Arsenic Exposure and Breast Cancer Risk: A Re-Evaluation of the Literature
Abstract
:1. Introduction to Arsenic
2. Overview of Arsenic Metabolism and Epigenetic Modifications
3. Biomarkers of Arsenic Status
Exposure Measurement | Time Frame of Exposure | Type of Arsenic Measured | Method of Measurement | Toxic Dose 1 |
---|---|---|---|---|
Scalp Hair | 6–12 months prior | iAs | Options:
| 1.0 < 3.0 mg/kg |
Toenail | 6–12 months prior | iAs | Options:
| >0.5 µg/g |
Blood Arsenic | 2–6 h prior |
|
| >130 nmol/L |
Urinary Arsenic | 4 days prior |
|
| >100 ug/L (24- h) [41] >50 μg/L (spot) |
4. Arsenic and Breast Cancer: Ecologic and Prevalence Studies
5. Arsenic and Breast Cancer: Case-Control Studies
6. Arsenic and Breast Cancer: Prospective Studies
7. Clinical Implications and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Arsenic. Available online: http://www.who.int/news-room/fact-sheets/detail/arsenic (accessed on 20 September 2018).
- Ratnaike, R.N. Acute and chronic arsenic toxicity. Postgrad. Med. J. 2003, 79, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Pershagen, G. The carcinogenicity of arsenic. Environ. Health Perspect. 1981, 40, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.Y.; Yu, S.D.; Hong, Y.S. Environmental source of arsenic exposure. J. Prev. Med. Public Health 2014, 47, 253–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Agency for Research on Cancer (IARC). Arsenic Metals, Fibres and Dusts: A review of human carcinogens; International Agency for Research on Cancer: Lyon, France, 2012; Volume 100. [Google Scholar]
- Naujokas, M.F.; Anderson, B.; Ahsan, H.; Aposhian, H.V.; Graziano, J.H.; Thompson, C.; Suk, W.A. The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem. Environ. Health Perspect. 2013, 121, 295–302. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Arsenic; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2007.
- Ahmad, A.; Bhattacharya, P. Arsenic in Drinking Water: Is 10 μg/L a Safe Limit? Curr. Pollut. Rep. 2019, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Guidelines for Drinking-Water Quality, 3rd ed.; World Health Organization: Geneva, Switzerland, 2008; Volume 1. [Google Scholar]
- Hughes, M.F.; Beck, B.D.; Chen, Y.; Lewis, A.S.; Thomas, D.J. Arsenic exposure and toxicology: A historical perspective. Toxicol. Sci. 2011, 123, 305–332. [Google Scholar] [CrossRef] [Green Version]
- Kuivenhoven, M.; Mason, K. Arsenic (Arsine) Toxicity. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2019. [Google Scholar]
- Molin, M.; Ulven, S.M.; Meltzer, H.M.; Alexander, J. Arsenic in the human food chain, biotransformation and toxicology--Review focusing on seafood arsenic. J. Trace Elem. Med. Biol. 2015, 31, 249–259. [Google Scholar] [CrossRef] [Green Version]
- Luvonga, C.; Rimmer, C.A.; Yu, L.L.; Lee, S.B. Organoarsenicals in Seafood: Occurrence, Dietary Exposure, Toxicity, and Risk Assessment Considerations—A Review. J. Agric. Food Chem. 2020, 68, 943–960. [Google Scholar] [CrossRef]
- Rodgers, K.M.; Udesky, J.O.; Rudel, R.A.; Brody, J.G. Environmental chemicals and breast cancer: An updated review of epidemiological literature informed by biological mechanisms. Environ. Res. 2018, 160, 152–182. [Google Scholar] [CrossRef]
- World Cancer Research Fund. Continuous Update Project Expert Report 2018. In Diet, Nutrition, Physical Activity and Breast Cancer; American Institute for Cancer Research: Arlington, VA, USA, 2018. [Google Scholar]
- Drobna, Z.; Styblo, M.; Thomas, D.J. An Overview of Arsenic Metabolism and Toxicity. Curr. Protoc. Toxicol. 2009, 42, 31–34. [Google Scholar] [CrossRef] [Green Version]
- Challenger, F. Biological methylation. Adv. Enzymol. Relat. Subj. Biochem. 1951, 12, 429–491. [Google Scholar] [CrossRef] [PubMed]
- Bozack, A.K.; Saxena, R.; Gamble, M.V. Nutritional Influences on One-Carbon Metabolism: Effects on Arsenic Methylation and Toxicity. Annu. Rev. Nutr. 2018, 38, 401–429. [Google Scholar] [CrossRef] [PubMed]
- Zimta, A.A.; Schitcu, V.; Gurzau, E.; Stavaru, C.; Manda, G.; Szedlacsek, S.; Berindan-Neagoe, I. Biological and molecular modifications induced by cadmium and arsenic during breast and prostate cancer development. Environ. Res. 2019, 178, 108700. [Google Scholar] [CrossRef]
- National Centre for Biotechnology Information. PubChem Compound Summary for CID 8948, Methylarsonic acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Methylarsonic-acid (accessed on 3 August 2020).
- Irvine, L.; Boyer, I.J.; DeSesso, J.M. Monomethylarsonic acid and dimethylarsinic acid: Developmental toxicity studies with risk assessment. Birth Defects Res. B. Dev. Reprod. Toxicol. 2006, 77, 53–68. [Google Scholar] [CrossRef]
- Rodríguez, V.M.; Del Razo, L.M.; Limón-Pacheco, J.H.; Giordano, M.; Sánchez-Peña, L.C.; Uribe-Querol, E.; Gutiérrez-Ospina, G.; Gonsebatt, M.E. Glutathione Reductase Inhibition and Methylated Arsenic Distribution in Cd1 Mice Brain and Liver. Toxic. Sci. 2004, 84, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, T.; Kobayashi, Y.; Cui, X.; Hirano, S. A new metabolic pathway of arsenite: Arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch. Toxicol. 2005, 79, 183–191. [Google Scholar] [CrossRef]
- Navarro Silvera, S.A.; Rohan, T.E. Trace elements and cancer risk: A review of the epidemiologic evidence. Cancer Causes Control. 2007, 18, 7–27. [Google Scholar] [CrossRef]
- Romagnolo, D.F.; Daniels, K.D.; Grunwald, J.T.; Ramos, S.A.; Propper, C.R.; Selmin, O.I. Epigenetics of breast cancer: Modifying role of environmental and bioactive food compounds. Mol. Nutr. Food Res. 2016, 60, 1310–1329. [Google Scholar] [CrossRef] [Green Version]
- Gamboa-Loira, B.; Cebrian, M.E.; Franco-Marina, F.; Lopez-Carrillo, L. Arsenic metabolism and cancer risk: A meta-analysis. Environ. Res. 2017, 156, 551–558. [Google Scholar] [CrossRef]
- Pilsner, J.R.; Liu, X.; Ahsan, H.; Ilievski, V.; Slavkovich, V.; Levy, D.; Factor-Litvak, P.; Graziano, J.H.; Gamble, M.V. Folate deficiency, hyperhomocysteinemia, low urinary creatinine, and hypomethylation of leukocyte DNA are risk factors for arsenic-induced skin lesions. Environ. Health Perspect. 2009, 117, 254–260. [Google Scholar] [CrossRef]
- Singh, A.P.; Goel, R.K.; Kaur, T. Mechanisms pertaining to arsenic toxicity. Toxicol. Int. 2011, 18, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Rakib, M.; Huda, M.; Hossain, S.; Naher, K.; Khan, R.; Sultana, M.; Akter, M.; Bhuiyan, M.; Patwary, M. Arsenic Content in Inactive Tissue: Human Hair and Nail. J. Scien. Res. Rep. 2013. [Google Scholar] [CrossRef]
- Hughes, M.F. Biomarkers of exposure: A case study with inorganic arsenic. Environ. Health Perspect. 2006, 114, 1790–1796. [Google Scholar] [CrossRef] [PubMed]
- Karagas, M.R.; Le, C.X.; Morris, S.; Blum, J.; Lu, X.; Spate, V.; Carey, M.; Stannard, V.; Klaue, B.; Tosteson, T.D. Markers of low level arsenic exposure for evaluating human cancer risks in a US population. Int. J. Occup. Med. Environ. Health 2001, 14, 171–175. [Google Scholar] [PubMed]
- Garland, M.; Morris, J.S.; Rosner, B.A.; Stampfer, M.J.; Spate, V.L.; Baskett, C.J.; Willett, W.C.; Hunter, D.J. Toenail trace element levels as biomarkers: Reproducibility over a 6-year period. Cancer Epidemiol. Biomarkers Prev. 1993, 2, 493–497. [Google Scholar]
- Orloff, K.; Mistry, K.; Metcalf, S. Biomonitoring for Environmental Exposures to Arsenic. J. Toxic. Environ. Health Part B 2009, 12, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Normandin, L.; Ayotte, P.; Levallois, P.; Ibanez, Y.; Courteau, M.; Kennedy, G.; Chen, L.; Le, X.C.; Bouchard, M. Biomarkers of arsenic exposure and effects in a Canadian rural population exposed through groundwater consumption. J. Exp. Scien. Environ. Epidem. 2014, 24, 127–134. [Google Scholar] [CrossRef] [Green Version]
- National Research Council (US). Subcommittee on Arsenic in Drinking Water. In Arsenic in Drinking Water; National Academies Press: Washington, DC, USA, 1999. Available online: https://www.ncbi.nlm.nih.gov/books/NBK230893. [CrossRef]
- Marchiset-Ferlay, N.; Savanovitch, C.; Sauvant-Rochat, M.P. What is the best biomarker to assess arsenic exposure via drinking water? Environ. Int. 2012, 39, 150–171. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.; Chen, Y.; Ahsan, H.; Slavkovich, V.; van Geen, A.; Parvez, F.; Graziano, J. Blood arsenic as a biomarker of arsenic exposure: Results from a prospective study. Toxicology 2006, 225, 225–233. [Google Scholar] [CrossRef]
- Bommarito, P.A.; Beck, R.; Douillet, C.; Del Razo, L.M.; Garcia-Vargas, G.G.; Valenzuela, O.L.; Sanchez-Peña, L.C.; Styblo, M.; Fry, R.C. Evaluation of plasma arsenicals as potential biomarkers of exposure to inorganic arsenic. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 718–729. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry, (ATSDR); Gehle, K. Arsenic Toxicity. Available online: https://www.atsdr.cdc.gov/csem/csem.asp?csem=1&po=0 (accessed on 21 January 2020).
- Hays, S.M.; Aylward, L.L.; Gagné, M.; Nong, A.; Krishnan, K. Biomonitoring equivalents for inorganic arsenic. Regul. Toxicol. Pharmacol. 2010, 58, 1–9. [Google Scholar] [CrossRef]
- Barr, D.B.; Wilder, L.C.; Caudill, S.P.; Gonzalez, A.J.; Needham, L.L.; Pirkle, J.L. Urinary creatinine concentrations in the U.S. population: Implications for urinary biologic monitoring measurements. Environ. Health Perspect. 2005, 113, 192–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- New Zealand Worksafe. Biological Exposures Indicies; PO Box 165; New Zealand Government: Wellington, New Zealand, 2018.
- Cohen, H.W. Limitations of an Ecological Study: A Review. Am. J. Hypertension 2005, 18, 750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinwood, A.L.; Jolley, D.J.; Sim, M.R. Cancer incidence and high environmental arsenic concentrations in rural populations: Results of an ecological study. Int. J. Environ. Health Research 1999, 9, 131–141. [Google Scholar] [CrossRef]
- Baastrup, R.; Sorensen, M.; Balstrom, T.; Frederiksen, K.; Larsen, C.L.; Tjonneland, A.; Overvad, K.; Raaschou-Nielsen, O. Arsenic in drinking-water and risk for cancer in Denmark. Environ. Health Perspect. 2008, 116, 231–237. [Google Scholar] [CrossRef]
- Vu, V.; Navalkar, N.; Wei, Y. Endocrine-disrupting metals in ambient air and female breast cancer incidence in US. Gynecol. Endocrinol. 2019, 35, 1099–1102. [Google Scholar] [CrossRef]
- Aballay, L.R.; Diaz Mdel, P.; Francisca, F.M.; Munoz, S.E. Cancer incidence and pattern of arsenic concentration in drinking water wells in Cordoba, Argentina. Int. J. Environ. Health Res. 2012, 22, 220–231. [Google Scholar] [CrossRef]
- Rushton, L.; Bagga, S.; Bevan, R.; Brown, T.P.; Cherrie, J.W.; Holmes, P.; Fortunato, L.; Slack, R.; Van Tongeren, M.; Young, C.; et al. Occupation and cancer in Britain. Br. J. Cancer 2010, 102, 1428–1437. [Google Scholar] [CrossRef]
- Garg, A.N.; Singh, V.; Weginwar, R.G.; Sagdeo, V.N. An elemental correlation study in cancerous and normal breast tissue with successive clinical stages by neutron activation analysis. Biol. Trace Elem. Res. 1994, 46, 185–202. [Google Scholar] [CrossRef]
- Joo, N.S.; Kim, S.M.; Jung, Y.S.; Kim, K.M. Hair iron and other minerals’ level in breast cancer patients. Biol. Trace Elem. Res. 2009, 129, 28–35. [Google Scholar] [CrossRef]
- Benderli Cihan, Y.; Sozen, S.; Ozturk Yildirim, S. Trace elements and heavy metals in hair of stage III breast cancer patients. Biol. Trace Elem. Res. 2011, 144, 360–379. [Google Scholar] [CrossRef]
- Wadhwa, S.K.; Kazi, T.G.; Afridi, H.I.; Talpur, F.N. Naeemullah. Interaction between carcinogenic and anti-carcinogenic trace elements in the scalp hair samples of different types of Pakistani female cancer patients. Clin. Chim. Acta. 2015, 439, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Blaurock-Busch, E.; Busch, Y.M.; Friedle, A.; Buerner, H.; Parkash, C.; Kaur, A. Comparing the metal concentration in the hair of cancer patients and healthy people living in the malwa region of punjab, India. Clin. Med. Insights Oncol. 2014, 8, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alatise, O.I.; Schrauzer, G.N. Lead exposure: A contributing cause of the current breast cancer epidemic in Nigerian women. Biol. Trace Elem. Res. 2010, 136, 127–139. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Carrillo, L.; Hernandez-Ramirez, R.U.; Gandolfi, A.J.; Ornelas-Aguirre, J.M.; Torres-Sanchez, L.; Cebrian, M.E. Arsenic methylation capacity is associated with breast cancer in northern Mexico. Toxicol. Appl. Pharmacol. 2014, 280, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Pineda-Belmontes, C.P.; Hernández-Ramírez, R.U.; Hernández-Alcaraz, C.; Cebrián, M.E.; López-Carrillo, L. Genetic polymorphisms of PPAR gamma, arsenic methylation capacity and breast cancer risk in Mexican women. Environ. Res. 2016, 58, 220–227. [Google Scholar] [CrossRef] [Green Version]
- Gamboa-Loira, B.; Cebrian, M.E.; Salinas-Rodriguez, A.; Lopez-Carrillo, L. Genetic susceptibility to breast cancer risk associated with inorganic arsenic exposure. Environ. Toxicol. Pharmacol. 2017, 56, 106–113. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. ClinVar; [VCV000138289.3]. Available online: https://www.ncbi.nlm.nih.gov/clinvar/variation/VCV000138289.3 (accessed on 28 July 2020).
- López-Carrillo, L.; Gamboa-Loira, B.; Gandolfi, A.J.; Cebrián, M.E. Inorganic arsenic methylation capacity and breast cancer by immunohistochemical subtypes in northern Mexican women. Environ. Res. 2020, 184, 109361. [Google Scholar] [CrossRef]
- Garland, M.; Morris, J.S.; Colditz, G.A.; Stampfer, M.J.; Spate, V.L.; Baskett, C.K.; Rosner, B.; Speizer, F.E.; Willett, W.C.; Hunter, D.J. Toenail trace element levels and breast cancer: A prospective study. Am. J. Epidemiol. 1996, 144, 653–660. [Google Scholar] [CrossRef] [Green Version]
- Sawada, N.; Iwasaki, M.; Inoue, M.; Takachi, R.; Sasazuki, S.; Yamaji, T.; Shimazu, T.; Tsugane, S. Dietary arsenic intake and subsequent risk of cancer: The Japan Public Health Center-based (JPHC) Prospective Study. Cancer Causes Control. 2013, 24, 1403–1415. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Zhang, X.; Wu, K.; Wu, H.; Sun, Q.; Hu, F.B.; Han, J.; Willett, W.C.; Giovannucci, E.L. Rice consumption and cancer incidence in US men and women. Int. J. Cancer 2016, 138, 555–564. [Google Scholar] [CrossRef] [Green Version]
- Marciniak, W.; Derkacz, R.; Muszynska, M.; Baszuk, P.; Gronwald, J.; Huzarski, T.; Cybulski, C.; Jakubowska, A.; Falco, M.; Debniak, T.; et al. Blood arsenic levels and the risk of familial breast cancer in Poland. Int. J. Cancer 2019, 146, 2721–2727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.; Nelson, D.O.; Hurley, S.; Hertz, A.; Reynolds, P. Residential exposure to estrogen disrupting hazardous air pollutants and breast cancer risk: The California Teachers Study. Epidemiology 2015, 26, 365–373. [Google Scholar] [CrossRef] [PubMed]
- White, A.J.; O’Brien, K.M.; Niehoff, N.M.; Carroll, R.; Sandler, D.P. Metallic Air Pollutants and Breast Cancer Risk in a Nationwide Cohort Study. Epidemiology 2019, 30, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Kresovich, J.K.; Erdal, S.; Chen, H.Y.; Gann, P.H.; Argos, M.; Rauscher, G.H. Metallic air pollutants and breast cancer heterogeneity. Environ. Res. 2019, 177, 108639. [Google Scholar] [CrossRef] [PubMed]
- Kurzius-Spencer, M.; Burgess, J.L.; Harris, R.B.; Hartz, V.; Roberge, J.; Huang, S.; Hsu, C.H.; O’Rourke, M.K. Contribution of diet to aggregate arsenic exposures-an analysis across populations. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Terry, M.B.; Michels, K.B.; Brody, J.G.; Byrne, C.; Chen, S.; Jerry, D.J.; Malecki, K.M.C.; Martin, M.B.; Miller, R.L.; Neuhausen, S.L.; et al. Environmental exposures during windows of susceptibility for breast cancer: A framework for prevention research. Breast Cancer Res. 2019, 21, 96. [Google Scholar] [CrossRef] [Green Version]
Author and Study Year | Location of Study | Exposure Measurement | Sample Size | Registry | Outcome | p-Value | Association |
---|---|---|---|---|---|---|---|
Hinwood et al. 1999 [44] | Australia | Arsenic in soil + surface water | 22 areas | Victorian Cancer Registry data & Victorian cancer rates | Standardized Incident Ratio (SIR) (95%CI) SIR= 1.10 (1.03–1.18) | N/S | Positive |
Baastrup et al. 2008 [45] | Denmark (Aarhus and Copenhagen) | Arsenic in water | 29,502 | Geological Survey of Denmark&Danish Cancer Registry | Incident Rate Ratio (IRR) for time weighted exposure (95%CI) IRRARH= 1.06 (1.01–1.11) | 0.02 | Positive |
Rushton et al. 2010 [46] | Britain | Occupation (CAREX) | 339,156 total cancer registrations (2004) | Office for National Statistics; General Register Office (Scotland); Cancer Statistics, Registrations, Series MB1 for England; The Scottish Cancer Registry; The Welsh Cancer Intelligence and Surveillance Unit | Attributable Fractions N/S | N/S | Null |
Aballay et al. 2011 [47] | Cordoba, Argentina | Arsenic in water | 123 rural regions | Córdoba Cancer Registry & 2004 National Well Monitoring Reports | Incident Risk Ratio (95% CI) IRR = 1.09 (0.74–1.6) | N/S | Null |
Vu et al. 2019 [48] | USA | Arsenic in air | 200 counties | Surveillance, Epidemiology and End Results (SEER) & 2008 National Emissions Inventory (NEI) | Regression coefficient for change in annual incidence of breast cancer and emission density of arsenic BAll BC = 5.21 (1.72, 8.70) BER + BC = 4.15 (0.87, 7.43) | 0.004 0.014 | Positive |
Author and Study Year | Exposure Measurement | Location of Study | Sample Size | Referent Group | Outcome | p-Value | Association |
---|---|---|---|---|---|---|---|
Garg et al. 1996 [49] | Arsenic in breast tissue | India | 30 cases/30 controls | Case vs. control | Change in mean value of arsenic 1 7.8% | N/S | Positive |
Joo et al. 2009 [50] | Hair | South Korea | 40 cases/144 controls | Case vs. Control | Mean ± Standard Error Cases: 0.09 ± 0.006 Controls: 0.06 ± 0.003 | <0.001 | Positive |
Alatise et al. 2010 [51] | 3 exposures: Whole blood Scalp hair Breast biopsy | Nigeria | 12 cases/ 12 controls | Case vs. Control | Mean Concentrations of arsenic by biomarker Whole Blood Controls – 6.8 µg/L (4.0–12) Cases- 7.6 µg/L (3.4–16) Scalp Hair Controls – 0.09 (0.02–0.18) Cases – 0.08 (0.004–0.18) Breast Biopsy Median- 0.077 mcg/g (0.032–0.11) | Student’s t-Test 0.11 0.28 | Null |
Benderli Cihan et al. 2011 [52] | Hair | Turkey | 52 cases/ 52 controls | Case vs. Control | Mean ± (Standard Deviation) Cases: 1.522 ug/g (1.980) Controls: 0.239 ug/g (0.220) | <0.05 | Positive |
Blaurock-Busch et al. 2013 [53] | Hair | India | 15 cases/50 controls | Case vs. Control | Mean concentration difference between healthy control and cases 0.11 ug/g | N/S | Null |
Lopez-Carrillo et al. 2014 [54] | Urinary arsenic | Mexico | 1016 cases/1028 controls | Q5 vs. Q1 | Odds Ratio (OR) (95%CI) ORMMA = 2.63 (1.89–3.66) ORPMI = 1.90 (1.39–2.59) | p for trend < 0.001 | Positive |
Wadhwa et al. 2015 [55] | Hair | Pakistan | 47 cases/94 controls | Case vs. Control | Standard Mean Difference 2.94 (2.77–3.12) | <0.05 | Positive |
Pineda-Belmontes et al. 2016 [56] | Urinary arsenic | Mexico | 197 cases/220 controls | T3 vs. T1 | Odds Ratio (95%CI) ORMMA = 3.57 (1.99–6.38) ORPMI = 3.51 (1.96–6.28) | N/S | Positive |
Gamboa-Loira et al. 2017 [57] | Urinary arsenic | Mexico | 1016 cases/ 1028 controls | MTR AA vs. MTR AG + GG | Odds Ratio (95%CI) ORBCwith%DMAamongMTRAA = 0.86 (0.54–1.38) | p for interaction = 0.002 | Positive |
Lopez-Carrillo et al. 2020 [58] | Urinary arsenic | Northern Mexico | 499 cases/499 controls | Q5 vs. Q1 | Odds Ratio (95%CI) HR+ BC ORMMA/iAs continuous = 2.03 (1.33–3.10) TN BC OR MMA/iAs continuous = 4.05 (1.63–10.04) | N/S | Positive |
Author and Study Year | Exposure Measurement | Location of Study | Sample Size | Follow Up (years) | Referent Group | Outcome | p-Value | Association |
---|---|---|---|---|---|---|---|---|
Garland et al. 1996 [59] | Toenail | USA | 433 BC cases/459 controls | 4 | Q5 vs. Q1 | Multivariate Odds Ratio (95% CI) OR = 1.12 (0.66–1.91) | p for trend = 0.78 | Null |
Sawada et al. 2013 [60] | 75- item arsenic specific food frequency questionnaire | Japan | 7002 incident cancers/ 90,378 total individuals | 11 | Q4 vs. Q1 | Multivariate Hazards Ratio (HR) (95% CI) HR = 1.06 (0.8–1.41) | 0.35 | Null |
Liu et al. 2016 [61] | Airborne arsenic | USA | 5361 BC cases/112,379 total individuals | 15 1 | Q5 vs. Q1 | Cox proportional hazards ratio (95%CI) HR = 1.1 (0.9–1.2) HR ER/Pr – Subtype = 1.7 (1.1–2.5) | N/S | Null Positive |
Zhang et al. 2016 [62] | Rice consumption as a proxy for arsenic exposure | USA | 31,655 incident cancers/206,249 total individuals | 26 | >5 servings of rice/week vs. <1 serving of rice/week | Relative Risk Ratio (RR) (95%CI) RR = 0.90 (0.70–1.16) | 0.48 | Null |
Kresovich et al. 2019 [63] | Airborne arsenic | USA | 672 | 3–6 | Q5 vs. Q1 | Odds Ratio (95% CI) ORER/PR – Subtype = 0.8 (0.5–1.5) | 0.89 | Null |
Marciniak et al. 2019 [64] | Total blood arsenic | Poland | 1702 | 4.5 | Q4 vs. Q1 | Cox proportional hazards ratio (95%CI) HR = 13.2 (4.02–43.0) | p for trend < 0.0001 | Positive |
White et al. 2019 [65] | Airborne arsenic | USA | 50,884 | 7.4 | Q5 vs. Q1 | Cox proportional hazards ratio (95%CI) HROverall BC = 1.0 (0.9–1.2) | 0.6 | Null |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pullella, K.; Kotsopoulos, J. Arsenic Exposure and Breast Cancer Risk: A Re-Evaluation of the Literature. Nutrients 2020, 12, 3305. https://doi.org/10.3390/nu12113305
Pullella K, Kotsopoulos J. Arsenic Exposure and Breast Cancer Risk: A Re-Evaluation of the Literature. Nutrients. 2020; 12(11):3305. https://doi.org/10.3390/nu12113305
Chicago/Turabian StylePullella, Katherine, and Joanne Kotsopoulos. 2020. "Arsenic Exposure and Breast Cancer Risk: A Re-Evaluation of the Literature" Nutrients 12, no. 11: 3305. https://doi.org/10.3390/nu12113305
APA StylePullella, K., & Kotsopoulos, J. (2020). Arsenic Exposure and Breast Cancer Risk: A Re-Evaluation of the Literature. Nutrients, 12(11), 3305. https://doi.org/10.3390/nu12113305