Calculating Protein Content of Expressed Breast Milk to Optimize Protein Supplementation in Very Low Birth Weight Infants with Minimal Effort—A Secondary Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design (Underlying Clinical Study)
2.2. Study Design (This Secondary Analysis)
2.2.1. Participants
2.2.2. Measurement of Protein Content
2.2.3. The Breast Milk-Equation
2.2.4. Individual Adjustment of the Breast Milk-Equation and Formation of the Above-Mentioned Validation Cohort
2.2.5. Target Protein Supply
2.2.6. Standardized versus Adapted Protein Supplementation Strategies to be Compared
- (S1) Standardized supplementation adding 1 g protein/100 mL
- (S2) Standardized supplementation adding 1.42 g protein/100 mL
- (A2) Supplementation based on protein content calculated by the ‘breast milk-equation’ (Table 1)
- (A3) Supplementation based on protein content calculated by the breast milk-equation with individual adjustment of the BME according to actual protein content on days 12 and 26.
2.2.7. Statistical Analyses
3. Results
3.1. Demographics
3.2. The Breast Milk-Equation
3.2.1. Calculation of the Breast Milk-Equation
3.2.2. Individual Adjustments of the Breast Milk-Equation
3.3. Comparison of the Supplementation Strategies in the Validation Cohort (10 Patients, 141 Breast Milk Samples)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Victora, C.G.; Bahl, R.; Barros, A.J.; Franca, G.V.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M.J.; Walker, N.; Rollins, N.C. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016, 387, 475–490. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, I.; Prakash, K.; Bala, S.; Verma, R.K.; Gujral, V.V. Partial supplementation with expressed breast-milk for prevention of infection in low-birth-weight infants. Lancet 1980, 2, 561–563. [Google Scholar] [CrossRef]
- Sisk, P.M.; Lovelady, C.A.; Dillard, R.G.; Gruber, K.J.; O’Shea, T.M. Early human milk feeding is associated with a lower risk of necrotizing enterocolitis in very low birth weight infants. J. Perinatol. Off. J. Calif. Perinat. Assoc. 2007, 27, 428–433. [Google Scholar] [CrossRef] [Green Version]
- Maayan-Metzger, A.; Avivi, S.; Schushan-Eisen, I.; Kuint, J. Human milk versus formula feeding among preterm infants: Short-term outcomes. Am. J. Perinatol. 2012, 29, 121–126. [Google Scholar] [CrossRef]
- Franz, A.R.; Pohlandt, F.; Bode, H.; Mihatsch, W.A.; Sander, S.; Kron, M.; Steinmacher, J. Intrauterine, early neonatal, and postdischarge growth and neurodevelopmental outcome at 5.4 years in extremely preterm infants after intensive neonatal nutritional support. Pediatrics 2009, 123, e101–e109. [Google Scholar] [CrossRef] [Green Version]
- Connors, J.M.; O’Callaghan, M.J.; Burns, Y.R.; Gray, P.H.; Tudehope, D.I.; Mohay, H.; Rogers, Y.M. The influence of growth on development outcome in extremely low birthweight infants at 2 years of age. J. Paediatr. Child Health 1999, 35, 37–41. [Google Scholar] [CrossRef]
- Hack, M.; Breslau, N.; Weissman, B.; Aram, D.; Klein, N.; Borawski, E. Effect of very low birth weight and subnormal head size on cognitive abilities at school age. New Engl. J. Med. 1991, 325, 231–237. [Google Scholar] [CrossRef]
- Ziegler, E.E. Breast-milk fortification. Acta Paediatr. 2001, 90, 720–723. [Google Scholar] [CrossRef]
- Amissah, E.A.; Brown, J.; Harding, J.E. Protein supplementation of human milk for promoting growth in preterm infants. Cochrane Database Syst. Rev. 2018, 6, CD000433. [Google Scholar] [CrossRef]
- Moltu, S.J.; Blakstad, E.W.; Strommen, K.; Almaas, A.N.; Nakstad, B.; Ronnestad, A.; Braekke, K.; Veierod, M.B.; Drevon, C.A.; Iversen, P.O.; et al. Enhanced feeding and diminished postnatal growth failure in very-low-birth-weight infants. J. Pediatric Gastroenterol. Nutr. 2014, 58, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Gidrewicz, D.A.; Fenton, T.R. A systematic review and meta-analysis of the nutrient content of preterm and term breast milk. BMC Pediatrics 2014, 14, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arslanoglu, S.; Moro, G.E.; Ziegler, E.E. Preterm infants fed fortified human milk receive less protein than they need. J. Perinatol. Off. J. Calif. Perinat. Assoc. 2009, 29, 489–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agostoni, C.; Buonocore, G.; Carnielli, V.P.; De Curtis, M.; Darmaun, D.; Decsi, T.; Domellof, M.; Embleton, N.D.; Fusch, C.; Genzel-Boroviczeny, O.; et al. Enteral nutrient supply for preterm infants: Commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatric Gastroenterol. Nutr. 2010, 50, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Arslanoglu, S.; Moro, G.E.; Ziegler, E.E. Adjustable fortification of human milk fed to preterm infants: Does it make a difference? J. Perinatol. Off. J. Calif. Perinat. Assoc. 2006, 26, 614–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alan, S.; Atasay, B.; Cakir, U.; Yildiz, D.; Kilic, A.; Kahvecioglu, D.; Erdeve, O.; Arsan, S. An intention to achieve better postnatal in-hospital-growth for preterm infants: Adjustable protein fortification of human milk. Early Hum. Dev. 2013, 89, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- de Halleux, V.; Rigo, J. Variability in human milk composition: Benefit of individualized fortification in very-low-birth-weight infants. Am. J. Clin. Nutr. 2013, 98, 529S–535S. [Google Scholar] [CrossRef] [Green Version]
- Morlacchi, L.; Mallardi, D.; Gianni, M.L.; Roggero, P.; Amato, O.; Piemontese, P.; Consonni, D.; Mosca, F. Is targeted fortification of human breast milk an optimal nutrition strategy for preterm infants? An interventional study. J. Transl. Med. 2016, 14, 195. [Google Scholar] [CrossRef] [Green Version]
- Maas, C.; Mathes, M.; Bleeker, C.; Vek, J.; Bernhard, W.; Wiechers, C.; Peter, A.; Poets, C.F.; Franz, A.R. Effect of Increased Enteral Protein Intake on Growth in Human Milk-Fed Preterm Infants: A Randomized Clinical Trial. JAMA Pediatrics 2017, 171, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Kuschel, C.A.; Harding, J.E. Multicomponent fortified human milk for promoting growth in preterm infants. Cochrane Database Syst. Rev. 2004, CD000343. [Google Scholar] [CrossRef]
- Brown, J.V.; Embleton, N.D.; Harding, J.E.; McGuire, W. Multi-nutrient fortification of human milk for preterm infants. Cochrane Database Syst. Rev. 2016, CD000343. [Google Scholar] [CrossRef] [Green Version]
- Stephens, B.E.; Walden, R.V.; Gargus, R.A.; Tucker, R.; McKinley, L.; Mance, M.; Nye, J.; Vohr, B.R. First-week protein and energy intakes are associated with 18-month developmental outcomes in extremely low birth weight infants. Pediatrics 2009, 123, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, C.; Westerberg, A.C.; Ronnestad, A.; Nakstad, B.; Veierod, M.B.; Drevon, C.A.; Iversen, P.O. Growth and nutrient intake among very-low-birth-weight infants fed fortified human milk during hospitalisation. Br. J. Nutr. 2009, 102, 1179–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, I.E.; Harris, C.L.; Lawson, M.L.; Berseth, C.L. Higher protein intake improves length, not weight, z scores in preterm infants. J. Pediatric Gastroenterol. Nutr. 2014, 58, 409–416. [Google Scholar] [CrossRef]
- Mathes, M.; Maas, C.; Bleeker, C.; Vek, J.; Bernhard, W.; Peter, A.; Poets, C.F.; Franz, A.R. Effect of increased enteral protein intake on plasma and urinary urea concentrations in preterm infants born at <32 weeks gestation and <1500 g birth weight enrolled in a randomized controlled trial—A secondary analysis. BMC Pediatrics 2018, 18, 154. [Google Scholar] [CrossRef]
Supplementation Acc. to Gidrewicz and Fenton 2014 | Supplementation Acc. to Breast Milk-Equation | ||||
---|---|---|---|---|---|
Day After Delivery | Estimated Protein Content (g/100 mL) | Resulting Protein Supple-Mentation (g/100 mL) | Day After Delivery | Calculated Protein Content (g/100 mL) | Resulting Protein Supplementation (g/100 mL) |
4–7 | 1.7 | 1.3 | 6 | 2.0 | 1.0 |
8–14 | 1.5 | 1.5 | 11 | 1.5 | 1.5 |
15–28 | 1.4 | 1.6 | 21 | 1.2 | 1.8 |
29–42 | 1.1 | 1.9 | 35 | 1.0 | 2.0 |
43–63 | 1.1 | 1.9 | 53 | 1.0 | 2.0 |
64–84 | 1.0 | 2.0 | 74 | 0.9 | 2.1 |
Test Cohort | Validation Cohort | |
---|---|---|
Median (p25–p75); n/n; n | ||
No. of mothers | 41 | 10 |
No. of breast milk samples analyzed | 457 | 141 |
No. of infants | 49 | 10 |
Gestational age at delivery (weeks) | 29.9 (28.6–31.1) | 29.6 (28.5–31.1) |
Infants’ birth weight (kg) | 1.21 (1.09–1.39) | 1.07 (0.92–1.28) |
Infants’ sex male/female | 23/27 | 4/6 |
Duration of hospital stay of the infants (days) | 40 (30–56) | 61 (50–72) |
First milk measurement (days after delivery) | 8 (7–9) | 8.5 (8–11) |
No. of milk measurements per mother | 11 (8–15) | 13 (12–18) |
Validation Mother | b in Original BME | Calculated Protein d12 (g/100 mL) | Measured Protein d12 (g/100 mL) | b After Adjustment d12 | Calculated Protein d26 (g/100 mL) | Measured Protein d26 (g/100 mL) | b After Adjustment d26 |
---|---|---|---|---|---|---|---|
Patadj 1 | 0.852 | 1.42 | 1.57 | 1.007 | 1.11 | 1.00 | 0.740 |
Patadj 2 | 0.852 | 1.42 | 1.43 | 0.867 | 1.11 | 1.03 | 0.770 |
Patadj 3 | 0.852 | 1.42 | 1.47 | 0.907 | 1.11 | 1.00 | 0.740 |
Patadj 4 | 0.852 | 1.42 | 1.70 | 1.137 | 1.11 | 1.13 | 0.870 |
Patadj 5 | 0.852 | 1.42 | 1.23 | 0.667 | 1.11 | 1.03 | 0.770 |
Patadj 6 | 0.852 | 1.42 | 1.30 | 0.737 | 1.11 | 1.00 | 0.740 |
Patadj 7 | 0.852 | 1.42 | 1.90 | 1.337 | 1.11 | 1.17 | 0.900 |
Patadj 8 | 0.852 | 1.42 | 1.30 | 0.737 | 1.11 | 1.03 | 0.770 |
Patadj 9 | 0.852 | 1.42 | 1.70 | 1.137 | 1.11 | 1.03 | 0.770 |
Patadj 10 | 0.852 | 1.42 | 1.60 | 1.037 | 1.11 | 1.27 | 1.010 |
Supplementation Strategy | <2.7 g/100 mL Protein Supply n (%) | Target of Protein Supply (2.7–3.3 g/100 mL) n (%) | >3.3 g/100 mL Protein Supply n (%) |
---|---|---|---|
S1 | 134 (95) | 7 (5) | - |
S2 | 104 (74) | 34 (24) | 3 (2) |
A1 | 13 (9) | 124 (89) | 3 (2) |
A2 | 1 (1) | 135 (96) | 5 (4) |
A3 | 5 (4) | 134 (95) | 2 (1) |
Comparison of Meeting the Targeted Area of Protein Supply | % of the Days with Supply in Target Area of Protein Supply | p-Value |
---|---|---|
A2 vs. S1 | 96% vs. 5% | <0.0001 |
A2 vs. S2 | 96% vs. 24% | <0.0001 |
A2 vs. A1 | 96% vs. 89% | 0.01 |
A2 vs. A3 | 96% vs. 95% | 0.74 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minarski, M.; Maas, C.; Engel, C.; Heinrich, C.; Böckmann, K.; Bernhard, W.; Poets, C.F.; Franz, A.R. Calculating Protein Content of Expressed Breast Milk to Optimize Protein Supplementation in Very Low Birth Weight Infants with Minimal Effort—A Secondary Analysis. Nutrients 2020, 12, 1231. https://doi.org/10.3390/nu12051231
Minarski M, Maas C, Engel C, Heinrich C, Böckmann K, Bernhard W, Poets CF, Franz AR. Calculating Protein Content of Expressed Breast Milk to Optimize Protein Supplementation in Very Low Birth Weight Infants with Minimal Effort—A Secondary Analysis. Nutrients. 2020; 12(5):1231. https://doi.org/10.3390/nu12051231
Chicago/Turabian StyleMinarski, Michaela, Christoph Maas, Corinna Engel, Christine Heinrich, Katrin Böckmann, Wolfgang Bernhard, Christian F Poets, and Axel R Franz. 2020. "Calculating Protein Content of Expressed Breast Milk to Optimize Protein Supplementation in Very Low Birth Weight Infants with Minimal Effort—A Secondary Analysis" Nutrients 12, no. 5: 1231. https://doi.org/10.3390/nu12051231
APA StyleMinarski, M., Maas, C., Engel, C., Heinrich, C., Böckmann, K., Bernhard, W., Poets, C. F., & Franz, A. R. (2020). Calculating Protein Content of Expressed Breast Milk to Optimize Protein Supplementation in Very Low Birth Weight Infants with Minimal Effort—A Secondary Analysis. Nutrients, 12(5), 1231. https://doi.org/10.3390/nu12051231