2 |
median | −0.10 | −0.18 |
RSD | 1.9 | 2.0 |
R−RMSE | 1.9 | 2.0 |
Skewness | −0.04 | −0.20 |
Kurtosis | 0.13 | −0.05 |
LSTproduct –LSTground (K) | M*D11_L2 1 Pixel | M*D11_L2 3 × 3 |
mean | −0.08 | −0.01 |
SD | 1.8 | 1.8 |
RMSE | 1.8 | 1.8 |
median | −0.16 | −0.04 |
RSD | 1.6 | 1.8 |
R-RMSE | 1.6 | 1.8 |
Skewness | 0.06 | 0.10 |
Kurtosis | 0.11 | 0.15 |
4.2. Emissivity Angular Dependence
Date | AATSR Band/View | Zenith Angle (°) | (W/m2∙sr∙µm) | (W/m2∙sr∙µm) | |
---|---|---|---|---|---|
19 December 2011 | 11/nadir | 1.6 | 0.577 | 0.905 | 1.002 |
12/nadir | 1.6 | 0.905 | 0.845 | 1.472 | |
11/forward | 54.9 | 0.929 | 0.847 | 1.002 | |
12/forward | 54.9 | 1.354 | 0.766 | 1.472 | |
1 April 2011 | 11/nadir | 10.2 | 1.609 | 0.789 | 2.555 |
12/nadir | 10.2 | 2.302 | 0.676 | 3.399 | |
11/forward | 54.3 | 2.425 | 0.679 | 2.555 | |
12/forward | 54.3 | 3.218 | 0.545 | 3.399 | |
24 April 2011 | 11/nadir | 19.6 | 1.711 | 0.760 | 2.644 |
12/nadir | 19.6 | 2.397 | 0.640 | 3.504 | |
11/forward | 52.7 | 2.401 | 0.661 | 2.644 | |
12/forward | 52.7 | 3.154 | 0.522 | 3.504 | |
25 July 2011 | 11/nadir | 19.6 | 2.548 | 0.669 | 3.823 |
12/nadir | 19.6 | 3.361 | 0.526 | 4.800 | |
11/forward | 52.7 | 3.465 | 0.545 | 3.823 | |
12/forward | 52.7 | 4.262 | 0.391 | 4.800 |
Date | Land Cover | AATSR 11 µm | AATSR 12 µm |
---|---|---|---|
19 December 2011 | water-flooded soil | 0.986 ± 0.008 | 0.975 ± 0.009 |
19 December 2011 | water-near lagoon | 0.984 ± 0.002 | 0.971 ± 0.002 |
1 April 2011 | bare soil | 0.982 ± 0.005 | 0.972 ± 0.007 |
24 April 2011 | bare soil | 0.978 ± 0.007 | 0.973 ± 0.008 |
25 July 2011 | full vegetation cover | 0.994± 0.009 | 0.994 ± 0.009 |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Anderson, M.C.; Kustas, W.P.; Norman, J.M.; Hain, C.R.; Mecikalski, J.R.; Schultz, L.; Gonzalez-Dugo, M.P.; Cammalleri, C.; d’Urso, G.; Pimstein, A.; et al. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol. Earth Syst. Sci. 2011, 15, 223–239. [Google Scholar] [CrossRef] [Green Version]
- Hulley, G.; Veraverbeke, S.; Hook, S. Thermal-based techniques for land cover change detection using a new dynamic MODIS multispectral emissivity product (MOD21). Remote Sens. Environ. 2014, 140, 755–765. [Google Scholar] [CrossRef]
- Li, Z.L.; Tang, B.H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Kustas, W.P.; French, A.N.; Hatfield, J.L.; Jackson, T.J.; Moran, M.S.; Rango, A.; Schmugge, T.J. Remote sensing research in hydrometeorology. Photogramm. Eng. Remote Sens. 2003, 69, 631–646. [Google Scholar] [CrossRef]
- Sánchez, J.M.; Caselles, V.; Niclòs, R.; Coll, C.; Kustas, W.P. Estimating energy balance fluxes above a boreal forest from radiometric temperature observations. Agr. Forest Meteorol. 2009, 149, 1037–1049. [Google Scholar] [CrossRef]
- Coll, C.; Caselles, V.; Galve, J.M.; Valor, E.; Niclòs, R.; Sánchez, J.M.; Rivas, R. Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data. Remote Sen. Environ. 2005, 97, 288–300. [Google Scholar] [CrossRef]
- Coll, C.; Caselles, V.; Valor, E.; Niclòs, R.; Sánchez, J.M.; Galve, J.M.; Mira, M. Temperature and emissivity separation from ASTER data for low spectral contrast surfaces. Remote Sens. Environ. 2007, 110, 162–175. [Google Scholar] [CrossRef]
- Wan, Z.; Zhang, Y.; Zhang, Q.; Li, Z.L. Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sen. Environ. 2002, 83, 163–180. [Google Scholar] [CrossRef]
- Wan, Z. New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products. Remote Sens. Environ. 2008, 112, 59–74. [Google Scholar] [CrossRef]
- Fiebrich, C.A.; Martinez, J.E.; Brotzge, J.A.; Basara, J.B. The Oklahoma Mesonet’s skin temperature network. J. Atmos. Ocean. Technol. 2003, 20, 1496–1504. [Google Scholar] [CrossRef]
- Göttsche, F.M.; Olesen, F.S.; Bork-Unkelbach, A. Validation of land surface temperature derived from MSG/SEVIRI with in situ measurements at Gobabeb, Namibia. Int. J. Remote Sens. 2013, 34, 3069–3083. [Google Scholar] [CrossRef]
- Trigo, I.F.; Monteiro, I.T.; Olesen, F.; Kabsch, E. An assessment of remotely sensed land surface temperature. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Niclòs, R.; Caselles, V.; Coll, C.; Valor, E.; Sánchez, J.M. In situ surface temperature retrieval in a boreal forest under variable cloudiness conditions. Int. J. Remote Sens. 2005, 26, 3985–4000. [Google Scholar] [CrossRef]
- Theocharous, E.; Usadi, E.; Fox, N.P. CEOS Comparison of IR Brightness Temperature Measurements in Support of Satellite Validation. Part I: Laboratory and Ocean Surface Temperature Comparison of Radiation Thermometers; National Physical Laboratory: Teddington, UK, 2010. [Google Scholar]
- Brogniez, G.; Pietras, C.; Legrand, M.; Dubuisson, P.; Haeffelin, M. A high accuracy multiwavelength radiometer for in situ measurements in the thermal infrared. Part II: Behavior in field experiments. J. Atmos. Oceanic Technol. 2003, 20, 1023–1033. [Google Scholar] [CrossRef]
- Niclòs, R.; Galve, J.M.; Valiente, J.A.; Estrela, M.J.; Coll, C. Accuracy assessment of land surface temperature retrievals from MSG2-SEVIRI data. Remote Sens. Environ. 2011, 115, 2126–2140. [Google Scholar] [CrossRef]
- Coll, C.; Caselles, V.; Valor, E.; Niclòs, R. Comparison between different sources of atmospheric profiles for land surface temperature retrieval from single channel thermal infrared data. Remote Sens. Environ. 2012, 117, 199–210. [Google Scholar] [CrossRef]
- Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.; Kahle, A.B. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
- Mira, M.; Schmugge, T.J.; Valor, E.; Caselles, V.; Coll, C. Comparison of thermal infrared emissivities retrieved with the two-lid box and the TES methods with laboratory spectra. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1012–1021. [Google Scholar] [CrossRef]
- Rubio, E.; Caselles, V.; Coll, C.; Valor, E.; Sospedra, F. Thermal-infrared emissivities of natural surfaces: Improvements on the experimental set-up and new measurements. Int. J. Remote Sens. 2003, 24, 5379–5390. [Google Scholar] [CrossRef]
- García-Santos, V.; Valor, E.; Caselles, V.; Coll, C.; Burgos, M.A. Effect of soil moisture on the angular variation of thermal infrared emissivity of inorganic soils. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1091–1095. [Google Scholar] [CrossRef]
- Niclòs, R.; Doña, C.; Bisquert, M.; Valor, E. Thermal-infrared spectral and angular characterization of crude oil and seawater emissivities for oil slick identification. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5387–5395. [Google Scholar] [CrossRef]
- Salisbury, J.W.; D’Aria, D.M. Emissivity of terrestrial materials in the 8–14 µm atmospheric window. Remote Sens. Environ. 1992, 42, 83–106. [Google Scholar] [CrossRef]
- Horton, K.A.; Johson, J.R.; Lucey, P.G. Infrared measurements of Pristine and disturbed soils 2. Environmental effects and field data reduction. Remote Sens. Environ. 1998, 64, 47–52. [Google Scholar] [CrossRef]
- Valor, E.; Caselles, V. Mapping land surface emissivity from NDVI: Application to European, African and South American areas. Remote Sens. Environ. 1996, 57, 167–184. [Google Scholar] [CrossRef]
- Niclòs, R.; Valor, E.; Caselles, V.; Coll, C.; Sánchez, J.M. In situ angular measurements of thermal infrared sea surface emissivity—Validation of models. Remote Sens. Environ. 2005, 94, 83–93. [Google Scholar] [CrossRef]
- Niclòs, R.; Caselles, V.; Valor, E.; Coll, C.; Sánchez, J.M. A simple equation for determining the sea surface emissivity in the 3–15 μm region. Int. J. Remote Sens. 2009, 30, 1603–1619. [Google Scholar] [CrossRef]
- Lagouarde, J.P.; Kerr, Y.H.; Brunet, Y. An experimental study of angular effects on surface temperature for various plant canopies and bare soils. Agr. Forest Meteorol. 1995, 77, 167–190. [Google Scholar] [CrossRef]
- Labed, J.; Stoll, M.P. Angular variation of land surface spectral emissivity in the thermal infrared: Laboratory investigations on bare soils. Int. J. Remote Sens. 1991, 12, 2299–2310. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Cuenca, J. Angular variation of thermal infrared emissivity for some natural surfaces from experimental measurements. Appl. Opt. 1999, 38, 3931–3936. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land surface temperature from space. IEEE Trans. Geosci. Remote 1996, 34, 892–905. [Google Scholar] [CrossRef]
- Snyder, W.C.; Wan, Z.; Zhang, Y.; Feng, Y.Z. Classification-based emissivity for land surface temperature measurement from space. Int. J. Remote Sens. 1998, 19, 2753–2774. [Google Scholar] [CrossRef]
- Wan, Z. Collection-5 MODIS Land Surface Temperature Products Users’ Guide; ICESS, University of California: Santa Barbara, CA, USA, 2006. [Google Scholar]
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Chetwynd, J.H.; Bernstein, L.S.; Shettle, E.P.; Matthew, M.W.; Adler-Golden, S.M. MODTRAN 4 User Manual; Air Force Research Laboratory, Space Vehicles Directorate, Hanscom Air Force Base: Bedford, MA, USA, 1999. [Google Scholar]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40 year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Schroedter, M.; Olesen, F.; Fischer, H. Determination of land surface temperature distributions from single channel IR measurements: An effective spatial interpolation method for the use of TOVS, ECMWF and radiosonde profiles in the atmospheric correction scheme. Int. J. Remote Sens. 2003, 24, 1189–1196. [Google Scholar] [CrossRef]
- Schneider, P.; Ghent, D.; Corlett, G.; Prata, F.; Remedios, J. AATSR Validation: LST Validation Protocol. UL-NILU-ESA-LST-LVP Issue 1 Revision 0. 2012. Available online: http://lst.nilu.no/Portals/73/Docs/Reports/UL-NILU-ESA-LST-LVP-Issue1-Rev0-1604212.pdf (accessed on 5 November 2015).
- Li, H.; Sun, D.; Yu, Y.; Wang, H.; Liu, Y.; Liu, Q.; Du, Y.; Wang, H.; Cao, B. Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China. Remote Sens. Environ. 2014, 142, 111–121. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niclòs, R.; Valiente, J.A.; Barberà, M.J.; Coll, C. An Autonomous System to Take Angular Thermal-Infrared Measurements for Validating Satellite Products. Remote Sens. 2015, 7, 15269-15294. https://doi.org/10.3390/rs71115269
Niclòs R, Valiente JA, Barberà MJ, Coll C. An Autonomous System to Take Angular Thermal-Infrared Measurements for Validating Satellite Products. Remote Sensing. 2015; 7(11):15269-15294. https://doi.org/10.3390/rs71115269
Chicago/Turabian StyleNiclòs, Raquel, José A. Valiente, Maria J. Barberà, and César Coll. 2015. "An Autonomous System to Take Angular Thermal-Infrared Measurements for Validating Satellite Products" Remote Sensing 7, no. 11: 15269-15294. https://doi.org/10.3390/rs71115269
APA StyleNiclòs, R., Valiente, J. A., Barberà, M. J., & Coll, C. (2015). An Autonomous System to Take Angular Thermal-Infrared Measurements for Validating Satellite Products. Remote Sensing, 7(11), 15269-15294. https://doi.org/10.3390/rs71115269