Nutrition and Lung Growth
Abstract
:1. Introduction
2. Fetal Nutrition and Lung Development
3. Effects of IUGR on Lung Function and Respiratory Health
4. Postnatal Early Nutrition and Lung Growth
5. Malnutrition and Lung Growth in Childhood
6. Influence of Micronutrients on Lung Development
6.1. Vitamin A
6.2. Vitamin D
6.3. Vitamin E
6.4. Selenium
6.5. Zinc
6.6. Docosahexaenoic Acid
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stocks, J.; Hislop, A.; Sonnappa, S. Early lung development: Lifelong effect on respiratory health and disease. Lancet Respir. Med. 2013, 1, 728–742. [Google Scholar] [CrossRef]
- Burri, P.H. Structural Aspects of Postnatal Lung Development–Alveolar Formation and Growth. Neonatology 2006, 89, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Berry, C.E.; Billheimer, D.; Jenkins, I.C.; Lu, Z.J.; Stern, D.A.; Gerald, L.B.; Carr, T.F.; Guerra, S.; Morgan, W.J.; Wright, A.L.; et al. A Distinct Low Lung Function Trajectory from Childhood to the Fourth Decade of Life. Am. J. Respir. Crit. Care Med. 2016, 194, 607–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belgrave, D.C.M.; Granell, R.; Turner, S.W.; Curtin, J.A.; Buchan, I.E.; Le Souëf, P.N.; Simpson, A.; Henderson, A.J.; Custovic, A. Lung function trajectories from pre-school age to adulthood and their associations with early life factors: A retrospective analysis of three population-based birth cohort studies. Lancet Respir. Med. 2018. [Google Scholar] [CrossRef]
- Bui, D.S.; Lodge, C.J.; Burgess, J.A.; Lowe, A.J.; Perret, J.; Bui, M.Q.; Bowatte, G.; Gurrin, L.; Johns, D.P.; Thompson, B.R.; et al. Childhood predictors of lung function trajectories and future COPD risk: A prospective cohort study from the first to the sixth decade of life. Lancet Respir. Med. 2018. [Google Scholar] [CrossRef]
- Bush, A. Lung Development and Aging. Ann. Am. Thorac. Soc. 2016, 13, S438–S446. [Google Scholar] [CrossRef] [PubMed]
- Joss-Moore, L.A.; Albertine, K.H.; Lane, R.H. Epigenetics and the developmental origins of lung disease. Mol. Genet. Metab. 2011, 104, 61–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harding, R.; Maritz, G. Maternal and fetal origins of lung disease in adulthood. Semin. Fetal. Neonatal Med. 2012, 17, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Harding, R.; De Matteo, R. Chapter 19—The Influence of Nutrition on Lung Development before and after Birth. In The Lung, 2nd ed.; Academic Press: Boston, MA, USA, 2014; pp. 349–368. ISBN 978-0-12-799941-8. [Google Scholar]
- Sharma, D.; Shastri, S.; Sharma, P. Intrauterine Growth Restriction: Antenatal and Postnatal Aspects. Clin. Med. Insights Pediatr. 2016, 10, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Briana, D.D.; Malamitsi-Puchner, A. Small for gestational age birth weight: Impact on lung structure and function. Paediatr. Respir. Rev. 2013, 14, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Moya, F. Preterm Nutrition and the Lung. Nutr. Care Preterm Infants 2014, 110, 239–252. [Google Scholar] [CrossRef]
- Pike, K.; Jane Pillow, J.; Lucas, J.S. Long term respiratory consequences of intrauterine growth restriction. Semin. Fetal. Neonatal Med. 2012, 17, 92–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrenkranz, R.A.; Dusick, A.M.; Vohr, B.R.; Wright, L.L.; Wrage, L.A.; Poole, W.K. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics 2006, 117, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Quanjer, P.H. Lung function, genetics and socioeconomic conditions. Eur. Respir. J. 2015, 45, 1529–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonnappa, S.; Lum, S.; Kirkby, J.; Bonner, R.; Wade, A.; Subramanya, V.; Lakshman, P.T.; Rajan, B.; Nooyi, S.C.; Stocks, J. Disparities in Pulmonary Function in Healthy Children across the Indian Urban–Rural Continuum. Am. J. Respir. Crit. Care Med. 2015, 191, 79–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arigliani, M.; Canciani, M.C.; Mottini, G.; Altomare, M.; Magnolato, A.; Loa Clemente, S.V.; Tshilolo, L.; Cogo, P.; Quanjer, P.H. Evaluation of the Global Lung Initiative 2012 Reference Values for Spirometry in African Children. Am. J. Respir. Crit. Care Med. 2017, 195, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Lelijveld, N.; Kirkby, J. Spirometry in undernourished children in sub-Saharan African. J. Public Health Emerg. 2018, 2. [Google Scholar] [CrossRef]
- Massaro, D.; Massaro, G.D. Lung development, lung function, and retinoids. N. Engl. J. Med. 2010, 362, 1829–1831. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wilson, R.; Bennett, E.; Zosky, G.R. Identification of vitamin D sensitive pathways during lung development. Respir. Res. 2016, 17, 47. [Google Scholar] [CrossRef] [PubMed]
- Lykkedegn, S.; Sorensen, G.L.; Beck-Nielsen, S.S.; Pilecki, B.; Duelund, L.; Marcussen, N.; Christesen, H.T. Vitamin D Depletion in Pregnancy Decreases Survival Time, Oxygen Saturation, Lung Weight and Body Weight in Preterm Rat Offspring. PLoS ONE 2016, 11, e0155203. [Google Scholar] [CrossRef] [PubMed]
- Devereux, G.; Turner, S.W.; Craig, L.C.A.; McNeill, G.; Martindale, S.; Harbour, P.J.; Helms, P.J.; Seaton, A. Low maternal vitamin E intake during pregnancy is associated with asthma in 5-year-old children. Am. J. Respir. Crit. Care Med. 2006, 174, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Devereux, G.; McNeill, G.; Newman, G.; Turner, S.; Craig, L.; Martindale, S.; Helms, P.; Seaton, A. Early childhood wheezing symptoms in relation to plasma selenium in pregnant mothers and neonates. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 2007, 37, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.R.; Dasilva, D.A.; Cluette-Brown, J.E.; Dimonda, C.; Hamill, A.; Bhutta, A.Q.; Coronel, E.; Wilschanski, M.; Stephens, A.J.; Driscoll, D.F.; et al. Decreased postnatal docosahexaenoic and arachidonic acid blood levels in premature infants are associated with neonatal morbidities. J. Pediatr. 2011, 159, 743–749.e1-2. [Google Scholar] [CrossRef] [PubMed]
- Joss-Moore, L.A.; Lane, R.H.; Albertine, K.H. Epigenetic Contributions to the Developmental Origins of Adult Lung Disease. Biochem. Cell Biol. Biochim. Biol. Cell. 2015, 93, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Swanson, A.M.; David, A.L. Animal models of fetal growth restriction: Considerations for translational medicine. Placenta 2015, 36, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Cock, M.L.; Albuquerque, C.A.; Joyce, B.J.; Hooper, S.B.; Harding, R. Effects of intrauterine growth restriction on lung liquid dynamics and lung development in fetal sheep. Am. J. Obstet. Gynecol. 2001, 184, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Orgeig, S.; Crittenden, T.A.; Marchant, C.; McMillen, I.C.; Morrison, J.L. Intrauterine growth restriction delays surfactant protein maturation in the sheep fetus. Am. J. Physiol. Lung Cell. Mol. Physiol. 2010, 298, L575–L583. [Google Scholar] [CrossRef] [PubMed]
- Rozance, P.J.; Seedorf, G.J.; Brown, A.; Roe, G.; O’Meara, M.C.; Gien, J.; Tang, J.-R.; Abman, S.H. Intrauterine growth restriction decreases pulmonary alveolar and vessel growth and causes pulmonary artery endothelial cell dysfunction in vitro in fetal sheep. Am. J. Physiol. Lung Cell. Mol. Physiol. 2011, 301, L860–L871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipsett, J.; Tamblyn, M.; Madigan, K.; Roberts, P.; Cool, J.C.; Runciman, S.I.C.; McMillen, I.C.; Robinson, J.; Owens, J.A. Restricted fetal growth and lung development: A morphometric analysis of pulmonary structure. Pediatr. Pulmonol. 2006, 41, 1138–1145. [Google Scholar] [CrossRef] [PubMed]
- Maritz, G.S.; Cock, M.L.; Louey, S.; Joyce, B.J.; Albuquerque, C.A.; Harding, R. Effects of fetal growth restriction on lung development before and after birth: A morphometric analysis. Pediatr. Pulmonol. 2001, 32, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Maritz, G.S.; Cock, M.L.; Louey, S.; Suzuki, K.; Harding, R. Fetal growth restriction has long-term effects on postnatal lung structure in sheep. Pediatr. Res. 2004, 55, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Joyce, B.J.; Louey, S.; Davey, M.G.; Cock, M.L.; Hooper, S.B.; Harding, R. Compromised respiratory function in postnatal lambs after placental insufficiency and intrauterine growth restriction. Pediatr. Res. 2001, 50, 641–649. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, E.A.; Barnes, V.; Zhao, L.; McKnight, R.A.; Yu, X.; Callaway, C.W.; Wang, L.; Sun, J.C.; Dahl, M.J.; Wint, A.; et al. Uteroplacental insufficiency decreases p53 serine-15 phosphorylation in term IUGR rat lungs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, R314–R322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joss-Moore, L.A.; Wang, Y.; Yu, X.; Campbell, M.S.; Callaway, C.W.; McKnight, R.A.; Wint, A.; Dahl, M.J.; Dull, R.O.; Albertine, K.H.; et al. IUGR decreases elastin mRNA expression in the developing rat lung and alters elastin content and lung compliance in the mature rat lung. Physiol. Genom. 2011, 43, 499–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wignarajah, D.; Cock, M.L.; Pinkerton, K.E.; Harding, R. Influence of intrauterine growth restriction on airway development in fetal and postnatal sheep. Pediatr. Res. 2002, 51, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Rees, S.; Ng, J.; Dickson, K.; Nicholas, T.; Harding, R. Growth retardation and the development of the respiratory system in fetal sheep. Early Hum. Dev. 1991, 26, 13–27. [Google Scholar] [CrossRef]
- Joss-Moore, L.A.; Wang, Y.; Ogata, E.M.; Sainz, A.J.; Yu, X.; Callaway, C.W.; McKnight, R.A.; Albertine, K.H.; Lane, R.H. IUGR differentially alters MeCP2 expression and H3K9Me3 of the PPARγ gene in male and female rat lungs during alveolarization. Birt. Defects Res. A Clin. Mol. Teratol. 2011, 91, 672–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zana-Taieb, E.; Pham, H.; Franco-Montoya, M.L.; Jacques, S.; Letourneur, F.; Baud, O.; Jarreau, P.H.; Vaiman, D. Impaired alveolarization and intra-uterine growth restriction in rats: A postnatal genome-wide analysis. J. Pathol. 2015, 235, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Alejandre Alcázar, M.A.; Morty, R.E.; Lendzian, L.; Vohlen, C.; Oestreicher, I.; Plank, C.; Schneider, H.; Dötsch, J. Inhibition of TGF-β Signaling and Decreased Apoptosis in IUGR-Associated Lung Disease in Rats. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Mayor, R.S.; Finch, K.E.; Zehr, J.; Morselli, E.; Neinast, M.D.; Frank, A.P.; Hahner, L.D.; Wang, J.; Rakheja, D.; Palmer, B.F.; et al. Maternal high-fat diet is associated with impaired fetal lung development. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2015, 309, L360–L368. [Google Scholar] [CrossRef] [PubMed]
- Grasemann, C.; Herrmann, R.; Starschinova, J.; Gertsen, M.; Palmert, M.R.; Grasemann, H. Effects of fetal exposure to high-fat diet or maternal hyperglycemia on L-arginine and nitric oxide metabolism in lung. Nutr. Diabetes 2017, 7, e244. [Google Scholar] [CrossRef] [PubMed]
- Lock, M.C.; McGillick, E.V.; Orgeig, S.; McMillen, I.C.; Mühlhäusler, B.S.; Zhang, S.; Morrison, J.L. Differential effects of late gestation maternal overnutrition on the regulation of surfactant maturation in fetal and postnatal life. J. Physiol. 2017, 595, 6635–6652. [Google Scholar] [CrossRef] [PubMed]
- Zaw, W.; Gagnon, R.; da Silva, O. The risks of adverse neonatal outcome among preterm small for gestational age infants according to neonatal versus fetal growth standards. Pediatrics 2003, 111, 1273–1277. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Lodha, A.; Shah, P.S.; Sankaran, K.; Seshia, M.M.K.; Yee, W.; Jefferies, A.; Lee, S.K. Canadian Neonatal Network Neonatal outcomes of small for gestational age preterm infants in Canada. Am. J. Perinatol. 2012, 29, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Engineer, N.; Kumar, S. Perinatal variables and neonatal outcomes in severely growth restricted preterm fetuses. Acta Obstet. Gynecol. Scand. 2010, 89, 1174–1181. [Google Scholar] [CrossRef] [PubMed]
- Nobile, S.; Marchionni, P.; Carnielli, V.P. Neonatal outcome of small for gestational age preterm infants. Eur. J. Pediatr. 2017, 176, 1083–1088. [Google Scholar] [CrossRef] [PubMed]
- Tsai, L.-Y.; Chen, Y.-L.; Tsou, K.-I.; Mu, S.-C.; Taiwan Premature Infant Developmental Collaborative Study Group. The impact of small-for-gestational-age on neonatal outcome among very-low-birth-weight infants. Pediatr. Neonatol. 2015, 56, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Giapros, V.; Drougia, A.; Krallis, N.; Theocharis, P.; Andronikou, S. Morbidity and mortality patterns in small-for-gestational age infants born preterm. J. Matern.-Fetal Neonatal Med. 2012, 25, 153–157. [Google Scholar] [CrossRef] [PubMed]
- De Jesus, L.C.; Pappas, A.; Shankaran, S.; Li, L.; Das, A.; Bell, E.F.; Stoll, B.J.; Laptook, A.R.; Walsh, M.C.; Hale, E.C.; et al. Outcomes of small for gestational age infants born at <27 weeks’ gestation. J. Pediatr. 2013, 163, 55–60.e1-3. [Google Scholar] [CrossRef] [PubMed]
- Bartels, D.B.; Kreienbrock, L.; Dammann, O.; Wenzlaff, P.; Poets, C.F. Population based study on the outcome of small for gestational age newborns. Arch. Dis. Child. Fetal Neonatal Ed. 2005, 90, F53–F59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.; McKay, K.; Rosenkrantz, T.S.; Hussain, N. Comparisons of mortality and pre-discharge respiratory outcomes in small-for-gestational-age and appropriate-for-gestational-age premature infants. BMC Pediatr. 2004, 4, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrow, L.A.; Wagner, B.D.; Ingram, D.A.; Poindexter, B.B.; Schibler, K.; Cotten, C.M.; Dagle, J.; Sontag, M.K.; Mourani, P.M.; Abman, S.H. Antenatal Determinants of Bronchopulmonary Dysplasia and Late Respiratory Disease in Preterm Infants. Am. J. Respir. Crit. Care Med. 2017, 196, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Jensen, E.A.; Foglia, E.E.; Dysart, K.C.; Simmons, R.A.; Aghai, Z.H.; Cook, A.; Greenspan, J.S.; DeMauro, S.B. Adverse effects of small for gestational age differ by gestational week among very preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2018. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, L.; Haglund, B.; Odlind, V.; Altman, M.; Ewald, U.; Kieler, H. Perinatal conditions related to growth restriction and inflammation are associated with an increased risk of bronchopulmonary dysplasia. Acta Paediatr. Oslo Nor. 1992 2015, 104, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Bose, C.; Van Marter, L.J.; Laughon, M.; O’Shea, T.M.; Allred, E.N.; Karna, P.; Ehrenkranz, R.A.; Boggess, K.; Leviton, A.; Extremely Low Gestational Age Newborn Study Investigators. Fetal growth restriction and chronic lung disease among infants born before the 28th week of gestation. Pediatrics 2009, 124, e450–e458. [Google Scholar] [CrossRef] [PubMed]
- Henderson-Smart, D.J.; Hutchinson, J.L.; Donoghue, D.A.; Evans, N.J.; Simpson, J.M.; Wright, I.; Australian and New Zealand Neonatal Network. Prenatal predictors of chronic lung disease in very preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2006, 91, F40–F45. [Google Scholar] [CrossRef] [PubMed]
- Sonnenschein-van der Voort, A.M.M.; Gaillard, R.; de Jongste, J.C.; Hofman, A.; Jaddoe, V.W.V.; Duijts, L. Foetal and infant growth patterns, airway resistance and school-age asthma. Respirology 2016, 21, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Pike, K.C.; Crozier, S.R.; Lucas, J.S.A.; Inskip, H.M.; Robinson, S.; Roberts, G.; Godfrey, K.M.; Southampton Women’s Survey Study Group. Patterns of fetal and infant growth are related to atopy and wheezing disorders at age 3 years. Thorax 2010, 65, 1099–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonnenschein-van der Voort, A.M.M.; Jaddoe, V.W.V.; Raat, H.; Moll, H.A.; Hofman, A.; de Jongste, J.C.; Duijts, L. Fetal and infant growth and asthma symptoms in preschool children: The Generation R Study. Am. J. Respir. Crit. Care Med. 2012, 185, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Turner, S.; Prabhu, N.; Danielan, P.; McNeill, G.; Craig, L.; Allan, K.; Cutts, R.; Helms, P.; Seaton, A.; Devereux, G. First- and second-trimester fetal size and asthma outcomes at age 10 years. Am. J. Respir. Crit. Care Med. 2011, 184, 407–413. [Google Scholar] [CrossRef] [PubMed]
- den Dekker, H.T.; Jaddoe, V.W.V.; Reiss, I.K.; de Jongste, J.C.; Duijts, L. Fetal and Infant Growth Patterns and Risk of Lower Lung Function and Asthma. The Generation R Study. Am. J. Respir. Crit. Care Med. 2017, 197, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Sonnenschein-van der Voort, A.M.M.; Arends, L.R.; de Jongste, J.C.; Annesi-Maesano, I.; Arshad, S.H.; Barros, H.; Basterrechea, M.; Bisgaard, H.; Chatzi, L.; Corpeleijn, E.; et al. Preterm birth, infant weight gain, and childhood asthma risk: A meta-analysis of 147,000 European children. J. Allergy Clin. Immunol. 2014, 133, 1317–1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Gugten, A.C.; Koopman, M.; Evelein, A.M.V.; Verheij, T.J.M.; Uiterwaal, C.S.P.M.; van der Ent, C.K. Rapid early weight gain is associated with wheeze and reduced lung function in childhood. Eur. Respir. J. 2012, 39, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Greenough, A.; Yuksel, B.; Cheeseman, P. Effect of in utero growth retardation on lung function at follow-up of prematurely born infants. Eur. Respir. J. 2004, 24, 731–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronkainen, E.; Dunder, T.; Kaukola, T.; Marttila, R.; Hallman, M. Intrauterine growth restriction predicts lower lung function at school age in children born very preterm. Arch. Dis. Child. Fetal Neonatal Ed. 2016. [Google Scholar] [CrossRef] [PubMed]
- Hoo, A.-F.; Stocks, J.; Lum, S.; Wade, A.M.; Castle, R.A.; Costeloe, K.L.; Dezateux, C. Development of Lung Function in Early Life. Am. J. Respir. Crit. Care Med. 2004, 170, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Dezateux, C.; Lum, S.; Hoo, A.-F.; Hawdon, J.; Costeloe, K.; Stocks, J. Low birth weight for gestation and airway function in infancy: Exploring the fetal origins hypothesis. Thorax 2004, 59, 60–66. [Google Scholar] [PubMed]
- Gray, D.; Willemse, L.; Visagie, A.; Czövek, D.; Nduru, P.; Vanker, A.; Stein, D.J.; Koen, N.; Sly, P.D.; Hantos, Z.; et al. Determinants of early-life lung function in African infants. Thorax 2017, 72, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Kotecha, S.J.; Watkins, W.J.; Heron, J.; Henderson, J.; Dunstan, F.D.; Kotecha, S. Spirometric lung function in school-age children: Effect of intrauterine growth retardation and catch-up growth. Am. J. Respir. Crit. Care Med. 2010, 181, 969–974. [Google Scholar] [CrossRef] [PubMed]
- den Dekker, H.T.; Sonnenschein-van der Voort, A.M.M.; de Jongste, J.C.; Anessi-Maesano, I.; Arshad, S.H.; Barros, H.; Beardsmore, C.S.; Bisgaard, H.; Phar, S.C.; Craig, L.; et al. Early growth characteristics and the risk of reduced lung function and asthma: A meta-analysis of 25,000 children. J. Allergy Clin. Immunol. 2016, 137, 1026–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, M.; Mead, J.; Turner, J.M. Variability of maximum expiratory flow-volume curves. J. Appl. Physiol. 1974, 37, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Merkus, P.J.; Borsboom, G.J.; Van Pelt, W.; Schrader, P.C.; Van Houwelingen, H.C.; Kerrebijn, K.F.; Quanjer, P.H. Growth of airways and air spaces in teenagers is related to sex but not to symptoms. J. Appl. Physiol. 1993, 75, 2045–2053. [Google Scholar] [CrossRef] [PubMed]
- Yammine, S.; Schmidt, A.; Sutter, O.; Fouzas, S.; Singer, F.; Frey, U.; Latzin, P. Functional evidence for continued alveolarisation in former preterms at school age? Eur. Respir. J. 2016, 47, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, M.; Beardsmore, C.S.; Owers-Bradley, J.; Dogaru, C.M.; Mada, M.; Ball, I.; Garipov, R.R.; Kuehni, C.E.; Spycher, B.D.; Silverman, M. Catch-up Alveolarization in Ex-Preterm Children. Evidence from 3He Magnetic Resonance. Am. J. Respir. Crit. Care Med. 2013, 187, 1104–1109. [Google Scholar] [CrossRef] [PubMed]
- Forno, E.; Weiner, D.J.; Mullen, J.; Sawicki, G.; Kurland, G.; Han, Y.Y.; Cloutier, M.M.; Canino, G.; Weiss, S.T.; Litonjua, A.A.; Celedón, J.C. Obesity and Airway Dysanapsis in Children with and without Asthma. Am. J. Respir. Crit. Care Med. 2017, 195, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Saad, N.J.; Patel, J.; Burney, P.; Minelli, C. Birth Weight and Lung Function in Adulthood: A Systematic Review and Meta-analysis. Ann. Am. Thorac. Soc. 2017, 14, 994–1004. [Google Scholar] [CrossRef] [PubMed]
- Baumann, S.; Godtfredsen, N.S.; Lange, P.; Pisinger, C. The impact of birth weight on the level of lung function and lung function decline in the general adult population. The Inter99 study. Respir. Med. 2015, 109, 1293–1299. [Google Scholar] [CrossRef] [PubMed]
- Canoy, D.; Pekkanen, J.; Elliott, P.; Pouta, A.; Laitinen, J.; Hartikainen, A.-L.; Zitting, P.; Patel, S.; Little, M.P.; Järvelin, M.-R. Early growth and adult respiratory function in men and women followed from the fetal period to adulthood. Thorax 2007, 62, 396–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lange, P.; Celli, B.; Agustí, A.; Boje Jensen, G.; Divo, M.; Faner, R.; Guerra, S.; Marott, J.L.; Martinez, F.D.; Martinez-Camblor, P.; et al. Lung-Function Trajectories Leading to Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2015, 373, 111–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopuhaä, C.E.; Roseboom, T.J.; Osmond, C.; Barker, D.J.; Ravelli, A.C.; Bleker, O.P.; van der Zee, J.S.; van der Meulen, J.H. Atopy, lung function, and obstructive airways disease after prenatal exposure to famine. Thorax 2000, 55, 555–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaultier, C. Malnutrition and lung growth. Pediatr. Pulmonol. 1991, 10, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Massaro, G.D.; McCoy, L.; Massaro, D. Postnatal undernutrition slows development of bronchiolar epithelium in rats. Am. J. Physiol. 1988, 255, R521–R526. [Google Scholar] [CrossRef] [PubMed]
- Mataloun, M.M.G.B.; Rebello, C.M.; Mascaretti, R.S.; Dohlnikoff, M.; Leone, C.R. Pulmonary responses to nutritional restriction and hyperoxia in premature rabbits. J. Pediatr. 2006, 82, 179–185. [Google Scholar] [CrossRef]
- Mataloun, M.M.G.B.; Leone, C.R.; Mascaretti, R.S.; Dohlnikoff, M.; Rebello, C.M. Effect of postnatal malnutrition on hyperoxia-induced newborn lung development. Braz. J. Med. Biol. Res. Rev. Bras. Pesqui. Medicas E Biol. 2009, 42, 606–613. [Google Scholar] [CrossRef]
- Matecki, S.; Py, G.; Lambert, K.; Peyreigne, C.; Mercier, J.; Prefaut, C.; Ramonatxo, M. Effect of prolonged undernutrition on rat diaphragm mitochondrial respiration. Am. J. Respir. Cell Mol. Biol. 2002, 26, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Poindexter, B.B.; Martin, C.R. Impact of Nutrition on Bronchopulmonary Dysplasia. Clin. Perinatol. 2015, 42, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Oh, W.; Poindexter, B.B.; Perritt, R.; Lemons, J.A.; Bauer, C.R.; Ehrenkranz, R.A.; Stoll, B.J.; Poole, K.; Wright, L.L. Neonatal Research Network Association between fluid intake and weight loss during the first ten days of life and risk of bronchopulmonary dysplasia in extremely low birth weight infants. J. Pediatr. 2005, 147, 786–790. [Google Scholar] [CrossRef] [PubMed]
- Bell, E.F.; Acarregui, M.J. Restricted versus liberal water intake for preventing morbidity and mortality in preterm infants. Cochrane Database Syst. Rev. 2014, CD000503. [Google Scholar] [CrossRef] [PubMed]
- Huysman, W.A.; de Ridder, M.; de Bruin, N.C.; van Helmond, G.; Terpstra, N.; Goudoever, J.B.V.; Sauer, P.J.J. Growth and body composition in preterm infants with bronchopulmonary dysplasia. Arch. Dis. Child. Fetal Neonatal Ed. 2003, 88, F46–F51. [Google Scholar] [CrossRef] [PubMed]
- Hartnoll, G.; Betremieux, P.; Modi, N. Randomised controlled trial of postnatal sodium supplementation on oxygen dependency and body weight in 25-30 week gestational age infants. Arch. Dis. Child. Fetal Neonatal Ed. 2000, 82, F19–F23. [Google Scholar] [CrossRef] [PubMed]
- Dogaru, C.M.; Nyffenegger, D.; Pescatore, A.M.; Spycher, B.D.; Kuehni, C.E. Breastfeeding and childhood asthma: Systematic review and meta-analysis. Am. J. Epidemiol. 2014, 179, 1153–1167. [Google Scholar] [CrossRef] [PubMed]
- Duijts, L.; Ramadhani, M.K.; Moll, H.A. Breastfeeding protects against infectious diseases during infancy in industrialized countries. A systematic review. Matern. Child. Nutr. 2009, 5, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Ladomenou, F.; Moschandreas, J.; Kafatos, A.; Tselentis, Y.; Galanakis, E. Protective effect of exclusive breastfeeding against infections during infancy: A prospective study. Arch. Dis. Child. 2010, 95, 1004–1008. [Google Scholar] [CrossRef] [PubMed]
- Munblit, D.; Peroni, D.G.; Boix-Amorós, A.; Hsu, P.S.; Van’t Land, B.; Gay, M.C.L.; Kolotilina, A.; Skevaki, C.; Boyle, R.J.; Collado, M.C.; et al. Human Milk and Allergic Diseases: An Unsolved Puzzle. Nutrients 2017, 9, 894. [Google Scholar] [CrossRef] [PubMed]
- Lodge, C.J.; Tan, D.J.; Lau, M.X.Z.; Dai, X.; Tham, R.; Lowe, A.J.; Bowatte, G.; Allen, K.J.; Dharmage, S.C. Breastfeeding and asthma and allergies: A systematic review and meta-analysis. Acta Paediatr. 2015, 104, 38–53. [Google Scholar] [CrossRef] [PubMed]
- Waidyatillake, N.T.; Allen, K.J.; Lodge, C.J.; Dharmage, S.C.; Abramson, M.J.; Simpson, J.A.; Lowe, A.J. The impact of breastfeeding on lung development and function: A systematic review. Expert Rev. Clin. Immunol. 2013, 9, 1253–1265. [Google Scholar] [CrossRef] [PubMed]
- Ogbuanu, I.U.; Karmaus, W.; Arshad, S.H.; Kurukulaaratchy, R.J.; Ewart, S. Effect of breastfeeding duration on lung function at age 10 years: A prospective birth cohort study. Thorax 2009, 64, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Soto-Ramírez, N.; Alexander, M.; Karmaus, W.; Yousefi, M.; Zhang, H.; Kurukulaaratchy, R.J.; Raza, A.; Mitchell, F.; Ewart, S.; Arshad, S.H. Breastfeeding is associated with increased lung function at 18 years of age: A cohort study. Eur. Respir. J. 2012, 39, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Guilbert, T.W.; Stern, D.A.; Morgan, W.J.; Martinez, F.D.; Wright, A.L. Effect of breastfeeding on lung function in childhood and modulation by maternal asthma and atopy. Am. J. Respir. Crit. Care Med. 2007, 176, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Dogaru, C.M.; Narayanan, M.; Spycher, B.D.; Pescatore, A.M.; Owers-Bradley, J.; Beardsmore, C.S.; Silverman, M.; Kuehni, C.E. Breastfeeding, lung volumes and alveolar size at school-age. BMJ Open Respir. Res. 2015, 2, e000081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kull, I.; Melen, E.; Alm, J.; Hallberg, J.; Svartengren, M.; van Hage, M.; Pershagen, G.; Wickman, M.; Bergström, A. Breast-feeding in relation to asthma, lung function, and sensitization in young schoolchildren. J. Allergy Clin. Immunol. 2010, 125, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- van Meel, E.R.; de Jong, M.; Elbert, N.J.; den Dekker, H.T.; Reiss, I.K.; de Jongste, J.C.; Jaddoe, V.W.V.; Duijts, L. Duration and exclusiveness of breastfeeding and school-age lung function and asthma. Ann. Allergy Asthma Immunol. 2017, 119, 21–26.e2. [Google Scholar] [CrossRef] [PubMed]
- Oddy, W.H.; Halonen, M.; Martinez, F.D.; Lohman, I.C.; Stern, D.A.; Kurzius-Spencer, M.; Guerra, S.; Wright, A.L. TGF-beta in human milk is associated with wheeze in infancy. J. Allergy Clin. Immunol. 2003, 112, 723–728. [Google Scholar] [CrossRef]
- Verduci, E.; Banderali, G.; Barberi, S.; Radaelli, G.; Lops, A.; Betti, F.; Riva, E.; Giovannini, M. Epigenetic effects of human breast milk. Nutrients 2014, 6, 1711–1724. [Google Scholar] [CrossRef] [PubMed]
- Lelijveld, N.; Kerac, M.; Seal, A.; Chimwezi, E.; Wells, J.C.; Heyderman, R.S.; Nyirenda, M.J.; Stocks, J.; Kirkby, J. Long-term effects of severe acute malnutrition on lung function in Malawian children: A cohort study. Eur. Respir. J. 2017, 49, 1601301. [Google Scholar] [CrossRef] [PubMed]
- Korten, I.; Usemann, J.; Latzin, P. “Lung sparing growth”: Is the lung not affected by malnutrition? Eur. Respir. J. 2017, 49. [Google Scholar] [CrossRef] [PubMed]
- Black, R.E. Micronutrients in pregnancy. Br. J. Nutr. 2001, 85 (Suppl. 2), S193–S197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hovdenak, N.; Haram, K. Influence of mineral and vitamin supplements on pregnancy outcome. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 164, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; de Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef]
- Darnton-Hill, I.; Mkparu, U.C. Micronutrients in pregnancy in low- and middle-income countries. Nutrients 2015, 7, 1744–1768. [Google Scholar] [CrossRef] [PubMed]
- Malpel, S.; Mendelsohn, C.; Cardoso, W.V. Regulation of retinoic acid signaling during lung morphogenesis. Dev. Camb. Engl. 2000, 127, 3057–3067. [Google Scholar]
- Chazaud, C.; Dollé, P.; Rossant, J.; Mollard, R. Retinoic acid signaling regulates murine bronchial tubule formation. Mech. Dev. 2003, 120, 691–700. [Google Scholar] [CrossRef]
- Massaro, D.; Massaro, G.D. Retinoids, alveolus formation, and alveolar deficiency: Clinical implications. Am. J. Respir. Cell Mol. Biol. 2003, 28, 271–274. [Google Scholar] [CrossRef] [PubMed]
- McGowan, S.; Jackson, S.K.; Jenkins-Moore, M.; Dai, H.H.; Chambon, P.; Snyder, J.M. Mice bearing deletions of retinoic acid receptors demonstrate reduced lung elastin and alveolar numbers. Am. J. Respir. Cell Mol. Biol. 2000, 23, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Chailley-Heu, B.; Chelly, N.; Lelièvre-Pégorier, M.; Barlier-Mur, A.M.; Merlet-Bénichou, C.; Bourbon, J.R. Mild vitamin A deficiency delays fetal lung maturation in the rat. Am. J. Respir. Cell Mol. Biol. 1999, 21, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Barber, T.; Esteban-Pretel, G.; Marín, M.P.; Timoneda, J. Vitamin a deficiency and alterations in the extracellular matrix. Nutrients 2014, 6, 4984–5017. [Google Scholar] [CrossRef] [PubMed]
- McGowan, S.E.; Doro, M.M.; Jackson, S.K. Endogenous retinoids increase perinatal elastin gene expression in rat lung fibroblasts and fetal explants. Am. J. Physiol. 1997, 273, L410–L416. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Huang, H.-M.; Li, T.-Y.; Qu, P.; Liu, Y.-X.; Chen, J. Marginal vitamin A deficiency affects lung maturation in rats from prenatal to adult stage. J. Nutr. Sci. Vitaminol. 2009, 55, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Pretel, G.; Marín, M.P.; Renau-Piqueras, J.; Barber, T.; Timoneda, J. Vitamin A deficiency alters rat lung alveolar basement membrane: Reversibility by retinoic acid. J. Nutr. Biochem. 2010, 21, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Tyson, J.E.; Wright, L.L.; Oh, W.; Kennedy, K.A.; Mele, L.; Ehrenkranz, R.A.; Stoll, B.J.; Lemons, J.A.; Stevenson, D.K.; Bauer, C.R.; et al. Vitamin A Supplementation for Extremely-Low-Birth-Weight Infants. N. Engl. J. Med. 1999, 340, 1962–1968. [Google Scholar] [CrossRef] [PubMed]
- Darlow, B.A.; Graham, P.J.; Rojas-Reyes, M.X. Vitamin A supplementation to prevent mortality and short- and long-term morbidity in very low birth weight infants. Cochrane Database Syst. Rev. 2016, CD000501. [Google Scholar] [CrossRef] [PubMed]
- Ambalavanan, N.; Tyson, J.E.; Kennedy, K.A.; Hansen, N.I.; Vohr, B.R.; Wright, L.L.; Carlo, W.A. Vitamin A Supplementation for Extremely Low Birth Weight Infants: Outcome at 18 to 22 Months. Pediatrics 2005, 115, e249–e254. [Google Scholar] [CrossRef] [PubMed]
- Checkley, W.; West, K.P.; Wise, R.A.; Baldwin, M.R.; Wu, L.; LeClerq, S.C.; Christian, P.; Katz, J.; Tielsch, J.M.; Khatry, S.; et al. Maternal vitamin A supplementation and lung function in offspring. N. Engl. J. Med. 2010, 362, 1784–1794. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.; Trubert, C.L.; Rizk-Rabin, M.; Rehan, V.K.; Besançon, F.; Cayre, Y.E.; Garabédian, M. 1,25-Dihydroxyvitamin D3 and fetal lung maturation: Immunogold detection of VDR expression in pneumocytes type II cells and effect on fructose 1,6 bisphosphatase. J. Steroid Biochem. Mol. Biol. 2004, 89–90, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Marin, L.; Dufour, M.E.; Tordet, C.; Nguyen, M. 1,25(OH)2D3 stimulates phospholipid biosynthesis and surfactant release in fetal rat lung explants. Biol. Neonate 1990, 57, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, R.; Shin, E.; Fonseca, S.; Sakurai, T.; Litonjua, A.A.; Weiss, S.T.; Torday, J.S.; Rehan, V.K. 1alpha,25(OH)2D3 and its 3-epimer promote rat lung alveolar epithelial-mesenchymal interactions and inhibit lipofibroblast apoptosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 2009, 297, L496–L505. [Google Scholar] [CrossRef] [PubMed]
- Yurt, M.; Liu, J.; Sakurai, R.; Gong, M.; Husain, S.M.; Siddiqui, M.A.; Husain, M.; Villarreal, P.; Akcay, F.; Torday, J.S.; et al. Vitamin D supplementation blocks pulmonary structural and functional changes in a rat model of perinatal vitamin D deficiency. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014, 307, L859–L867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zosky, G.R.; Berry, L.J.; Elliot, J.G.; James, A.L.; Gorman, S.; Hart, P.H. Vitamin D deficiency causes deficits in lung function and alters lung structure. Am. J. Respir. Crit. Care Med. 2011, 183, 1336–1343. [Google Scholar] [CrossRef] [PubMed]
- Kho, A.T.; Sharma, S.; Qiu, W.; Gaedigk, R.; Klanderman, B.; Niu, S.; Anderson, C.; Leeder, J.S.; Weiss, S.T.; Tantisira, K.G. Vitamin D related genes in lung development and asthma pathogenesis. BMC Med. Genom. 2013, 6, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zosky, G.R.; Hart, P.H.; Whitehouse, A.J.O.; Kusel, M.M.; Ang, W.; Foong, R.E.; Chen, L.; Holt, P.G.; Sly, P.D.; Hall, G.L. Vitamin D deficiency at 16 to 20 weeks’ gestation is associated with impaired lung function and asthma at 6 years of age. Ann. Am. Thorac. Soc. 2014, 11, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Gazibara, T.; den Dekker, H.T.; de Jongste, J.C.; McGrath, J.J.; Eyles, D.W.; Burne, T.H.; Reiss, I.K.; Franco, O.H.; Tiemeier, H.; Jaddoe, V.W.V.; et al. Associations of maternal and fetal 25-hydroxyvitamin D levels with childhood lung function and asthma: The Generation R Study. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 2016, 46, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-González, R.M.; García-Marcos, L.; Morales, E. Prenatal vitamin D status and respiratory and allergic outcomes in childhood: A meta-analysis of observational studies. Pediatr. Allergy Immunol. 2018, 29, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Litonjua, A.A.; Carey, V.J.; Laranjo, N.; Harshfield, B.J.; McElrath, T.F.; O’Connor, G.T.; Sandel, M.; Iverson, R.E.; Lee-Paritz, A.; Strunk, R.C.; et al. Effect of Prenatal Supplementation With Vitamin D on Asthma or Recurrent Wheezing in Offspring by Age 3 Years: The VDAART Randomized Clinical Trial. JAMA 2016, 315, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Chawes, B.L.; Bønnelykke, K.; Stokholm, J.; Vissing, N.H.; Bjarnadóttir, E.; Schoos, A.-M.M.; Wolsk, H.M.; Pedersen, T.M.; Vinding, R.K.; Thorsteinsdóttir, S.; et al. Effect of Vitamin D3 Supplementation During Pregnancy on Risk of Persistent Wheeze in the Offspring: A Randomized Clinical Trial. JAMA 2016, 315, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Wolsk, H.M.; Chawes, B.L.; Litonjua, A.A.; Hollis, B.W.; Waage, J.; Stokholm, J.; Bønnelykke, K.; Bisgaard, H.; Weiss, S.T. Prenatal vitamin D supplementation reduces risk of asthma/recurrent wheeze in early childhood: A combined analysis of two randomized controlled trials. PLoS ONE 2017, 12, e0186657. [Google Scholar] [CrossRef] [PubMed]
- Roth, D.E.; Leung, M.; Mesfin, E.; Qamar, H.; Watterworth, J.; Papp, E. Vitamin D supplementation during pregnancy: State of the evidence from a systematic review of randomised trials. BMJ 2017, 359, j5237. [Google Scholar] [CrossRef] [PubMed]
- Scholl, T.O.; Chen, X.; Sims, M.; Stein, T.P. Vitamin E: Maternal concentrations are associated with fetal growth. Am. J. Clin. Nutr. 2006, 84, 1442–1448. [Google Scholar] [CrossRef] [PubMed]
- Turner, S.W.; Campbell, D.; Smith, N.; Craig, L.C.A.; McNeill, G.; Forbes, S.H.; Harbour, P.J.; Seaton, A.; Helms, P.J.; Devereux, G.S. Associations between fetal size, maternal {alpha}-tocopherol and childhood asthma. Thorax 2010, 65, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Beckhaus, A.A.; Garcia-Marcos, L.; Forno, E.; Pacheco-Gonzalez, R.M.; Celedón, J.C.; Castro-Rodriguez, J.A. Maternal nutrition during pregnancy and risk of asthma, wheeze, and atopic diseases during childhood: A systematic review and meta-analysis. Allergy 2015, 70, 1588–1604. [Google Scholar] [CrossRef] [PubMed]
- Sabat, R.; Guthmann, F.; Rüstow, B. Formation of reactive oxygen species in lung alveolar cells: Effect of vitamin E deficiency. Lung 2008, 186, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Falciglia, H.S.; Johnson, J.R.; Sullivan, J.; Hall, C.F.; Miller, J.D.; Riechmann, G.C.; Falciglia, G.A. Role of antioxidant nutrients and lipid peroxidation in premature infants with respiratory distress syndrome and bronchopulmonary dysplasia. Am. J. Perinatol. 2003, 20, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Falciglia, H.S.; Ginn-Pease, M.E.; Falciglia, G.A.; Lubin, A.H.; Frank, D.J.; Chang, W. Vitamin E and selenium levels of premature infants with severe respiratory distress syndrome and bronchopulmonary dysplasia. J. Pediatr. Perinat. Nutr. 1988, 2, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Stone, C.A.; McEvoy, C.T.; Aschner, J.L.; Kirk, A.; Rosas-Salazar, C.; Cook-Mills, J.M.; Moore, P.E.; Walsh, W.F.; Hartert, T.V. Update on Vitamin E and Its Potential Role in Preventing or Treating Bronchopulmonary Dysplasia. Neonatology 2018, 113, 366–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brion, L.P.; Bell, E.F.; Raghuveer, T.S. Vitamin E supplementation for prevention of morbidity and mortality in preterm infants. Cochrane Database Syst. Rev. 2003, CD003665. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Picciano, M.F.; Wallig, M.A.; Milner, J.A. The role of selenium nutrition in the development of neonatal rat lung. Pediatr. Res. 1991, 29, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Baïz, N.; Chastang, J.; Ibanez, G.; Annesi-Maesano, I. Prenatal exposure to selenium may protect against wheezing in children by the age of 3. Immun. Inflamm. Dis. 2016, 5, 37–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darlow, B.A.; Inder, T.E.; Graham, P.J.; Sluis, K.B.; Malpas, T.J.; Taylor, B.J.; Winterbourn, C.C. The relationship of selenium status to respiratory outcome in the very low birth weight infant. Pediatrics 1995, 96, 314–319. [Google Scholar] [PubMed]
- Darlow, B.A.; Austin, N.C. Selenium supplementation to prevent short-term morbidity in preterm neonates. Cochrane Database Syst. Rev. 2003, CD003312. [Google Scholar] [CrossRef] [PubMed]
- Vojnik, C.; Hurley, L.S. Abnormal prenatal lung development resulting from maternal zinc deficiency in rats. J. Nutr. 1977, 107, 862–872. [Google Scholar] [CrossRef] [PubMed]
- Litonjua, A.A.; Rifas-Shiman, S.L.; Ly, N.P.; Tantisira, K.G.; Rich-Edwards, J.W.; Camargo, C.A.; Weiss, S.T.; Gillman, M.W.; Gold, D.R. Maternal antioxidant intake in pregnancy and wheezing illnesses in children at 2 y of age. Am. J. Clin. Nutr. 2006, 84, 903–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyake, Y.; Sasaki, S.; Tanaka, K.; Hirota, Y. Consumption of vegetables, fruit, and antioxidants during pregnancy and wheeze and eczema in infants. Allergy 2010, 65, 758–765. [Google Scholar] [CrossRef] [PubMed]
- West, C.E.; Dunstan, J.; McCarthy, S.; Metcalfe, J.; D’Vaz, N.; Meldrum, S.; Oddy, W.H.; Tulic, M.K.; Prescott, S.L. Associations between maternal antioxidant intakes in pregnancy and infant allergic outcomes. Nutrients 2012, 4, 1747–1758. [Google Scholar] [CrossRef] [PubMed]
- Martindale, S.; McNeill, G.; Devereux, G.; Campbell, D.; Russell, G.; Seaton, A. Antioxidant intake in pregnancy in relation to wheeze and eczema in the first two years of life. Am. J. Respir. Crit. Care Med. 2005, 171, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Nwaru, B.I.; Erkkola, M.; Ahonen, S.; Kaila, M.; Kronberg-Kippilä, C.; Ilonen, J.; Simell, O.; Knip, M.; Veijola, R.; Virtanen, S.M. Intake of antioxidants during pregnancy and the risk of allergies and asthma in the offspring. Eur. J. Clin. Nutr. 2011, 65, 937–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calder, P.C. Omega-3 Fatty Acids and Inflammatory Processes. Nutrients 2010, 2, 355–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco, P.G.; Freedman, S.D.; Lopez, M.C.; Ollero, M.; Comen, E.; Laposata, M.; Alvarez, J.G. Oral docosahexaenoic acid given to pregnant mice increases the amount of surfactant in lung and amniotic fluid in preterm fetuses. Am. J. Obstet. Gynecol. 2004, 190, 1369–1374. [Google Scholar] [CrossRef] [PubMed]
- Tenorio-Lopes, L.; Baldy, C.; Jochmans-Lemoine, A.; Mercier, O.; Pothier-Piccinin, O.; Seaborn, T.; Joseph, V.; Marc, I.; Kinkead, R. Consequences of maternal omega-3 polyunsaturated fatty acid supplementation on respiratory function in rat pups. J. Physiol. 2017, 595, 1637–1655. [Google Scholar] [CrossRef] [PubMed]
- Joss-Moore, L.A.; Wang, Y.; Baack, M.L.; Yao, J.; Norris, A.W.; Yu, X.; Callaway, C.W.; McKnight, R.A.; Albertine, K.H.; Lane, R.H. IUGR decreases PPARγ and SETD8 Expression in neonatal rat lung and these effects are ameliorated by maternal DHA supplementation. Early Hum. Dev. 2010, 86, 785–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velten, M.; Britt, R.D.; Heyob, K.M.; Tipple, T.E.; Rogers, L.K. Maternal dietary docosahexaenoic acid supplementation attenuates fetal growth restriction and enhances pulmonary function in a newborn mouse model of perinatal inflammation. J. Nutr. 2014, 144, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.K.; Valentine, C.J.; Pennell, M.; Velten, M.; Britt, R.D.; Dingess, K.; Zhao, X.; Welty, S.E.; Tipple, T.E. Maternal docosahexaenoic acid supplementation decreases lung inflammation in hyperoxia-exposed newborn mice. J. Nutr. 2011, 141, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Heyob, K.M.; Velten, M.; Tipple, T.E.; Rogers, L.K. DHA suppresses chronic apoptosis in the lung caused by perinatal inflammation. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015, 309, L441–L448. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Li, N.; Liu, X.; Shaw, L.; Li Calzi, S.; Grant, M.B.; Neu, J. Arginyl-glutamine dipeptide or docosahexaenoic acid attenuate hyperoxia-induced lung injury in neonatal mice. Nutrition 2012, 28, 1186–1191. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Nkembi, A.S.; Aubry, E.; Houeijeh, A.; Butruille, L.; Houfflin-Debarge, V.; Besson, R.; Deruelle, P.; Storme, L. Maternal PUFA ω-3 Supplementation Prevents Neonatal Lung Injuries Induced by Hyperoxia in Newborn Rats. Int. J. Mol. Sci. 2015, 16, 22081–22093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, S.L.; Rouse, C.A. Docosahexaenoic acid and the preterm infant. Matern. Health Neonatol. Perinatol. 2017, 3, 22. [Google Scholar] [CrossRef] [PubMed]
- Uauy, R.; Mena, P. Long-chain polyunsaturated fatty acids supplementation in preterm infants. Curr. Opin. Pediatr. 2015, 27, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Manley, B.J.; Makrides, M.; Collins, C.T.; McPhee, A.J.; Gibson, R.A.; Ryan, P.; Sullivan, T.R.; Davis, P.G. DINO Steering Committee High-dose docosahexaenoic acid supplementation of preterm infants: Respiratory and allergy outcomes. Pediatrics 2011, 128, e71–e77. [Google Scholar] [CrossRef] [PubMed]
- Moltu, S.J.; Strømmen, K.; Blakstad, E.W.; Almaas, A.N.; Westerberg, A.C.; Brække, K.; Rønnestad, A.; Nakstad, B.; Berg, J.P.; Veierød, M.B.; et al. Enhanced feeding in very-low-birth-weight infants may cause electrolyte disturbances and septicemia—A randomized, controlled trial. Clin. Nutr. Edinb. Scotl. 2013, 32, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.T.; Makrides, M.; McPhee, A.J.; Sullivan, T.R.; Davis, P.G.; Thio, M.; Simmer, K.; Rajadurai, V.S.; Travadi, J.; Berry, M.J.; et al. Docosahexaenoic Acid and Bronchopulmonary Dysplasia in Preterm Infants. N. Engl. J. Med. 2017, 376, 1245–1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bisgaard, H.; Stokholm, J.; Chawes, B.L.; Vissing, N.H.; Bjarnadóttir, E.; Schoos, A.-M.M.; Wolsk, H.M.; Pedersen, T.M.; Vinding, R.K.; Thorsteinsdóttir, S.; et al. Fish Oil-Derived Fatty Acids in Pregnancy and Wheeze and Asthma in Offspring. N. Engl. J. Med. 2016, 375, 2530–2539. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arigliani, M.; Spinelli, A.M.; Liguoro, I.; Cogo, P. Nutrition and Lung Growth. Nutrients 2018, 10, 919. https://doi.org/10.3390/nu10070919
Arigliani M, Spinelli AM, Liguoro I, Cogo P. Nutrition and Lung Growth. Nutrients. 2018; 10(7):919. https://doi.org/10.3390/nu10070919
Chicago/Turabian StyleArigliani, Michele, Alessandro Mauro Spinelli, Ilaria Liguoro, and Paola Cogo. 2018. "Nutrition and Lung Growth" Nutrients 10, no. 7: 919. https://doi.org/10.3390/nu10070919
APA StyleArigliani, M., Spinelli, A. M., Liguoro, I., & Cogo, P. (2018). Nutrition and Lung Growth. Nutrients, 10(7), 919. https://doi.org/10.3390/nu10070919