Impact of Infant and Maternal Factors on Energy and Macronutrient Composition of Human Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Milk Sample Collection
2.3. Human Milk Composition
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Comparison of Subjects According to Newborn’s Sex
3.3. Infants’ Characteristics and Human Milk Composition
3.4. Maternal and Infant Factors and Human Milk Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eidelman, A.I.; Schanler, R.J.; Johnston, M.; Landers, S.; Noble, L.; Szucs, K.; Viehmann, L. Breastfeeding and the use of human milk. Paediatrics 2012, 129, 827–841. [Google Scholar]
- Kramer, M.S.; Kakuma, R. Optimal duration of exclusive breastfeeding. Cochrane Database Syst. Rev. 2012, 15, 8. [Google Scholar] [CrossRef] [PubMed]
- Jarosz, M. Normy Żywienia dla Populacji Polski; Instytut Żywności i Żywienia: Warsaw, Poland, 2017. [Google Scholar]
- Agostoni, C.; Braegger, C.; Decsi, T.; Kolacek, S.; Koletzko, B.; Michaelsen, K.F.; Mihatsch, W.; Moreno, L.A.; Puntis, J.; Shamir, R.; et al. Breast-feeding: A commentary by the ESPGHAN Comitee on Nutrition. J. Ped. Gastr. Nutr. 2009, 49, 112–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Victora, C.G.; Bahl, R.; Barros, A.J.; Franca, G.V.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M.J.; Walker, N.; Rollins, N.C. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016, 387, 475–490. [Google Scholar] [CrossRef] [Green Version]
- Horta, B.L.; de Mola, C.L.; Victora, C.G. Long-term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure and type 2 diabetes: A systematic review and meta-analysis. Acta Paediatr. 2015, 104, 30–37. [Google Scholar] [CrossRef]
- WHO. Available online: https://apps.who.int/iris/bitstream/handle/10665/95585/9789241506120_eng.pdf?sequence=1 (accessed on 10 August 2020).
- Jiang, J.; Wu, K.; Yu, Z.; Ren, Y.; Zhao, Y.; Jiang, Y.; Xu, X.; Li, W.; Jin, Y.; Yuan, J.; et al. Changes in fatty acid composition of human milk over lactation stages and relationship with dietary intake in Chinese women. Food Funct. 2016, 7, 3154–3162. [Google Scholar] [CrossRef]
- Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, K.; Nishida, Y.; Taki, M.; Murase, M.; Mukai, Y.; Itabashi, K.; Debari, K.; Iiyama, A. Is increased fat content of hindmilk due to the size or the number of milk fat globules? Int. Breastfeed. J. 2009, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- ESPGHAN Committee on Nutrition; Pundir, S.; Wall, C.R.; Mitchell, C.J.; Thorstensen, E.B.; Lai, C.T.; Geddes, D.T.; Cameron-Smith, D. Variation of human milk glucocorticoids over 24 h period. J. Mammary Gland Biol. Neoplasia. 2017, 22, 85–92. [Google Scholar] [CrossRef]
- Bzikowska-Jura, A.; Czerwonogrodzka-Senczyna, A.; Olędzka, G.; Szostak-Węgierek, D.; Weker, H.; Wesołowska, A. Maternal nutrition and body composition during breastfeeding: Association with human milk composition. Nutrients 2018, 10, 1379. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.A.; Lassek, W.D.; Gaulin, S.J.C.; Evans, R.W.; Woo, J.G.; Geraghty, S.R.; Davidson, B.S.; Morrow, A.L.; Kaplan, H.S.; Gurven, M.D. Fatty acid composition in the mature milk of Bolivian forager-horticulturalists: Controlled comparisons with a US sample. Matern. Child Nutr. 2012, 8, 404–418. [Google Scholar] [CrossRef] [Green Version]
- Bzikowska-Jura, A.; Czerwonogrodzka-Senczyna, A.; Jasińska-Melon, E.; Mojska, H.; Olędzka, G.; Wesołowska, A.; Szostak-Węgierek, D. The concentration of Omega-3 fatty acids in human Milki s related to their habitual but not current intake. Nutrients 2019, 11, 1585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mäkelä, J.; Linderborg, K.; Niinikoski, H.; Yang, B.; Lagström, H. Breast milk fatty acid composition differs between overweight and normal weight women: The STEPS Study. Eur. J. Nutr. 2013, 52, 727–735. [Google Scholar] [CrossRef]
- Leghi, G.E.; Netting, M.J.; Middleton, P.F.; Wlodek, M.E.; Geddes, D.T.; Muhlhausler, B.S. The impact of maternal obesity on human milk macronutrient coposition: A systemic review and meta-analysis. Nutrients 2020, 12, 934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galante, L.; Milan, A.M.; Reynolds, C.M.; Cameron-Smith, D.; Vickers, M.H.; Pundir, S. Sex-specific human milk composition: The role of infant sex in determining early life nutrition. Nutrients 2018, 10, 1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardo, I.M.; Geloneze, B.; Tambascia, M.A.; Pereira, J.L.; Filho, A.A.B. Leptin as a marker of sexual dimorphism in newborn infants. J. Pediatr. 2004, 80, 305–308. [Google Scholar] [CrossRef]
- Geary, M.P.P.; Pringle, P.J.; Rodeck, C.H.; Kingdom, J.C.P.; Hindmarsh, P.C. Sexual dimorphism in the growth hormone and insulin-like growth factor axis at birth. J. Clin. Endocrinol. Metab. 2003, 88, 3708–3714. [Google Scholar] [CrossRef]
- Hinde, K.; Carpenter, A.J.; Clay, J.S.; Bradford, B.J. Holsteins favor Heifers, not bulls: Biased milk production programmed during pregnancy as a function of fetal sex. PLoS ONE 2014, 9, e86169. [Google Scholar] [CrossRef]
- Landete-Castillejos, T.; García, A.; López-Serrano, F.R.; Gallego, L. Maternal quality and differences in milk production and composition for male and female Iberian red deer calves (Cervus elaphus hispanicus). Behav. Ecol. Sociobiol. 2005, 57, 267–274. [Google Scholar] [CrossRef]
- Quesnel, L.; MacKay, A.; Forsyth, D.M.; Nicholas, K.R.; Festa-Bianchet, M. Size, season and offspring sex affect milk composition and juvenile survival in wild kangaroos. J. Zool. 2017, 302, 252–262. [Google Scholar] [CrossRef]
- Robert, K.A.; Braun, S. Milk composition during lactation suggests a mechanism for male biased allocation of maternal resources in the tammar wallaby (Macropus eugenii). PLoS ONE 2012, 7, e51099. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, S.; Segal, N.L. Same-sex twins are taller and heavier than opposite-sex twins (but only if breastfed): Possible evidence for sex bias in human breast milk. J. Exp. Child Psychol. 2017, 156, 186–191. [Google Scholar] [CrossRef] [PubMed]
- National Longitudinal Study of Adolescent Health. Available online: https://www.cpc.unc.edu/projects/addhealth (accessed on 6 June 2020).
- Lee, S.G.; Chung, T.H. Lipid content of breast milk in Korean women. J. Korean Pediatr. Soc. 1985, 28, 977–988. [Google Scholar]
- Nommsen, L.A.; Lovelady, C.A.; Heinig, M.J.; Lönnerdal, B.; Dewey, K.G. Determinants of energy, protein, lipid, and lactose concentrations in human milk during the first 12 mo of lactation: The DARLING Study. Am. J. Clin. Nutr. 1991, 53, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Szponar, L.; Wolnicka, K.; Rychlik, E. Album of Photographs of Food Products and Dishes; National Food and Nutrition Institute: Warsaw, Poland, 2011. [Google Scholar]
- Euro Who. Available online: http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 7 June 2020).
- Groh-Wargo, S.; Valentic, J.; Khaira, S.; Super, D.M.; Collin, M. Human milk analysis using mid-infrared spectroscopy. Nutr. Clin. Pract. 2016, 31, 266–272. [Google Scholar] [CrossRef] [Green Version]
- Smilowitz, J.T.; Gho, D.S.; Mirmiran, M.; German, J.B.; Underwood, M.A. Rapid measurement of human milk macronutrients in the neonatal intensive care unit: Accuracy and precision of fourier transform mid-infrared spectroscopy. J. Hum. Lact. 2014, 30, 180–189. [Google Scholar] [CrossRef]
- Khan, S.; Hepworth, A.R.; Prime, D.K.; Lai, C.T.; Trengove, N.J.; Hartmann, P.E. Variation in fat, lactose, and protein composition in breast milk over 24 h: Associations with infant feeding patterns. J. Hum. Lact. 2013, 29, 81–89. [Google Scholar] [CrossRef]
- Fujimori, M.; França, E.L.; Fiorin, V.; Morais, T.C.; Honorio-França, A.C.; de Abreu, L.C. Changes in the biochemical and immunological components of serum and colostrum of overweight and obese mothers. BMC Pregnancy Childbirth 2015, 15, 166. [Google Scholar] [CrossRef]
- Bravi, F.; Wiens, F.; Decarli, A.; Dal Pont, A.; Agostoni, C.; Ferraroni, M. Impact of maternal nutrition on breast-milk composition: A systematic review. Am. J. Clin. Nutr. 2016, 104, 646–662. [Google Scholar] [CrossRef] [Green Version]
- Chang, N.; Jung, J.A.; Kim, H.; Jo, A.; Kang, S.; Lee, S.W.; Yi, H.; Kim, J.; Yim, J.G.; Jung, B.M. Macronutrient composition of human milk from Korean mothers of full-term infants born at 37–42 gestational weeks. Nutr. Res. Pract. 2015, 9, 433–438. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, Y.; Ning, Y.; You, L.; Ma, D.; Zheng, Y.; Yang, X.; Li, W.; Wang, J.; Wang, P. Breast milk macronutrient composition and the associated factors in urban Chinese mothers. Chin. Med. J. 2014, 127, 1721–1725. [Google Scholar] [PubMed]
- Hahn, W.-H.; Song, J.-H.; Song, S.; Kang, N. Do gender and birth height of infant affect calorie of human milk? An association study between human milk macronutrient and various birth factors. J. Matern. Fetal Neonatal Med. 2017, 30, 1608–1612. [Google Scholar] [CrossRef] [PubMed]
- Fujita, M.; Roth, E.; Lo, Y.-J.; Hurst, C.; Vollner, J.; Kendell, A. In poor families, mothers’ milk is richer for daughters than sons: A test of Trivers–Willard hypothesis in agropastoral settlements in Northern Kenya. Am. J. Phys. Anthropol. 2012, 149, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Fumeaux, C.J.F.; Garcia-Rodenas, C.L.; De Castro, C.A.; Courtet-Compondu, M.-C.; Thakkar, S.K.; Beauport, L.; Tolsa, J.-F.; Affolter, M. Longitudinal analysis of macronutrient composition in preterm and term human milk: A prospective cohort study. Nutrients 2019, 11, 1525. [Google Scholar] [CrossRef] [Green Version]
- Thakkar, S.K.; Giuffrida, F.; Cristina, C.H.; De Castro, C.A.; Mukherjee, R.; Tran, L.A.; Steenhout, P.; Lee, L.Y.; Destaillats, F. Dynamics of human milk nutrient composition of women from Singapore with a special focus on lipids. Am. J. Hum. Biol. 2013, 25, 770–779. [Google Scholar] [CrossRef]
- Xie, G.; Ma, X.; Zhao, A.; Wang, C.; Zhang, Y.; Nieman, D.; Nicholson, J.K.; Jia, W.; Bao, Y.; Jia, W. The metabolite profiles of the obese population are gender-dependent. J. Proteome Res. 2014, 13, 4062–4073. [Google Scholar] [CrossRef]
- De Luca, A.; Hankard, R.; Alexandre-Gouabau, M.-C.; Ferchaud-Roucher, V.; Darmaun, D.; Boquien, C.-Y. Higher concentrations of branched-chain amino acids in breast milk of obese mothers. Nutrition 2016, 32, 295–1298. [Google Scholar] [CrossRef]
- Larnkjær, A.; Bruun, S.; Pedersen, D.; Zachariassen, G.; Barkholt, V.; Agostoni, C.; Christian, M.; Husby, S.; Michaelsen, K.F. Free amino acids in human milk and associations with maternal anthropometry and infant growth. J. Pediatr. Gastroenterol. Nutr. 2016, 63, 374–378. [Google Scholar] [CrossRef] [Green Version]
- Dritsakou, K.; Liosis, G.; Valsami, G.; Polychronopoulos, E.; Skouroliakou, M. The impact of maternal-and neonatal-associated factors on human milk’s macronutrients and energy. J. Matern. Fetal Neonatal Med. 2017, 30, 1302–1308. [Google Scholar] [CrossRef]
- Prentice, P.; Ong, K.K.; Schoemaker, M.H.; van Tol, E.A.; Vervoort, J.; Hughes, I.A.; Acerini, C.L.; Dunger, D.B. Breast milk nutrient content and infancy growth. Acta Paediatr. 2016, 105, 641–647. [Google Scholar] [CrossRef] [Green Version]
- Gridneva, Z.; Tie, W.; Rea, A.; Lai, C.; Ward, L.; Murray, K.; Hartmann, P.; Geddes, D. Human milk casein and whey protein and infant body composition over the first 12 months of lactation. Nutrients 2018, 10, 1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grunewald, M.; Hellmuth, C.; Kirchberg, F.F.; Mearin, M.L.; Auricchio, R.; Castillejo, G.; Korponay-Szabo, I.R.; Polanco, I.; Roca, M.; Vriezinga, S.L.; et al. Variation and interdependencies of human milk macronutrients, fatty acids, adiponectin, insulin, and IGF-II in the European PreventCD cohort. Nutrients 2019, 11, 2034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinn, E.A. No evidence for sex biases in milk macronutrients, energy, or breastfeeding frequency in a sample of Filipino mothers. Am. J. Phys. Anthropol. 2013, 152, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Casadio, Y.S.; Williams, T.M.; Lai, C.T.; Olsson, S.E.; Hepworth, A.R.; Ed, G.D.; Hartmann, P.E. Evaluation of a mid-infrared analyzer for the determination of the macronutrient composition of human milk. J. Hum. Lact. 2010, 26, 376–383. [Google Scholar] [CrossRef]
- Dewey, K.G.; Finley, D.A.; Lonerdal, B. breast milk volume and composition during late lactation (7–20 Months). J. Ped. Gastr. Nutr. 1984, 3, 713–720. [Google Scholar] [CrossRef]
- Neville, M.C.; Neifert, M.R. Lactation: Physiology, Nutrition and Breast-Feeding; Neville, M.C., Neifert, M.R., Eds.; Plenum Press: New York, NY, USA, 1983. [Google Scholar]
- Michaelsen, K.F.; Larsen, P.S.; Thomsen, B.L.; Samuelson, G. The copen-hagen cohort study on infant nutrition and growth: Breast milk intake, human milk macronutrient content, and influencing factors. Am. J. Clin. Nutr. 1994, 59, 600–611. [Google Scholar] [CrossRef] [Green Version]
- Powe, C.E.; Knott, C.D.; Conklin-Brittain, N. Infant sex predicts breast milk energy content. Am. J. Hum. Biol. 2010, 22, 50–54. [Google Scholar] [CrossRef]
- Tamimi, R.M.; Lagiou, P.; Mucci, L.A.; Hsieh, C.C.; Adami, H.O.; Trichopoulous, D. Average energy intake among pregnant women carrying a boy compared with a girl. Br. Med. J. 2003, 326, 1245–1246. [Google Scholar] [CrossRef] [Green Version]
- Heyward, V.H.; Stolarczyk, L.M. Applied Body Composition Assessment; Human Kinetics: Champaign, IL, USA, 1996; pp. 1–215. [Google Scholar]
- Rakicioglu, N.; Samur, G.; Topcu, A.; Topcu, A.A. The effect of ramadan on maternal nutrition and composition of breast milk. Pediatr. Int. 2006, 48, 278–283. [Google Scholar] [CrossRef]
- Innis, S.M. Impact of maternal diet on human milk composition and neurological development of infants. Am. J. Clin. Nutr. 2014, 99, 734–741. [Google Scholar] [CrossRef] [Green Version]
Parameter | Mean ± Standard Deviation | Median (Lower Quartile–Upper Quartile) | Number (Percentage) |
---|---|---|---|
Mothers | |||
Age (years) | 32.4 ± 4.4 | 32 (29–34) | |
Pre-pregnancy weight (kg) | 61.3 ± 10.7 | 58.0 (53.5–70.0) | |
Pre-pregnancy BMI (kg/m2) | 22.0 ± 3.5 | 21.1 (19.3–23.8) | |
Pre-pregnancy nutritional status: | |||
Underweight | 6 (8%) | ||
Normal weight | 56 (73%) | ||
Overweight | 12 (15%) | ||
Obese | 3 (4%) | ||
Pregnancy weight gain (kg) | 15.0 ± 5.1 | 14 (12–17) | |
Current weight (kg) | 64.1 ± 12 | 62.0 (54.7–70.1) | |
Current BMI (kg/m2) | 23 ± 3.8 | 22.5 (20–24.9) | |
Current nutritional status according to BMI: | |||
Underweight | 5 (7%) | ||
Normal weight | 55 (71%) | ||
Overweight | 13 (17%) | ||
Obese | 4 (5%) | ||
Body fat tissue (%) | 37.2 ± 19.7 | 30.4 (23.8–41.7) | |
Lean body mass (%) | 71.9 ± 8.2 | 71.3 (66.9–78.8) | |
Total water content (%) | 50.9 ± 4.8 | 50.3 (46.6–54.8) | |
Number of pregnancies: | |||
First | 47 (61%) | ||
Second | 22 (29%) | ||
Third | 5 (6%) | ||
Fourth | 3 (4%) | ||
Infants | |||
Birth weight (g) | 3608 ± 462.0 | 3560 (3560–3900) | |
Birth length (cm) | 55.2 ± 2.1 | 55 (54–56) | |
Number of daily feedings | 9.7 ± 3.4 | 9 (8–11) | |
Milk composition | |||
Energy (kcal/100 mL) | 63.8 ± 12.2 | 63.7 (52–73) | |
Total protein (g/100 mL) | 1.12± 0.22 | 1.1 (1–1.2) | |
True protein (g/100 mL) | 0.88 ± 0.18 | 0.83 (0.8–1) | |
Fat (g/100 mL) | 3.34 ± 1.23 | 3.33 (2.5–4.3) | |
Carbohydrates (g/100 mL) | 6.99 ± 0.37 | 7 (6.87–7.23) | |
Dry mass (g/100 mL) | 11.5 ± 1.5 | 11.6 (10.3–12.6) | |
Water (mL/100 mL) | 88.5 ± 1.5 | 88.4 (87.4–89.7) |
Female Newborns (n = 42) | Male Newborns (n = 35) | ||||
---|---|---|---|---|---|
Mean ± Standard Deviation | Median (Lower Quartile–Upper Quartile) | Mean ± Standard Deviation | Median (Lower Quartile–Upper Quartile) | p-Value 1 | |
Age (years) | 32.7 ± 4.2 | 32 (30–34) | 32.1–4.6 | 31 (29–34.5) | 0.405 |
Maternal nutritional status and body composition | |||||
Pre-pregnancy weight (kg) | 64.6 ± 12 | 65.0 (55–74.5) | 57.4–7.4 | 57.0 (53–58) | 0.022 |
Pre-pregnancy BMI (kg/m2) | 23.1 ± 3.9 | 23.0 (19.8–25.7) | 20.8 ± 2.4 | 19.8 (19.2–21.6) | 0.004 |
Pregnancy weight gain (kg) | 15.8 ± 5.2 | 14.5 (12–19.8) | 13.9–4.7 | 14 (10–15) | 0.099 |
Current weight (kg) | 67.1 ± 13.2 | 67.8 (55.6–79.2) | 60.5 ± 9.3 | 59.0 (54.7–66) | 0.030 |
Current BMI (kg/m2) | 23.9 ± 4.2 | 23.3 (20.1–26.8) | 21.9 ± 2.9 | 21.5 (20–23.6) | 0.042 |
Body fat tissue (%) | 38.2 ± 21.1 | 30.7 (25.2–41.7) | 36 ± 18.1 | 30.4 (22.5–38.8) | 0.701 |
Lean body mass (%) | 71.2 ± 8.1 | 69.9 (66.8–77.1) | 72.9 ± 8.2 | 73.3 (67.7–79.6) | 0.369 |
Total water content (%) | 50.8 ± 5 | 50.0 (46.9–54.6) | 51.1 ± 4.6 | 51.3 (46.6–55) | 0.642 |
Maternal diet | |||||
Energy (kcal) | 1747 ± 412 | 1724 (1484–1989) | 1827 ± 494.5 | 1713 (1454–2185) | 0.536 |
Total protein (g) | 74.2 ± 21.9 | 71.4 (56.2–91.1) | 75.2 ± 19.4 | 74.4 (59.7–91.1) | 0.831 |
Protein (% kcal) | 17.1 ± 3.4 | 17 (14.3–19.9) | 16.8 ± 2.7 | 16.9 (15.1–18.7) | 0.822 |
Animal protein (g) | 47.9 ± 20.2 | 42.5 (32.8–63.1) | 42.9 ± 19.5 | 42.5 (33.4–56.7) | 0.509 |
Vegetable protein (g) | 25.8 ± 8.8 | 24.6 (21.3–30.1) | 31.5 ± 12.4 | 26.9 (22.8–36.4) | 0.045 |
Fat (g) | 61.2 ± 19.3 | 58.0 (50.2–66.4) | 64.6 ± 24.2 | 60.9 (48.1–78) | 0.602 |
Fat (% kcal) | 31.2 ± 5.9 | 30.3 (27.8–35.2) | 30.9 ± 6.1 | 30.1 (26.6–34.8) | 0.842 |
Carbohydrates (g) | 242.2 ± 61 | 240.9 (193.1–291.5) | 258.6 ± 69 | 249 (211.1–295.5) | 0.278 |
Carbohydrates (% kcal) | 51.7 ± 6.5 | 51.6 (47.9–55.7) | 52.3 ± 7.2 | 51.1 (47.9–57) | 0.638 |
Sucrose (g) | 52.5 ± 30.2 | 45.6 (33.6–60.2) | 44.6 ± 31 | 34.4 (24.1–51.8) | 0.072 |
Fiber (g) | 19.2 ± 6 | 18.2 (16.0–22.5) | 24.4 ± 9 | 22.0 (18.8–29.3) | 0.016 |
Female Newborns (n = 42) | Male Newborns (n = 35) | ||||
---|---|---|---|---|---|
Mean ± SD | Median (Lower Quartile–Upper Quartile) | Mean ± SD | Median (Lower Quartile–Upper Quartile) | p-Value 1 | |
Infants’ characteristic | |||||
Birth weight (g) | 3661 ± 486 | 3625 (3268–4035) | 3545 ± 431 | 3500 (3220–3880) | 0.273 |
Birth length (cm) | 55.2 ± 2.1 | 55 (54–56) | 55.1 ± 2.1 | 55 (54–56) | 0.938 |
Number of daily feedings | 9.2 ± 3.1 | 9.0 (8.0–10.0) | 10.3 ± 3.8 | 9.0 (8.0–11.5) | 0.200 |
Milk composition | |||||
Energy (kcal/100 mL) | 63.9 ± 11.6 | 65.5 (52–72.8) | 63.7 ± 13.1 | 63.0 (54.0–71.7) | 0.921 |
Total protein (g/100 mL) | 1.11 ± 0.22 | 1.10 (1.00–1.17) | 1.13 ± 0.22 | 1.10 (1.00–1.20) | 0.741 |
True protein (g/100 mL) | 0.88 ± 0.18 | 0.82 (0.75–0.97) | 0.88 ± 0.18 | 0.9 (0.80–1.00) | 0.784 |
Fat (g/100 mL) | 3.40 ± 1.16 | 3.45 (2.50–4.27) | 3.27 ± 1.32 | 3.20 (2.25–4.08) | 0.652 |
Carbohydrates (g/100 mL) | 6.90 ± 0.41 | 6.95 (6.73–7.13) | 7.09 ± 0.27 | 7.13 (6.90–7.30) | 0.027 * |
Dry mass (g/100 mL) | 11.62 ± 1.46 | 11.90 (10.37–12.66) | 11.44 ± 1.55 | 11.46 (10.25–12.35) | 0.600 |
Water (mL/100 mL) | 88.38 ± 1.46 | 88.10 (87.34–89.63) | 88.56 ± 1.55 | 88.54 (87.65–89.75) | 0.600 |
Correlation Coefficient | |||||
---|---|---|---|---|---|
Parameter | HM Carbohydrates | HM Total Protein | HM True Protein | HM Fat | HM Energy |
Maternal factors | |||||
Age (years) 1 | 0.817 | 0.182 | 0.123 | −0.024 | 0.024 |
Pre–pregnancy BMI (kg/m2) 1 | 0.196 | 0.234 * | 0.23 * | 0.276 * | 0.296 * |
Pregnancy weight gain (kg) 1 | 0.3 | 0.009 | −0.096 | 0.065 | 0.058 |
Current BMI (kg/m2) 1 | 0.233 * | 0.296 * | 0.24 * | 0.351 * | 0.378 * |
Body fat tissue (%) 1 | 0.025 | 0.056 | −0.033 | 0.061 | 0.012 |
Lean body mass (%) 2 | −0.127 | −0.293 * | −0.267 * | −0.330 * | −0.355 * |
Total water content (%) 1 | −0.167 | −0.315 * | −0.292 * | −0.323 * | −0.329 * |
Maternal diet | |||||
Energy 1 | −0.104 | −0.024 | 0.105 | 0.088 | 0.077 |
Total protein (g) 1 | −0.105 | −0.081 | 0.026 | 0.14 | 0.135 |
Animal protein (g) 1 | −0.08 | −0.12 | −0.079 * | 0.118 | 0.11 |
Vegetable protein (g) 2 | −0.111 | 0.047 | 0.23 | 0.084 | 0.052 |
Fat (g) 1 | 0.089 | −0.02 | 0.102 | 0.174 | 0.181 |
Carbohydrates (g) 2 | −0.222 | −0.01 | 0.101 | 0.015 | −0.054 |
Protein (% kcal) 2 | −0.016 | −0.07 | −0.098 | 0.116 | 0.115 |
Fat (% kcal) 2 | 0.194 | −0.005 | 0.035 | 0.114 | 0.122 |
Carbohydrates (% kcal) 2 | −0.157 | 0.054 | 0.014 | −0.153 | −0.156 |
Infant factors | |||||
Birth weight (g) 2 | −0.074 | 0.094 | 0.055 | 0.098 | 0.087 |
Birth length (cm) 1 | −0.113 | 0.137 | 0.19 | 0.104 | 0.093 |
Number of daily feedings 1 | 0.308* | 0.105 | 0.145 | 0.094 | 0.121 |
Parameter | OR | 95% Confidence Interval | p-Value |
---|---|---|---|
Model A—M Carbohydrate content > 7.27 g/100 mL | |||
Birth weight (100 g) | 0.89 | 0.75–1.04 | 0.147 |
Number of daily feedings | 1.27 | 1.07–1.56 | 0.013 |
Maternal fat intake (% kcal) | 1.16 | 1.03–1.34 | 0.023 |
Male infant sex | 4.52 | 1.09–23.56 | 0.049 |
Model B—HM Total protein content > 1.23 g/100 mL | |||
Current BMI2 (kg/m2) | 1.36 | 1.13–1.71 | 0.003 |
Mother’s age (years) | 1.13 | 0.98–1.3 | 0.077 |
Pregnancy weight gain (kg) | 0.82 | 0.65–0.99 | 0.073 |
Model C—HM True protein content > 1.0 g/100 mL | |||
Current BMI (kg/m2) | 1.23 | 1.04–1.48 | 0.022 |
Mother’s age (years) | 1.13 | 0.97–1.31 | 0.098 |
Model D—HM Fat content > 4.4 g/100 mL | |||
Current BMI2 (kg/m2) | 1.41 | 1.17–1.77 | <0.001 |
Body fat tissue (%) | 1.04 | 1.01–1.08 | 0.014 |
Maternal protein intake (% kcal) | 1.15 | 0.91–1.5 | 0.256 |
Maternal carbohydrate intake (% kcal) | 0.93 | 0.83–1.04 | 0.201 |
Model E—HM Energy content > 73.9 kcal/100 mL | |||
Current BMI 2 (kg/m2) | 1.50 | 1.21–1.99 | 0.001 |
Body fat tissue (%) | 1.04 | 1.00–1.08 | 0.033 |
Number of daily feedings | 1.17 | 0.98–1.44 | 0.099 |
Maternal protein intake (% kcal) | 1.32 | 1.05–1.74 | 0.027 |
Male infant sex | 5.23 | 0.98–37.8 | 0.070 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bzikowska-Jura, A.; Sobieraj, P.; Szostak-Węgierek, D.; Wesołowska, A. Impact of Infant and Maternal Factors on Energy and Macronutrient Composition of Human Milk. Nutrients 2020, 12, 2591. https://doi.org/10.3390/nu12092591
Bzikowska-Jura A, Sobieraj P, Szostak-Węgierek D, Wesołowska A. Impact of Infant and Maternal Factors on Energy and Macronutrient Composition of Human Milk. Nutrients. 2020; 12(9):2591. https://doi.org/10.3390/nu12092591
Chicago/Turabian StyleBzikowska-Jura, Agnieszka, Piotr Sobieraj, Dorota Szostak-Węgierek, and Aleksandra Wesołowska. 2020. "Impact of Infant and Maternal Factors on Energy and Macronutrient Composition of Human Milk" Nutrients 12, no. 9: 2591. https://doi.org/10.3390/nu12092591
APA StyleBzikowska-Jura, A., Sobieraj, P., Szostak-Węgierek, D., & Wesołowska, A. (2020). Impact of Infant and Maternal Factors on Energy and Macronutrient Composition of Human Milk. Nutrients, 12(9), 2591. https://doi.org/10.3390/nu12092591