Farmed Mussels: A Nutritive Protein Source, Rich in Omega-3 Fatty Acids, with a Low Environmental Footprint
Abstract
:1. Introduction
1.1. The Environmental Benefits of Farmed Mussels
1.2. The Health Benefits of Mussels
1.2.1. Mussels as a Nutritious Source of Protein
1.2.2. Mussels as a Sustainable Source of Omega-3 Fatty Acids
1.2.3. Farmed Mussels as a Source of Cholesterol Lowering Phytosterols
1.2.4. Potential Risks Associated with Mussels
2. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Czyżewski, B.; Kryszak, Ł. Impact of different models of agriculture on greenhouse gases (GHG) emissions: A sectoral approach. Outlook Agric. 2018, 47, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [Green Version]
- Herrero, M.; Havlík, P.; Valin, H.; Notenbaert, A.; Rufino, M.C.; Thornton, P.K.; Blümmel, M.; Weiss, F.; Grace, D.; Obersteiner, M. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl. Acad. Sci. USA 2013, 110, 20888–20893. [Google Scholar] [CrossRef] [Green Version]
- Aleksandrowicz, L.; Green, R.; Joy, E.J.; Smith, P.; Haines, A. The impacts of dietary change on greenhouse gas emissions, land use, water use, and health: A systematic review. PLoS ONE 2016, 11, e0165797. [Google Scholar] [CrossRef] [Green Version]
- Berners-Lee, M.; Hoolohan, C.; Cammack, H.; Hewitt, C. The relative greenhouse gas impacts of realistic dietary choices. Energy Policy 2012, 43, 184–190. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Dinu, M.; Abbate, R.; Gensini, G.F.; Casini, A.; Sofi, F. Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 3640–3649. [Google Scholar] [CrossRef]
- Craig, W.J. Health effects of vegan diets. Am. J. Clin. Nutr. 2009, 89, 1627S–1633S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, T.Y.N.; Appleby, P.N.; Armstrong, M.E.G.; Fensom, G.K.; Knuppel, A.; Papier, K.; Perez-Cornago, A.; Travis, R.C.; Key, T.J. Vegetarian and vegan diets and risks of total and site-specific fractures: Results from the prospective EPIC-Oxford study. BMC Med. 2020, 18, 353. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.; Klaus, S. Veganism, aging and longevity: New insight into old concepts. Curr. Opin. Clin. Nutr. Metab. Care 2020, 23, 145–150. [Google Scholar] [CrossRef]
- Burdge, G.C.; Tan, S.-Y.; Henry, C.J. Long-chain n-3 PUFA in vegetarian women: A metabolic perspective. J. Nutr. Sci. 2017, 6, e58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worm, B.; Barbier, E.B.; Beaumont, N.; Duffy, J.E.; Folke, C.; Halpern, B.S.; Jackson, J.B.; Lotze, H.K.; Micheli, F.; Palumbi, S.R.; et al. Impacts of biodiversity loss on ocean ecosystem services. Science 2006, 314, 787–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thurstan, R.H.; Roberts, C.M. The past and future of fish consumption: Can supplies meet healthy eating recommendations? Mar. Pollut. Bull. 2014, 89, 5–11. [Google Scholar] [CrossRef]
- Micha, R.; Khatibzadeh, S.; Shi, P.; Fahimi, S.; Lim, S.; Andrews, K.G.; Engell, R.E.; Powles, J.; Ezzati, M.; Mozaffarian, D.; et al. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: A systematic analysis including 266 country-specific nutrition surveys. BMJ 2014, 348, 2272. [Google Scholar] [CrossRef] [Green Version]
- Fry, J.M. Carbon Footprint of Scottish Suspended Mussels and Intertidal Oysters; SARF078; Environmental Resources Management: London, UK, 2012. [Google Scholar]
- Bergland, H.; Burlakov, E.; Pedersen, P.A.; Wyller, J. Aquaculture, pollution and fishery-dynamics of marine industrial interactions. Ecol. Complex. 2020, 43, 100853. [Google Scholar] [CrossRef]
- Gorissen, S.H.; Witard, O.C. Characterising the muscle anabolic potential of dairy, meat and plant-based protein sources in older adults. Proc. Nutr. Soc. 2018, 77, 20–31. [Google Scholar] [CrossRef]
- Suplicy, F.M. A review of the multiple benefits of mussel farming. Rev. Aquac. 2020, 12, 204–223. [Google Scholar] [CrossRef]
- Mejia, A.; Harwatt, H.; Jaceldo-Siegl, K.; Sranacharoenpong, K.; Soret, S.; Sabaté, J. Greenhouse gas emissions generated by tofu production: A case study. J. Hunger Environ. Nutr. 2018, 13, 131–142. [Google Scholar] [CrossRef]
- Gallardi, D. Effects of bivalve aquaculture on the environment and their possible mitigation: A review. Fish. Aquac. J. 2014, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Jansen, H.M.; Strand, Ø.; Van Broekhoven, W.; Strohmeier, T.; Verdegem, M.C.; Smaal, A.C. Feedbacks from filter feeders: Review on the role of mussels in cycling and storage of nutrients in oligo-meso-and eutrophic cultivation areas. In Goods and Services of Marine Bivalves; Springer: Cham, Switzerland, 2019; pp. 143–177. [Google Scholar]
- Petersen, J.K.; Holmer, M.; Termansen, M.; Hasler, B. Nutrient extraction through bivalves. In Goods and Services of Marine Bivalves; Springer: Cham, Switzerland, 2019; pp. 179–208. [Google Scholar]
- Cranford, P.J. Magnitude and extent of water clarification services provided by bivalve suspension feeding. In Goods and Services of Marine Bivalves; Springer: Cham, Switzerland, 2019; pp. 119–141. [Google Scholar]
- van der Schatte Olivier, A.; Jones, L.; Vay, L.L.; Christie, M.; Wilson, J.; Malham, S.K. A global review of the ecosystem services provided by bivalve aquaculture. Rev. Aquac. 2020, 12, 3–25. [Google Scholar] [CrossRef] [Green Version]
- Stenton-Dozey, J.M.; Heath, P.; Ren, J.S.; Zamora, L.N. New Zealand aquaculture industry: Research, opportunities and constraints for integrative multitrophic farming. N. Z. J. Mar. Freshw. Res. 2020, 1–21. [Google Scholar] [CrossRef]
- Crawford, M.A. Cerebral Evolution. Nutr. Health 2002, 16, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Smil, V. Feeding the World: A Challenge for the Twenty-First Century; MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- McLeod, M.; Breen, L.; Hamilton, D.L.; Philp, A. Live strong and prosper: The importance of skeletal muscle strength for healthy ageing. Biogerontology 2016, 17, 497–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witard, O.C.; McGlory, C.; Hamilton, D.L.; Phillips, S.M. Growing older with health and vitality: A nexus of physical activity, exercise and nutrition. Biogerontology 2016, 17, 529–546. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.M.; Fulgoni III, V.L.; Heaney, R.P.; Nicklas, T.A.; Slavin, J.L.; Weaver, C.M. Commonly consumed protein foods contribute to nutrient intake, diet quality, and nutrient adequacy. Am. J. Clin. Nutr. 2015, 101, 1346S–1352S. [Google Scholar] [CrossRef] [Green Version]
- Wengreen, H.J.; Neilson, C.; Munger, R.; Corcoran, C. Diet quality is associated with better cognitive test performance among aging men and women. J. Nutr. 2009, 139, 1944–1949. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- Kaur, D.; Rasane, P.; Singh, J.; Kaur, S.; Kumar, V.; Mahato, D.K.; Dey, A.; Dhawan, K.; Kumar, S. Nutritional Interventions for Elderly and Considerations for the Development of Geriatric Foods. Curr. Aging Sci. 2019, 12, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Venugopal, V.; Gopakumar, K. Shellfish: Nutritive Value, Health Benefits, and Consumer Safety. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1219–1242. [Google Scholar] [CrossRef] [Green Version]
- Foundation, H. Meat and Heart Healthy Eating: Dietary Position Statement; NHFA: Melbourne, VIC, Australia, 2019. [Google Scholar]
- Australia, C.C. Position Statement-Meat and Cancer Prevention; National Cancer Council: Sydney, Australia, 2019. [Google Scholar]
- Trumbo, P.; Yates, A.A.; Schlicker, S.; Poos, M. Dietary Reference Intakes: Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. J. Acad. Nutr. Diet. 2001, 101, 294–301. [Google Scholar] [CrossRef]
- Calder, P.C. Very long-chain n-3 fatty acids and human health: Fact, fiction and the future. Proc. Nutr. Soc. 2018, 77, 52–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, J.J.; Veysey, M.; Lucock, M.; Niblett, S.; King, K.; MacDonald-Wicks, L.; Garg, M.L. Association between omega-3 index and blood lipids in older Australians. J. Nutr. Biochem. 2016, 27, 233–240. [Google Scholar] [CrossRef]
- Harris, W.S.; Von Schacky, C. The Omega-3 Index: A new risk factor for death from coronary heart disease? Prev. Med. 2004, 39, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, O.; Djafarian, K.; Ghorabi, S.; Khodadost, M.; Nasiri, M.; Shab-Bidar, S. Dietary intake of fish, n-3 polyunsaturated fatty acids and risk of hip fracture: A systematic review and meta-analysis on observational studies. Crit. Rev. Food Sci. Nutr. 2019, 59, 1320–1333. [Google Scholar] [CrossRef] [PubMed]
- Foundation, N.H. Position Statement, Fish., Fish. Oils, n-3 Polyunsaturated Fatty Acids and Cardiovascular Health; National Heart Foundation of Australia: Tiwi, NT, Australia, 2008. [Google Scholar]
- Meyer, B. Australians are not meeting the recommended intakes for omega-3 long chain polyunsaturated fatty acids: Results of an analysis from the 2011–2012 national nutrition and physical activity survey. Nutrients 2016, 8, 111. [Google Scholar] [CrossRef] [Green Version]
- Brunner, E.J.; Jones, P.J.; Friel, S.; Bartley, M. Fish, human health and marine ecosystem health: Policies in collision. Int. J. Epidemiol. 2009, 38, 93–100. [Google Scholar] [CrossRef]
- Carboni, S.; Kaur, G.; Pryce, A.; McKee, K.; Desbois, A.P.; Dick, J.R.; Galloway, S.D.R.; Hamilton, D.L. Mussel Consumption as a “Food First” Approach to Improve Omega-3 Status. Nutrients 2019, 11, 1381. [Google Scholar] [CrossRef] [Green Version]
- Ahmmed, M.K.; Ahmmed, F.; Tian, H.; Carne, A.; Bekhit, A.E.-D. Marine omega-3 (n-3) phospholipids: A comprehensive review of their properties, sources, bioavailability, and relation to brain health. Compr. Rev. Food Sci. Food Saf. 2020, 19, 64–123. [Google Scholar] [CrossRef] [Green Version]
- Wijsman, J.W.M.; Troost, K.; Fang, J.; Roncarati, A. Global Production of Marine Bivalves. Trends and Challenges. In Goods and Services of Marine Bivalves; Smaal, A.C., Ferreira, J.G., Grant, J., Petersen, J.K., Strand, Ø., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 7–26. [Google Scholar] [CrossRef] [Green Version]
- Ostlund, R.E., Jr. Phytosterols in human nutrition. Annu. Rev. Nutr. 2002, 22, 533–549. [Google Scholar] [CrossRef]
- Eilat-Adar, S.; Sinai, T.; Yosefy, C.; Henkin, Y. Nutritional recommendations for cardiovascular disease prevention. Nutrients 2013, 5, 3646–3683. [Google Scholar] [CrossRef] [Green Version]
- Ntanios, F.Y.; Jones, P.J. Dietary sitostanol reciprocally influences cholesterol absorption and biosynthesis in hamsters and rabbits. Atherosclerosis 1999, 143, 341–351. [Google Scholar] [CrossRef]
- Hailat, I.A.; Parrish, C.C.; Helleur, R.J. Sterol Composition of Blue Mussels Fed Algae and Effluent Diets from Finfish Culture. J. Shellfish Res. 2016, 35, 429–434, 426. [Google Scholar] [CrossRef]
- Murphy, K.J.; Mooney, B.D.; Mann, N.J.; Nichols, P.D.; Sinclair, A.J. Lipid, FA, and sterol composition of New Zealand green lipped mussel (Perna canaliculus) and Tasmanian blue mussel (Mytilus edulis). Lipids 2002, 37, 587–595. [Google Scholar] [CrossRef]
- Childs, M.T.; Dorsett, C.S.; King, I.B.; Ostrander, J.G.; Yamanaka, W.K. Effects of shellfish consumption on lipoproteins in normolipidemic men. Am. J. Clin. Nutr. 1990, 51, 1020–1027. [Google Scholar] [CrossRef] [PubMed]
- Domingo, J.L.; Nadal, M. Carcinogenicity of consumption of red meat and processed meat: A review of scientific news since the IARC decision. Food Chem. Toxicol. 2017, 105, 256–261. [Google Scholar] [CrossRef]
- Moonesinghe, H.; Mackenzie, H.; Venter, C.; Kilburn, S.; Turner, P.; Weir, K.; Dean, T. Prevalence of fish and shellfish allergy: A systematic review. Ann. Allergy Asthma Immunol. 2016, 117, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Jackson, K.; Ogburn, D. Review of Depuration and Its Role in Shellfish Quality Assurance; NSW Fisheries: Wollstonecraft, Australia, 1999. [Google Scholar]
- Van Cauwenberghe, L.; Janssen, C.R. Microplastics in bivalves cultured for human consumption. Environ. Pollut. 2014, 193, 65–70. [Google Scholar] [CrossRef]
- Jović, M.; Onjia, A.; Stanković, S. Toxic metal health risk by mussel consumption. Environ. Chem. Lett. 2012, 10, 69–77. [Google Scholar] [CrossRef]
- Birnstiel, S.; Soares-Gomes, A.; da Gama, B.A.P. Depuration reduces microplastic content in wild and farmed mussels. Mar. Pollut. Bull. 2019, 140, 241–247. [Google Scholar] [CrossRef]
- van Raamsdonk, L.W.D.; van der Zande, M.; Koelmans, A.A.; Hoogenboom, R.L.A.P.; Peters, R.J.B.; Groot, M.J.; Peijnenburg, A.A.C.M.; Weesepoel, Y.J.A. Current Insights into Monitoring, Bioaccumulation, and Potential Health Effects of Microplastics Present in the Food Chain. Foods 2020, 9, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Outzen, M.; Tjønneland, A.; Larsen, E.H.; Hansen, M.; Andersen, K.K.; Christensen, J.; Overvad, K.; Olsen, A. Effect of increased intake of fish and mussels on exposure to toxic trace elements in a healthy, middle-aged population. Food Addit. Contam. Part A 2015, 32, 1858–1866. [Google Scholar] [CrossRef] [PubMed]
- Richardson, B.J.; Garnham, J.S.; Fabris, J.G. Trace metal concentrations in mussels (Mytilus edulis planulatus L.) transplanted into Southern Australian waters. Mar. Pollut. Bull. 1994, 28, 392–396. [Google Scholar] [CrossRef]
- Shen, H.; Kibria, G.; Wu, R.S.S.; Morrison, P.; Nugegoda, D. Spatial and temporal variations of trace metal body burdens of live mussels Mytilus galloprovincialis and field validation of the Artificial Mussels in Australian inshore marine environment. Chemosphere 2020, 248, 126004. [Google Scholar] [CrossRef] [PubMed]
- Authority, A.-A.N.Z.F. Australia New Zealand Food Standards Code-Standard 1.4. 1-Contaminants and Natural Toxicants; Anstat Pvt. Ltd.: Victoria, Australia, 2003. [Google Scholar]
- Gaylard, S.; Thomas, S.; Nelson, M. An assessment of the current status of bioavailable metal contamination across South Australia using translocated mussels Mytilus Galloprovincalis. Trans. R. Soc. S. Aust. 2011, 135, 39–54. [Google Scholar]
- Mozaffarian, D.; Rimm, E.B. Fish intake, contaminants, and human health: Evaluating the risks and the benefits. JAMA 2006, 296, 1885–1899. [Google Scholar] [CrossRef] [Green Version]
Protein Product | Protein Content per 100 g of Cooked and Edible Product | kg of GHGs per kg of Edible Product |
---|---|---|
Beef | 27.0 | 19.0–36.7 |
Lamb | 27.5 | 23.0–36.0 |
Pork | 30.6 | 6.4–8.6 |
Poultry | 29.8 | 3.0–6.5 |
Salmon | 29.2 | 4.2–5.4 |
Eggs | 14.1 | 4.5 |
Tofu | 16.4 | 0.1 |
Blue Mussels | 16.0 | 0.6 |
Per 100 g Edible Portion | Blue Mussels, Cooked, No Added Fat | Steak, Fully Trimmed, Cooked, No Added Fat | Salmon, Cooked, No Added Fat | Tofu (Soy Bean Curd), Cooked, No Added Fat |
---|---|---|---|---|
Energy, without fibre (kJ) | 438.00 | 673.00 | 1202.00 | 649.00 |
Protein (g) | 16.00 | 27.00 | 29.20 | 16.40 |
Dietary fibre (g) | 0.00 | 0.00 | 0.00 | 4.80 |
Riboflavin (B2) (mg) | 0.07 | 0.19 | 0.14 | 0.09 |
Niacin (B3) (mg) | 0.73 | 5.14 | 4.48 | 0.65 |
Niacin derived equivalents (mg) | 3.77 | 8.85 | 11.14 | 3.83 |
Dietary folate equivalents (µg) | 23.00 | 0.00 | 0.00 | 39.00 |
Vitamin B6 (mg) | 0.08 | 0.12 | 0.75 | 0.12 |
Vitamin B12 (µg) | 20.00 | 1.00 | 2.50 | 0.00 |
Vitamin C (mg) | 5.00 | 1.00 | 0.00 | 0.00 |
Alpha-tocopherol (mg) | 1.00 | 0.90 | 5.00 | 0.00 |
Vitamin E (mg) | 1.05 | 0.86 | 4.97 | 0.00 |
Calcium (Ca) (mg) | 173.00 | 6.00 | 10.00 | 438.00 |
Iodine (I) (µg) | 267.80 | 1.10 | 9.80 | 3.80 |
Iron (Fe) (mg) | 2.97 | 2.45 | 1.45 | 3.97 |
Magnesium (Mg) (mg) | 76.00 | 27.00 | 34.00 | 107.00 |
Phosphorus (P) (mg) | 122.00 | 246.00 | 361.00 | 329.00 |
Potassium (K) (mg) | 131.00 | 381.00 | 428.00 | 178.00 |
Selenium (Se) (µg) | 96.00 | 10.40 | 30.30 | 6.80 |
Sodium (Na) (mg) | 353.00 | 55.00 | 57.00 | 55.00 |
Zinc (Zn) (mg) | 3.12 | 4.66 | 0.42 | 2.33 |
Cholesterol (mg) | 94.00 | 72.00 | 90.00 | 0.00 |
Total saturated fat (g) | 0.37 | 2.26 | 3.98 | 1.32 |
Total monounsaturated fat (g) | 0.20 | 2.46 | 7.40 | 2.24 |
Total polyunsaturated fat (g) | 0.79 | 0.44 | 5.66 | 5.58 |
Linoleic acid (g) | 0.04 | 0.20 | 1.56 | 5.00 |
Alpha-linolenic acid (g) | 0.06 | 0.06 | 0.63 | 0.58 |
C20:5w3 EPA (mg) | 191.33 | 28.38 | 1268.27 | 0.00 |
C22:5w3 DPA (mg) | 21.47 | 40.09 | 606.05 | 0.00 |
C22:6w3 DHA (mg) | 400.87 | 5.25 | 1184.51 | 0.00 |
Total long chain omega 3 fatty acids (mg) | 613.67 | 73.72 | 3058.83 | 0.00 |
Total trans fatty acids (mg) | 46.20 | 246.33 | 284.61 | 0.00 |
GHG emission (kg CO2) | 0.06 | 1.90–3.67 | 0.42–0.54 | 0.01 |
Per 100 g | Steak 560 g/Week (Current Red Meat Intake in Australia) | Steak 350 g/Week (AHF Recommended Intake) + 210 g/Week Blue Mussels (Substitution) | Delta Difference |
---|---|---|---|
Energy, without dietary fibre (kJ) | 3768.80 | 3275.30 | −493.50 |
Protein (g) | 151.20 | 128.10 | −23.10 |
Total fat (g) | 32.48 | 25.13 | −7.30 |
Vitamin A retinol equivalents (µg) | 16.80 | 130.20 | 113.40 |
Thiamin (B1) (mg) | 0.20 | 0.12 | −0.08 |
Riboflavin (B2) (mg) | 1.07 | 0.81 | −0.26 |
Niacin (B3) (mg) | 28.78 | 19.52 | −9.30 |
Niacin derived equivalents (mg) | 49.56 | 38.89 | −10.70 |
Vitamin B6 (mg) | 0.67 | 0.59 | −0.08 |
Vitamin B12 (µg) | 5.60 | 45.50 | 39.90 |
Vitamin C (mg) | 5.60 | 14.00 | 8.40 |
Alpha-tocopherol (mg) | 5.04 | 5.25 | 0.20 |
Vitamin E (mg) | 4.82 | 5.22 | 0.40 |
Calcium (Ca) (mg) | 33.60 | 384.30 | 350.70 |
Iron (Fe) (mg) | 13.72 | 14.81 | 1.10 |
Magnesium (Mg) (mg) | 151.20 | 254.10 | 102.90 |
Selenium (Se) (µg) | 58.24 | 238.00 | 179.80 |
Zinc (Zn) (mg) | 26.10 | 22.86 | −3.24 |
Cholesterol (mg) | 403.20 | 449.40 | 46.20 |
Total saturated fat (g) | 12.66 | 8.68 | −4.00 |
Total monounsaturated fat (g) | 13.78 | 9.03 | −4.75 |
Total polyunsaturated fat (g) | 2.46 | 3.20 | 0.74 |
Linoleic acid (g) | 1.12 | 0.78 | −0.30 |
Alpha-linolenic acid (g) | 0.34 | 0.34 | 0.00 |
C20:5w3 EPA (mg) | 158.93 | 501.12 | 342.19 |
C22:5w3 DPA (mg) | 224.50 | 185.40 | −39.10 |
C22:6w3 DHA (mg) | 29.40 | 860.20 | 830.80 |
Total long chain omega 3 fatty acids (mg) | 412.84 | 1546.72 | 1133.88 |
Total trans fatty acids (mg) | 1379.45 | 959.18 | −420.27 |
GHG emission (kg CO2) | 39.20 | 24.90 | −14.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaghubi, E.; Carboni, S.; Snipe, R.M.J.; Shaw, C.S.; Fyfe, J.J.; Smith, C.M.; Kaur, G.; Tan, S.-Y.; Hamilton, D.L. Farmed Mussels: A Nutritive Protein Source, Rich in Omega-3 Fatty Acids, with a Low Environmental Footprint. Nutrients 2021, 13, 1124. https://doi.org/10.3390/nu13041124
Yaghubi E, Carboni S, Snipe RMJ, Shaw CS, Fyfe JJ, Smith CM, Kaur G, Tan S-Y, Hamilton DL. Farmed Mussels: A Nutritive Protein Source, Rich in Omega-3 Fatty Acids, with a Low Environmental Footprint. Nutrients. 2021; 13(4):1124. https://doi.org/10.3390/nu13041124
Chicago/Turabian StyleYaghubi, Elham, Stefano Carboni, Rhiannon M. J. Snipe, Christopher S. Shaw, Jackson J. Fyfe, Craig M. Smith, Gunveen Kaur, Sze-Yen Tan, and David. Lee Hamilton. 2021. "Farmed Mussels: A Nutritive Protein Source, Rich in Omega-3 Fatty Acids, with a Low Environmental Footprint" Nutrients 13, no. 4: 1124. https://doi.org/10.3390/nu13041124
APA StyleYaghubi, E., Carboni, S., Snipe, R. M. J., Shaw, C. S., Fyfe, J. J., Smith, C. M., Kaur, G., Tan, S.-Y., & Hamilton, D. L. (2021). Farmed Mussels: A Nutritive Protein Source, Rich in Omega-3 Fatty Acids, with a Low Environmental Footprint. Nutrients, 13(4), 1124. https://doi.org/10.3390/nu13041124