High Resolution Orthomosaics of African Coral Reefs: A Tool for Wide-Scale Benthic Monitoring
Abstract
:1. Introduction
- (1)
- to quantify the trade-offs between sample scale and robustness in seascape metric estimation;
- (2)
- to quantify the trade-offs between sample quadrat density and robustness in seascape metrics estimation;
- (3)
- to define a set of guidelines for seascape metric estimation based on findings from (1) and (2).
2. Material and Methods
2.1. Study Site
2.2. Data Acquisition
2.3. Photogrammetric Process and Digitization
2.4. Seascape Metric Estimation
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hilmi, N.; Bambridge, T.; Claudet, J.; David, G.; Failler, P.; Feral, F.; Leopold, M.; Pascal, N.; Safa, A. Préserver la biodiversité des récifs coralliens: l’évaluation économique comme outil d’une gouvernance multi-échelle. In Les Sciences Sociales dans le Pacifique Sud : Terrains, Questions et Méthodes; Pacific-Credo Publications (Cahiers du Credo): Marseille, France, 2014; ISBN 978-2-9537485-2-9. pp. 291–312. [Google Scholar]
- Laurans, Y.; Pascal, N.; Binet, T.; Brander, L.; Clua, E.; David, G.; Rojat, D.; Seidl, A. Economic valuation of ecosystem services from coral reefs in the South Pacific: Taking stock of recent experience. J. Environ. Manag. 2013, 116, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Samonte, G.P.; Eisma-Osorio, R.L.; Amolo, R.; White, A. Economic value of a large marine ecosystem: Danajon double barrier reef, Philippines. Ocean Coast. Manag. 2016, 122, 9–19. [Google Scholar] [CrossRef]
- Seenprachawong, U. An economic analysis of coral reefs in the Andaman Sea of Thailand. In Marine and Coastal Ecosystem Valuation, Institutions, and Policy in Southeast Asia; Springer: Singapore, 2016; pp. 31–45. [Google Scholar]
- Assessment, M.E. Ecosystems and Human Well-Being; World Resources Institute: Washington, DC, USA, 2003. [Google Scholar]
- Pascal, N.; Allenbach, M.; Brathwaite, A.; Burke, L.; Le Port, G.; Clua, E. Economic valuation of coral reef ecosystem service of coastal protection: A pragmatic approach. Ecosyst. Serv. 2016, 21, 72–80. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Wilkinson, C.R.; Souter, D.N. Status of Caribbean Coral Reefs after Bleaching and Hurricanes in 2005; Global Coral Reef Monitoring Network: Townsville, Australia, 2008. [Google Scholar]
- Burke, L.; Reytar, K.; Spalding, M.; Perry, A. Reefs at Risk Revisited; World Resources Institute: Washington, DC, USA, 2011. [Google Scholar]
- Mora, C. 36 Perpetual struggle for conservation in a crowded world and the needed paradigm shift for easing ultimate burdens. In Ecology of Fishes on Coral Reefs; Cambridge University Press: Cambridge, UK, 2015; Volume 20, p. 289. [Google Scholar]
- Cheal, A.J.; MacNeil, M.A.; Emslie, M.J.; Sweatman, H. The threat to coral reefs from more intense cyclones under climate change. Glob. Chang. Biol. 2017, 23, 1511–1524. [Google Scholar] [CrossRef] [PubMed]
- The Government of the Hong Kong Special Administrative Region. Hong Kong Biodiversity Strategy Action Plan 2016–2021. 2016. Available online: https://www.afcd.gov.hk/tc_chi/conservation/Con_hkbsap/files/HKBSAP_ENG_2.pdf (accessed on 15 April 2017).
- González-Rivero, M.; Beijbom, O.; Rodriguez-Ramirez, A.; Holtrop, T.; González-Marrero, Y.; Ganase, A.; Roelfsema, C.; Phinn, S.; Hoegh-Guldberg, O. Scaling up Ecological Measurements of Coral Reefs Using Semi-Automated Field Image Collection and Analysis. Remote Sens.-Basel 2016, 8, 30. [Google Scholar] [CrossRef]
- Hattori, A.; Shibuno, T. Total volume of 3D small patch reefs reflected in aerial photographs can predict total species richness of coral reef damselfish assemblages on a shallow back reef. Ecol. Res. 2015, 30, 675–682. [Google Scholar] [CrossRef]
- Hedley, J.D.; Roelfsema, C.M.; Chollett, I.; Harborne, A.R.; Heron, S.F.; Weeks, S.; Skirving, W.J.; Strong, A.E.; Eakin, C.M.; Christensen, T.R.; et al. Remote sensing of coral reefs for monitoring and management: A review. Remote Sens.-Basel 2016, 8, 118. [Google Scholar] [CrossRef]
- Beijbom, O.; Edmunds, P.J.; Kline, D.I.; Mitchell, B.G.; Kriegman, D. Automated annotation of coral reef survey images. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence Rhode Island Convention Center Providence, RI, USA, 16–21 June 2012; pp. 1170–1177. [Google Scholar]
- Friedman, A.; Pizarro, O.; Williams, S.B.; Johnson-Roberson, M. Multi-scale measures of rugosity, slope and aspect from benthic stereo image reconstructions. PLoS ONE 2012, 7, e50440. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.B.; Pizarro, O.R.; Jakuba, M.V.; Johnson, C.R.; Barrett, N.S.; Babcock, R.C.; Kendrick, G.A.; Steinberg, P.D.; Heyward, A.J.; Doherty, P.J.; et al. Monitoring of benthic reference sites: using an autonomous underwater vehicle. IEEE Robot. Autom. Mag. 2012, 19, 73–84. [Google Scholar] [CrossRef]
- Ferrari, R.; Bryson, M.; Bridge, T.; Hustache, J.; Williams, S.B.; Byrne, M.; Figueira, W. Quantifying the response of structural complexity and community composition to environmental change in marine communities. Glob. Chang. Biol. 2016, 22, 1965–1975. [Google Scholar] [CrossRef] [PubMed]
- Costa, B.; Battista, T.; Pittman, S. Comparative evaluation of airborne LiDAR and ship-based multibeam SoNAR bathymetry and intensity for mapping coral reef ecosystems. Remote Sens. Environ. 2009, 113, 1082–1100. [Google Scholar] [CrossRef]
- De’ath, G.; Fabricius, K.E.; Sweatman, H.; Puotinen, M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. USA 2012, 109, 17995–17999. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Selch, D.; Xie, Z.; Roberts, C.; Cooper, H.; Chen, G. Object-based benthic habitat mapping in the Florida Keys from hyperspectral imagery. Estuar. Coast. Shelf Sci. 2013, 134, 88–97. [Google Scholar] [CrossRef]
- Barnes, B.B.; Hallock, P.; Hu, C.; Muller-Karger, F.; Palandro, D.; Walter, C.; Zepp, R. Prediction of coral bleaching in the Florida Keys using remotely sensed data. Coral Reefs 2015, 34, 491–503. [Google Scholar] [CrossRef]
- Lecours, V.; Devillers, R.; Schneider, D.C.; Lucieer, V.L.; Brown, C.J.; Edinger, E.N. Spatial scale and geographic context in benthic habitat mapping: Review and future directions. Mar. Ecol. Prog. Ser. 2015, 535, 259–284. [Google Scholar] [CrossRef]
- Leon, J.X.; Roelfsema, C.M.; Saunders, M.I.; Phinn, S.R. Measuring coral reef terrain roughness using ‘Structure-from-Motion’close-range photogrammetry. Geomorphology 2015, 242, 21–28. [Google Scholar] [CrossRef]
- Storlazzi, C.D.; Dartnell, P.; Hatcher, G.A.; Gibbs, A.E. End of the chain? Rugosity and fine-scale bathymetry from existing underwater digital imagery using structure-from-motion (SfM) technology. Coral Reefs 2016, 35, 889–894. [Google Scholar] [CrossRef]
- Figueira, W.; Ferrari, R.; Weatherby, E.; Porter, A.; Hawes, S.; Byrne, M. Accuracy and precision of habitat structural complexity metrics derived from underwater photogrammetry. Remote Sens.-Basel 2015, 7, 16883–16900. [Google Scholar] [CrossRef]
- Carrivick, J.L.; Smith, M.W.; Quincey, D.J. Structure from Motion in the Geosciences; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Westoby, M.; Brasington, J.; Glasser, N.; Hambrey, M.; Reynolds, J. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- McCarthy, J.; Benjamin, J. Multi-image photogrammetry for underwater archaeological site recording: An accessible, diver-based approach. J. Marit. Archaeol. 2014, 9, 95–114. [Google Scholar] [CrossRef]
- Casella, E.; Collin, A.; Harris, D.; Ferse, S.; Bejarano, S.; Parravicini, V.; Hench, J.L.; Rovere, A. Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques. Coral Reefs 2016, 1, 269–275. [Google Scholar] [CrossRef]
- González-Rivero, M.; Bongaerts, P.; Beijbom, O.; Pizarro, O.; Friedman, A.; Rodriguez-Ramirez, A.; Upcroft, B.; Laffoley, D.; Kline, D.; Bailhache, C.; et al. The Catlin Seaview Survey–kilometre-scale seascape assessment, and monitoring of coral reef ecosystems. Aquat. Conserv. 2014, 24, 184–198. [Google Scholar] [CrossRef]
- Burns, J.; Delparte, D.; Kapono, L.; Belt, M.; Gates, R.; Takabayashi, M. Assessing the impact of acute disturbances on the structure and composition of a coral community using innovative 3D reconstruction techniques. Method Oceanogr. 2016, 15, 49–59. [Google Scholar] [CrossRef]
- Chirayath, V.; Earle, S.A. Drones that see through waves–preliminary results from airborne fluid lensing for centimetre-scale aquatic conservation. Aquat. Conserv.: Mar. Freshw. Ecosyst. 2016, 26, 237–250. [Google Scholar] [CrossRef]
- Gutiérrez-Heredia, L.; D’Helft, C.; Reynaud, E. Simple methods for interactive 3D modeling, measurements, and digital databases of coral skeletons. Limnol. Oceanogr.: Methods 2015, 13, 178–193. [Google Scholar] [CrossRef]
- Lavy, A.; Eyal, G.; Neal, B.; Keren, R.; Loya, Y.; Ilan, M. A quick, easy and non-intrusive method for underwater volume and surface area evaluation of benthic organisms by 3D computer modelling. Methods Ecol. Evol. 2015, 6, 521–531. [Google Scholar] [CrossRef]
- Boström, C.; Pittman, S.J.; Simenstad, C.; Kneib, R.T. Seascape ecology of coastal biogenic habitats: Advances, gaps, and challenges. Mar. Ecol. Prog. Ser. 2011, 427, 191–217. [Google Scholar] [CrossRef]
- Wedding, L.M.; Lepczyk, C.A.; Pittman, S.J.; Friedlander, A.M.; Jorgensen, S. Quantifying seascape structure: Extending terrestrial spatial pattern metrics to the marine realm. Mar. Ecol. Prog. Ser. 2011, 427, 219–232. [Google Scholar] [CrossRef]
- Kendall, M.S.; Miller, T. The influence of thematic and spatial resolution on maps of a coral reef ecosystem. Mar. Geod. 2008, 31, 75–102. [Google Scholar] [CrossRef]
- Garrabou, J.; Riera, J.; Zabala, M. Landscape pattern indices applied to Mediterranean subtidal rocky benthic communities. Landsc. Ecol. 1998, 13, 225–247. [Google Scholar] [CrossRef]
- Garrabou, J.; Ballesteros, E.; Zabala, M. Structure and dynamics of north-western Mediterranean rocky benthic communities along a depth gradient. Estuar. Coast. Shelf Sci. 2002, 55, 493–508. [Google Scholar] [CrossRef]
- Turner, M.G. Landscape Ecol: The effect of pattern on process. Annu. Rev. Ecol. Syst. 1989, 20, 171–197. [Google Scholar] [CrossRef]
- Pittman, S.J.; Costa, B.M.; Battista, T.A. Using lidar bathymetry and boosted regression trees to predict the diversity and abundance of fish and corals. J. Coast. Res. 2009. [Google Scholar] [CrossRef]
- Wedding, L.M.; Friedlander, A.M.; McGranaghan, M.; Yost, R.S.; Monaco, M.E. Using bathymetric lidar to define nearshore benthic habitat complexity: Implications for management of reef fish assemblages in Hawaii. Remote Sens. Environ. 2008, 112, 4159–4165. [Google Scholar] [CrossRef]
- Purkis, S.J.; Graham, N.; Riegl, B. Predictability of reef fish diversity and abundance using remote sensing data in Diego Garcia (Chagos Archipelago). Coral reefs 2008, 27, 167–178. [Google Scholar] [CrossRef]
- Schleyer, M. South African coral communities. In Coral Reefs of the Indian Ocean: Their Ecology and Conservation; Oxford University Press: New York, NY, USA, 2000; pp. 83–105. [Google Scholar]
- Ramsay, P. Marine geology of the Sodwana Bay shelf, southeast Africa. Mar. Geol. 1994, 120, 225–247. [Google Scholar] [CrossRef]
- Ramsay, P. Quaternary marine geology of the Sodwana Bay continental shelf, Northern KwaZulu-Natal. Oceanogr. Lit. Rev. 1996, 11, 1103. [Google Scholar]
- Schleyer, M.; Celliers, L. Coral dominance at the reef–sediment interface in marginal coral communities at Sodwana Bay, South Africa. Mar. Freshw. Res. 2004, 54, 967–972. [Google Scholar] [CrossRef]
- Riegl, B. Taxonomy and Ecology of South African Reef Corals. Ph.D. Thesis, University of Cape Town, Cape Town, South Africa, 1993. [Google Scholar]
- Jordan, I.E.; Samways, M.J. Recent changes in coral assemblages of a South African coral reef, with recommendations for long-term monitoring. Biodivers. Conserv. 2001, 10, 1027–1037. [Google Scholar] [CrossRef]
- Celliers, L.; Schleyer, M.H. Coral community structure and risk assessment of high-latitude reefs at Sodwana Bay, South Africa. Biodivers. Conserv. 2008, 17, 3097–3117. [Google Scholar] [CrossRef]
- Robertson, W.; Schleyer, M.; Fielding, P.; Tomalin, B.; Beckley, L.; Fennessy, S.; Van der Elst, R.; Bandeira, S.; Macia, A.; Gove, D. Inshore Marine Resources and Associated Opportunities for Development of the Coast of Southern Mozambique: Ponta do Ouro to Cabo de Santa Maria; Technical report; Oceanographic Research Institute: Durban, South Africa, 1996; Unpublished report. [Google Scholar]
- Dai, C.F. Interspecific competition in Taiwanese corals with special reference to interactions between alcyonaceans and scleractinians. Mar. Ecol. Prog. Ser. 1990, 60, 291–297. [Google Scholar] [CrossRef]
- Riegl, B. Effects of sand deposition on scleractinian and alcyonacean corals. Mar. Biol. 1995, 121, 517–526. [Google Scholar] [CrossRef]
- Schumann, E.; Orren, M. The Physico-Chemical Characteristics of the South-West Indian Ocean in Relation to Maputaland; Rhodes University: Grahamstown, South Africa; The Wildlife Society of Southern Africa: Durban, South Africa, 1980; pp. 8–11. [Google Scholar]
- Schleyer, M.H.; Kruger, A.; Celliers, L. Long-term community changes on a high-latitude coral reef in the Greater St Lucia Wetland Park, South Africa. Mar. Pollut. Bull. 2008, 56, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Ferraris, D.; Palma, M.; Pantaleo, U.; Cerrano, C.; Chiantore, M. Method and Device for Tracking the Path of an Object. PCT/IB2016/053924. 9 March 2017. [Google Scholar]
- Roelfsema, C.; Phinn, S.; Jupiter, S.; Comley, J.; Albert, S. Mapping coral reefs at reef to reef-system scales, 10s–1000s km2, using object-based image analysis. Int. J. Remote Sens. 2013, 34, 6367–6388. [Google Scholar] [CrossRef]
- Edinger, E.N.; Risk, M.J. Reef classification by coral morphology predicts coral reef conservation value. Biol. Conserv. 2000, 92, 1–13. [Google Scholar] [CrossRef]
- MacArthur, R.H.; Wilson, E.O. Theory of Island Biogeography.(MPB-1); Princeton University Press: Princeton, NJ, USA, 2015; Volume 1. [Google Scholar]
- Weinberg, S. A comparison of coral reef survey methods. Bijdragen tot de Dierkunde 1981, 51, 199–218. [Google Scholar]
- Bianchi, C.; Pronzato, R.; Cattaneo-Vietti, R.; Benedetti-Cecchi, L.; Morri, C.; Pansini, M.; Chemello, R.; Milazzo, M.; Fraschetti, S.; Terlizzi, A.; et al. Hard bottoms. Biol. Mar. Mediterr. 2004, 11, 185–215. [Google Scholar]
- Guinda, X.; Gracia, A.; Puente, A.; Juanes, J.A.; Rzhanov, Y.; Mayer, L. Application of landscape mosaics for the assessment of subtidal macroalgae communities using the CFR index. Deep Sea Res. II: Top. Stud. Oceanogr. 2014, 106, 207–215. [Google Scholar] [CrossRef]
- Mcgarigal, K.; Cushman, S.A.; Neel, M.C.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps; Technical report; Department of Environmental Conservation University of Massachusetts: Amherst, MA, USA, 2002. [Google Scholar]
- Teixido, N.; Garrabou, J.; Arntz, W. Spatial pattern quantification of Antarctic benthic communities using landscape indices. Mar. Ecol. Prog. Ser. 2002, 242, 1–14. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; Gen tech rep pnw-gtr-351; United States Department of Agriculture, Forest Service, Pacific Northwest Research Station: Corvallis, OR, USA, 1995. [Google Scholar]
- Dornelas, M.; Madin, J.S.; Baird, A.H.; Connolly, S.R. Allometric growth in reef-building corals. Proc. R. Soc. B Biol. Sci. 2017, 284. Available online: http://rspb.royalsocietypublishing.org/content/284/1851/20170053.full.pdf (accessed on 1 May 2017). [CrossRef] [PubMed]
- He, H.S.; DeZonia, B.E.; Mladenoff, D.J. An aggregation index (AI) to quantify spatial patterns of landscapes. Landsc. Ecol. 2000, 15, 591–601. [Google Scholar] [CrossRef]
- Cowen, R.K.; Sponaugle, S. Larval dispersal and marine population connectivity. Annu. Rev. Mar. Sci. 2009, 1, 443–466. [Google Scholar] [CrossRef] [PubMed]
- Nyström, M. Redundancy and response diversity of functional groups: Implications for the resilience of coral reefs. AMBIO: J. Hum. Environ. 2006, 35, 30–35. [Google Scholar] [CrossRef]
- Spellerberg, I.F.; Fedor, P.J. A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’Index. Glob. Ecol. Biogeogr. 2003, 12, 177–179. [Google Scholar] [CrossRef]
- Somerfield, P.; Clarke, K.; Warwick, R. Simpson index. In Encyclopedia of Ecology; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Hawkins, S.; Hartnoll, R. A study of the small-scale relationship between species number and area on a rocky shore. Estuar. Coast. Mar. Sci. 1980, 10, 201–214. [Google Scholar] [CrossRef]
- Sleeman, J.C.; Kendrick, G.A.; Boggs, G.S.; Hegge, B.J. Measuring fragmentation of seagrass landscapes: Which indices are most appropriate for detecting change? Mar. Freshw. Res. 2005, 56, 851–864. [Google Scholar] [CrossRef]
- Starmans, A.; Gutt, J. Mega-epibenthic diversity: A polar comparison. Mar. Ecol. Prog. Ser. 2002, 225, 45–52. [Google Scholar] [CrossRef]
- Starmans, A.; Gutt, J.; Arntz, W. Mega-epibenthic communities in Arctic and Antarctic shelf areas. Mar. Biol. 1999, 135, 269–280. [Google Scholar] [CrossRef]
- Floros, C.; Schleyer, M. The functional importance of Acropora austera as nursery areas for juvenile reef fish on South African coral reefs. Coral Reefs 2016, 1, 139–149. [Google Scholar] [CrossRef]
- Weinberg, S. The minimal area problem in invertebrate communities of Mediterranean rocky substrata. Mar. Biol. 1978, 49, 33–40. [Google Scholar] [CrossRef]
- Drakare, S.; Lennon, J.J.; Hillebrand, H. The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol. Lett. 2006, 9, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Walther, B.A.; Martin, J.L. Species richness estimation of bird communities: How to control for sampling effort? IBIS 2001, 143, 413–419. [Google Scholar] [CrossRef]
- Condit, R.; Hubbell, S.P.; Lafrankie, J.V.; Sukumar, R.; Manokaran, N.; Foster, R.B.; Ashton, P.S. Species-area and species-individual relationships for tropical trees: A comparison of three 50-ha plots. J. Ecol. 1996, 84, 549–562. [Google Scholar] [CrossRef]
- Gotelli, N.J.; Colwell, R.K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 2001, 4, 379–391. [Google Scholar] [CrossRef]
- Stout, J.; Vandermeer, J. Comparison of species richness for stream-inhabiting insects in tropical and mid-latitude streams. Am. Nat. 1975, 109, 263–280. [Google Scholar] [CrossRef]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.; De Siqueira, M.F.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Porter, S.; Branch, G.; Sink, K. Biogeographic patterns on shallow subtidal reefs in the western Indian Ocean. Mar. Biol. 2013, 160, 1271–1283. [Google Scholar] [CrossRef]
- Porter, S.; Schleyer, M. Long-term dynamics of a high-latitude coral reef community at Sodwana Bay, South Africa. Coral Reefs 2017, 36, 369–382. [Google Scholar] [CrossRef]
Metrics | Index | Description |
---|---|---|
Area Density Edge | Landscape Shape Index (LSI) | Normalized ratio of edge (i.e., patch perimeters) to area (i.e., seascape defined by the sampling scale) in which the total length of edge is compared to a seascape with a standard shape (square) of the same size and without any internal edge. LSI = 1 when the seascape consists of a single square patch; LSI increases without limit as the morphology becomes more disaggregated. LSI provides a simple measure of morphological aggregation or clumpiness. |
Largest Patch Index (LPI) | Percentage of the seascape comprised of the single largest patch. LPI approaches 0 when the largest patch is increasingly small. LPI = 100 when the entire seascape consists of a single patch; that is, when the largest patch comprises 100% of the seascape. | |
Shape | Perimeter Area Ratio (PARA) | Simple ratio of patch perimeter to area in which patch shape is confounded with patch size. The ratio is not standardized to a simple Euclidean shape (e.g., square); an increase in patch size will cause a decrease in the perimeter-area ratio. |
Contagion Interspersion | Aggregation Index (AI) | The ratio of the observed number of like adjacencies to the maximum possible number of like adjacencies given the proportion of the seascape comprised of each patch type (%). The maximum number of like adjacencies is achieved when the morphological class is clumped into a single compact patch, which does not have to be a square. |
Division Index (DIVISION) | The probability that two randomly chosen pixels in the sea-scape are not situated in the same patch. Maximum values are achieved when the seascape is maximally subdivided; that is, when every pixel is a separate patch. | |
Diversity | Patch Richness (PR) | Number of patch types present in the seascape. |
Shannon’s Diversity Index (SHDI) | Represent the amount of “information” per morphological class; larger values indicate a greater number of patch types and /or greater evenness among types. | |
Simpson’s Diversity Index (SIDI) | The probability that any two pixels selected at random would correspond to different patch types; the larger the values the greater the likelihood than any two randomly drawn pixels would be different patch types. | |
Shannon’s Evenness Index (SHEI) | Proportion of maximum Shannon’s Diversity Index based on the distribution of area among patch types and typically given as the observed level diversity divided by the maximum possible diversity given the patch richness. SHEI = 1 when the area is distributed evenly among patch types. | |
Simpson’s Evenness Index (SIEI) | Proportion of maximum Simpson’s Diversity Index based on the distribution of area among patch types and typically given as the observed level diversity divided by the maximum possible diversity given the patch richness. SIEI = 1 when the area is distributed evenly among patch types. |
Acronym | Description | Count | Average Dimension | Max Dimension | Min Dimension |
---|---|---|---|---|---|
ACB | Acropora, branching (e.g., A. austera) | 15 | 0.716 | 0.225 | |
ACD | Acropora, digitate, stubby (e.g., A. humilis) | 465 | 0.821 | 0.044 | |
ACS | Acropora, columns and blades, very stout (e.g., A. palifera and A. cuneata) | 109 | 0.467 | 0.001 | |
ACC | Acropora, stout branches, low bushy shape | 20 | 0.148 | 0.005 | |
CM | Non-Acropora massive or multilobate corals (e.g., Platygyra spp. and Galaxea spp.) | 559 | 0.544 | 0.0005 | |
CE | Low relief, often small colonies (e.g. Porites spp.) | 533 | 1.281 | 0.002 | |
CTU | Tabular coral (e.g., Turbinaria sp.) | 4 | 1.160 | 0.009 | |
CMR | Free-living fungiid corals | 141 | 0.034 | 0.015 | |
CB | Branching non-Acropora corals (e.g., Pocillopora spp.) | 275 | 0.089 | 0.065 | |
CF | Foliose, either horizontal or vertical, non-Acropora, (e.g., Montipora spp., Echinopora spp.) | 2 | 0.1138 | 0.0164 | |
OI | Other invertebrates inclusive of gasterops, tunicates, echinoderms and other hexacorals | 339 | 1.044 | 0.00008 | |
SCF | Erect in profile, but soft and pliable with an expanded disk and stalk (e.g., Sarcophyton spp.) | 461 | 0.137 | 0.046 | |
SCD | Soft and pliable colonies (e.g., Sinularia spp.) | 1916 | 7.6134 | 0.045 | |
SCC | Low in profile and rigid with mounded radial (e.g., L. latilobatum) | 1721 | 4.376 | 0.645 | |
SCR | Low in profile and rigid with erect radial or parallel lobes (e.g., L. crassum). | 342 | 0.974 | 0.002 | |
SCP | Low in profile and plane on the surface (e.g., L. depressum) | 466 | 0.0562 | 0.0007 | |
SP | General sponges | 6 | 0.092 | 0.001 | |
SPM | Massive or dome-like sponges | 3 | 0.119 | 0.046 | |
SPE | Encrusting sponges | 2 | 0.086 | 0.055 | |
TA | Algae and algal turf | 168 | 0.144 | 0.0004 |
Scale | 0.5 m × 0.5 m | 2 m × 2 m | 5 m × 5 m | 7 m × 7 m | Expected | ||||
---|---|---|---|---|---|---|---|---|---|
Density | Random | Nested | Random | Nested | Random | Nested | Random | Nested | |
10 | 24 | 25 | 29 | 28 | 28 | 28 | 27 | 27 | 30 |
20 | 50 | 49 | 54 | 56 | 53 | 53 | 44 | 44 | 60 |
30 | 73 | 70 | 78 | 83 | 80 | 80 | 73 | 73 | 90 |
40 | 91 | 98 | 113 | 116 | 108 | 108 | 109 | 109 | 120 |
50 | 127 | 117 | 142 | 142 | 136 | 136 | 130 | 130 | 150 |
60 | 145 | 146 | 178 | 176 | 167 | 167 | 161 | 162 | 180 |
70 | 164 | 161 | 201 | 204 | 202 | 202 | 190 | 190 | 210 |
80 | 191 | 187 | 237 | 234 | 225 | 225 | 223 | 223 | 240 |
90 | 213 | 216 | 260 | 265 | 244 | 245 | 250 | 250 | 270 |
100 | 240 | 239 | 287 | 290 | 291 | 290 | 270 | 282 | 300 |
Acronym | Value | Acronym | Value |
---|---|---|---|
LSI | 2.91 | LPI | 0.47% |
PARA | 4.52 e5 | AI | 95.61% |
DIVISION | 0.99% | PR | 23 |
SHDI | 1.94 | SIDI | 0.78 |
SHEI | 0.62 | SIEI | 0.83 |
Random | Nested | |||
---|---|---|---|---|
Metric | Scale | Quadrat Density | Scale | Quadrat Density |
LSI | 7 × 7 | 40 | 7 × 7 | 70 |
LPI | 5 × 5 | 30 | 5 × 5 | 40 |
PARA | 5 × 5 | 30 | 2 × 2 | 40 |
AI | 5 × 5 | 20 | 2 × 2 | 30 |
DIVISION | 2 × 2 | 40 | 2 × 2 | 40 |
PR | 7 × 7 | 10 | 7 × 7 | 10 |
SHDI | 7 × 7 | 10 | 7 × 7 | 10 |
SIDI | 5 × 5 | 10 | 5 × 5 | 10 |
SHEI | 5 × 5 | 10 | 5 × 5 | 10 |
SIEI | 5 × 5 | 10 | 5 × 5 | 10 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palma, M.; Rivas Casado, M.; Pantaleo, U.; Cerrano, C. High Resolution Orthomosaics of African Coral Reefs: A Tool for Wide-Scale Benthic Monitoring. Remote Sens. 2017, 9, 705. https://doi.org/10.3390/rs9070705
Palma M, Rivas Casado M, Pantaleo U, Cerrano C. High Resolution Orthomosaics of African Coral Reefs: A Tool for Wide-Scale Benthic Monitoring. Remote Sensing. 2017; 9(7):705. https://doi.org/10.3390/rs9070705
Chicago/Turabian StylePalma, Marco, Monica Rivas Casado, Ubaldo Pantaleo, and Carlo Cerrano. 2017. "High Resolution Orthomosaics of African Coral Reefs: A Tool for Wide-Scale Benthic Monitoring" Remote Sensing 9, no. 7: 705. https://doi.org/10.3390/rs9070705
APA StylePalma, M., Rivas Casado, M., Pantaleo, U., & Cerrano, C. (2017). High Resolution Orthomosaics of African Coral Reefs: A Tool for Wide-Scale Benthic Monitoring. Remote Sensing, 9(7), 705. https://doi.org/10.3390/rs9070705