Effects of the Consumption of Low-Fat Cooked Ham with Reduced Salt Enriched with Antioxidants on the Improvement of Cardiovascular Health: A Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Design
2.2. Participants
2.3. Supplementation Protocol
2.4. Study Settings
2.5. Study Variables
2.5.1. Blood Sample Measurements
2.5.2. Blood Pressure Measurements
2.5.3. Anthropometric Variables
2.5.4. Physical Activity
2.5.5. Dietary Habits
2.6. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Widmer, R.J.; Flammer, A.J.; Lerman, L.O.; Lerman, A. The Mediterranean diet, its components, and cardiovascular disease. Am. J. Med. 2015, 128, 229–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-González, M.A.; Gea, A.; Ruiz-Canela, M. The mediterranean diet and cardiovascular health: A critical review. Circ. Res. 2019, 124, 779–798. [Google Scholar] [CrossRef]
- Tosti, V.; Bertozzi, B.; Fontana, L. Health benefits of the mediterranean diet: Metabolic and molecular mechanisms. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2018, 73, 318–326. [Google Scholar] [CrossRef] [Green Version]
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corrà, U.; Cosyns, B.; Deaton, C.; et al. 2016 European guidelines on cardiovascular disease prevention in clinical practice: The sixth joint task force of the european society of cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European association for cardiovascular prevention & rehabilitation (EACPR). Atherosclerosis 2016, 252, 207–274. [Google Scholar] [CrossRef] [Green Version]
- Bertomeu Ruiz, A.; Zambón Rados, D. La placa aterogénica: Fisiopatología y consecuencias clínicas. Med. Integr. 2002, 40, 394–405. [Google Scholar]
- Rafieian-Kopaei, M.; Setorki, M.; Doudi, M.; Baradaran, A.; Nasri, H. Atherosclerosis: Process, indicators, risk factors and new hopes. Int. J. Prev. Med. 2014, 5, 927–946. [Google Scholar] [PubMed]
- Jansen, F.; Yang, X.; Franklin, B.S.; Hoelscher, M.; Schmitz, T.; Bedorf, J.; Nickenig, G.; Werner, N. High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovasc. Res. 2013, 98, 94–106. [Google Scholar] [CrossRef] [Green Version]
- Herieka, M.; Erridge, C. High-fat meal induced postprandial inflammation. Mol. Nutr. Food Res. 2014, 58, 136–146. [Google Scholar] [CrossRef] [PubMed]
- DiNicolantonio, J.J.; Lucan, S.C.; O’Keefe, J.H. The evidence for saturated fat and for sugar related to coronary heart disease. Prog. Cardiovasc. Dis. 2016, 58, 464–472. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Sánchez, A.; Madrigal-Santillán, E.; Bautista, M.; Esquivel-Soto, J.; Morales-González, A.; Esquivel-Chirino, C.; Durante-Montiel, I.; Sánchez-Rivera, G.; Valadez-Vega, C.; Morales-González, J.A. Inflammation, oxidative stress, and obesity. Int. J. Mol. Sci. 2011, 12, 3117–3132. [Google Scholar] [CrossRef] [Green Version]
- Gakidou, E.; Afshin, A.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulle, A.M.; Abera, S.F.; Aboyans, V.; et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1345–1422. [Google Scholar] [CrossRef] [Green Version]
- Meier, T.; Gräfe, K.; Senn, F.; Sur, P.; Stangl, G.I.; Dawczynski, C.; März, W.; Kleber, M.E.; Lorkowski, S. Cardiovascular mortality attributable to dietary risk factors in 51 countries in the WHO European Region from 1990 to 2016: A systematic analysis of the Global Burden of Disease Study. Eur. J. Epidemiol. 2019, 34, 37–55. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Ma, R.; Liu, D.; Liu, C.; Ma, Y.; Mai, W.; Dong, Y. Oxidized low-density lipoprotein cholesterol and the ratio in the diagnosis and evaluation of therapeutic effect in patients with coronary artery disease. Dis. Markers 2012, 33, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Burgos Alves, M.I.; Avilés Plaza, F.; Martínez-Tomás, R.; Sánchez-Campillo, M.; Larqué, E.; Pérez-Llamas, F.; Martínez Hernández, P.; Parra Pallarés, S. Oxidized LDL and its correlation with lipid profile and oxidative stress biomarkers in young healthy Spanish subjects. J. Physiol. Biochem. 2010, 66, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Perrin-Cocon, L.; Diaz, O.; André, P.; Lotteau, V. Modified lipoproteins provide lipids that modulate dendritic cell immune function. Biochimie 2013, 95, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Estronca, L.M.B.B.; Silva, J.C.P.; Sampaio, J.L.; Shevchenko, A.; Verkade, P.; Vaz, A.D.N.; Vaz, W.L.C.; Vieira, O.V. Molecular etiology of atherogenesis—In vitro induction of lipidosis in macrophages with a new LDL model. PLoS ONE 2012, 7, e34822. [Google Scholar] [CrossRef] [Green Version]
- Virella, G.; Lopes-Virella, M.F. Atherogenesis and the humoral immune response to modified lipoproteins. Atherosclerosis 2008, 200, 239–246. [Google Scholar] [CrossRef] [Green Version]
- Frostegård, J. Immunity, atherosclerosis and cardiovascular disease. BMC Med. 2013, 11, 117. [Google Scholar] [CrossRef] [Green Version]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Mutlu-Türkoðlu, Ü.; Akalýn, Z.; Ýlhan, E.; Yýlmaz, E.; Bilge, A.; Niþancý, Y.; Uysal, M. Increased plasma malondialdehyde and protein carbonyl levels and lymphocyte DNA damage in patients with angiographically defined coronary artery disease. Clin. Biochem. 2005, 38, 1059–1065. [Google Scholar] [CrossRef]
- Casas, R.; Sacanella, E.; Urpí-Sardà, M.; Chiva-Blanch, G.; Ros, E.; Martínez-González, M.A.; Covas, M.I.; Lamuela-Raventos, R.M.; Salas-Salvadó, J.; Fiol, M.; et al. The effects of the Mediterranean diet on biomarkers of vascular wall inflammation and plaque vulnerability in subjects with high risk for cardiovascular disease. A randomized trial. PLoS ONE 2014, 9, e100084. [Google Scholar] [CrossRef] [Green Version]
- Casas, R.; Sacanella, E.; Urpí-Sardà, M.; Corella, D.; Castañer, O.; Lamuela-Raventos, R.-M.; Salas-Salvadó, J.; Martínez-González, M.-A.; Ros, E.; Estruch, R. Long-Term immunomodulatory effects of a mediterranean diet in adults at high risk of cardiovascular disease in the PREvención con DIeta MEDiterránea (PREDIMED) randomized controlled trial. J. Nutr. 2016, 146, 1684–1693. [Google Scholar] [CrossRef]
- García-Conesa, M.-T.; Chambers, K.; Combet, E.; Pinto, P.; Garcia-Aloy, M.; Andrés-Lacueva, C.; de Pascual-Teresa, S.; Mena, P.; Konic Ristic, A.; Hollands, W.J.; et al. Meta-analysis of the effects of foods and derived products containing ellagitannins and anthocyanins on cardiometabolic biomarkers: Analysis of factors influencing variability of the individual responses. Int. J. Mol. Sci. 2018, 19, 694. [Google Scholar] [CrossRef] [Green Version]
- Serrano, A.; González-Sarrías, A.; Tomás-Barberán, F.A.; Avellaneda, A.; Gironés-Vilaplana, A.; Nieto, G.; Ros-Berruezo, G. Anti-inflammatory and antioxidant effects of regular consumption of cooked ham enriched with dietary phenolics in diet-induced obese mice. Antioxidants 2020, 9, 639. [Google Scholar] [CrossRef] [PubMed]
- Krga, I.; Milenkovic, D. Anthocyanins: From sources and bioavailability to cardiovascular-health benefits and molecular mechanisms of action. J. Agric. Food Chem. 2019, 67, 1771–1783. [Google Scholar] [CrossRef]
- Bozzetto, L.; Annuzzi, G.; Pacini, G.; Costabile, G.; Vetrani, C.; Vitale, M.; Griffo, E.; Giacco, A.; De Natale, C.; Cocozza, S.; et al. Polyphenol-rich diets improve glucose metabolism in people at high cardiometabolic risk: A controlled randomised intervention trial. Diabetologia 2015, 58, 1551–1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Bo’, C.; Martini, D.; Porrini, M.; Klimis-Zacas, D.; Riso, P. Berries and oxidative stress markers: An overview of human intervention studies. Food Funct. 2015, 6, 2890–2917. [Google Scholar] [CrossRef] [PubMed]
- Vlachojannis, C.; Erne, P.; Schoenenberger, A.W.; Chrubasik-Hausmann, S. A critical evaluation of the clinical evidence for pomegranate preparations in the prevention and treatment of cardiovascular diseases. Phytother. Res. 2015, 29, 501–508. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, L.M.; de Oliveira, T.S.; da Costa, R.M.; Martins, J.L.R.; de Freitas, C.S.; de Gil, E.S.; Costa, E.A.; de Passaglia, R.C.A.T.; Vaz, B.G.; Filgueira, F.P.; et al. Caryocar brasiliense induces vasorelaxation through endothelial Ca2+/calmodulin and PI3K/Akt/eNOS-dependent signaling pathways in rats. Rev. Bras. Farmacogn. 2018, 28, 678–685. [Google Scholar] [CrossRef]
- Mena, P.; Tassotti, M.; Martini, D.; Rosi, A.; Brighenti, F.; Del Rio, D. The Pocket-4-Life project, bioavailability and beneficial properties of the bioactive compounds of espresso coffee and cocoa-based confectionery containing coffee: Study protocol for a randomized cross-over trial. Trials 2017, 18, 527. [Google Scholar] [CrossRef]
- Kim, K.; Vance, T.M.; Chun, O.K. Estimated intake and major food sources of flavonoids among US adults: Changes between 1999–2002 and 2007–2010 in NHANES. Eur. J. Nutr. 2016, 55, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Vogiatzoglou, A.; Mulligan, A.A.; Lentjes, M.A.H.; Luben, R.N.; Spencer, J.P.E.; Schroeter, H.; Khaw, K.T.; Kuhnle, G.G.C. Flavonoid intake in European adults (18 to 64 Years). PLoS ONE 2015, 10, e0128132. [Google Scholar] [CrossRef] [PubMed]
- Agencia Española de Seguridad Alimentaria y Nutrición (AESAN). Encuesta Nacional de Ingesta Dietética 2011 (ENIDE). Available online: http://www.cibr.es/ka/apps/cibr/docs/estudio-enide-1.pdf (accessed on 27 April 2021).
- OECD/Food and Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook 2020–2029; FAO; Rome/OECD Publishing: Paris, France, 2020. [Google Scholar]
- Zheng, Y.; Li, Y.; Satija, A.; Pan, A.; Sotos-Prieto, M.; Rimm, E.; Willett, W.C.; Hu, F.B. Association of changes in red meat consumption with total and cause specific mortality among US women and men: Two prospective cohort studies. BMJ 2019, 365. [Google Scholar] [CrossRef] [Green Version]
- Alshahrani, S.; Fraser, G.; Sabaté, J.; Knutsen, R.; Shavlik, D.; Mashchak, A.; Lloren, J.; Orlich, M. Red and processed meat and mortality in a low meat intake population. Nutrients 2019, 11, 622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micha, R.; Michas, G.; Mozaffarian, D. Unprocessed red and processed meats and risk of coronary artery disease and type 2 diabetes—An updated review of the evidence. Curr. Atheroscler. Rep. 2012, 14, 515–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abete, I.; Romaguera, D.; Vieira, A.R.; Lopez De Munain, A.; Norat, T. Association between total, processed, red and white meat consumption and all-cause, CVD and IHD mortality: A meta-analysis of cohort studies. Br. J. Nutr. 2014, 112, 762–775. [Google Scholar] [CrossRef] [PubMed]
- Al-Shaar, L.; Satija, A.; Wang, D.D.; Rimm, E.B.; Smith-Warner, S.A.; Stampfer, M.J.; Hu, F.B.; Willett, W.C. Red meat intake and risk of coronary heart disease among US men: Prospective cohort study. BMJ 2020, 371. [Google Scholar] [CrossRef]
- Micha, R.; Michas, G.; Lajous, M.; Mozaffarian, D. Processing of meats and cardiovascular risk: Time to focus on preservatives. BMC Med. 2013, 11, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Bronzato, S.; Durante, A. A contemporary review of the relationship between red meat consumption and cardiovascular risk. Int. J. Prev. Med. 2017, 8, 40. [Google Scholar] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European society of cardiology and the European society of hypertension: The task force for the management of arterial. J. Hypertens. 2018, 36, 1953–2041. [Google Scholar] [CrossRef] [Green Version]
- Alvero-Cruz, J.R.; Gómez, L.C.; Ronconi, M.; Vázquez, R.F.; i Manzañido, J.P. La bioimpedancia eléctrica como método de estimación de la composición corporal: Normas prácticas de utilización. Rev. Andal. Med. Deport. 2011, 4, 167–174. [Google Scholar]
- Ellis, K.J.; Bell, S.J.; Chertow, G.M.; Chumlea, W.C.; Knox, T.A.; Kotler, D.P.; Lukaski, H.C.; Schoeller, D.A. Bioelectrical impedance methods in clinical research: A follow-up to the NIH technology assessment conference. Nutrition 1999, 15, 874–880. [Google Scholar] [CrossRef]
- Armstrong, T.; Bull, F. Development of the world health organization global physical activity questionnaire (GPAQ). J. Public Health 2006, 14, 66–70. [Google Scholar] [CrossRef]
- Cleland, C.L.; Hunter, R.F.; Kee, F.; Cupples, M.E.; Sallis, J.F.; Tully, M.A. Validity of the global physical activity questionnaire (GPAQ) in assessing levels and change in moderate-vigorous physical activity and sedentary behaviour. BMC Public Health 2014, 14, 1255. [Google Scholar] [CrossRef] [Green Version]
- Egert, S.; Bosy-Westphal, A.; Seiberl, J.; Kürbitz, C.; Settler, U.; Plachta-Danielzik, S.; Wagner, A.E.; Frank, J.; Schrezenmeir, J.; Rimbach, G.; et al. Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: A double-blinded, placebo-controlled cross-over study. Br. J. Nutr. 2009, 102, 1065–1074. [Google Scholar] [CrossRef] [Green Version]
- Maiolino, G.; Rossitto, G.; Caielli, P.; Bisogni, V.; Rossi, G.P.; Calò, L.A. The role of oxidized low-density lipoproteins in atherosclerosis: The myths and the facts. Mediat. Inflamm. 2013, 2013, 714653. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, D.; Witztum, J.L. Oxidized low-density lipoprotein and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 2311–2316. [Google Scholar] [CrossRef] [Green Version]
- Verhoeven, V.; Van der Auwera, A.; Van Gaal, L.; Remmen, R.; Apers, S.; Stalpaert, M.; Wens, J.; Hermans, N. Can red yeast rice and olive extract improve lipid profile and cardiovascular risk in metabolic syndrome?: A double blind, placebo controlled randomized trial. BMC Complement. Altern. Med. 2015, 15, 52. [Google Scholar] [CrossRef] [Green Version]
- Perrone, M.A.; Gualtieri, P.; Gratteri, S.; Ali, W.; Sergi, D.; Muscoli, S.; Cammarano, A.; Bernardini, S.; Di Renzo, L.; Romeo, F. Effects of postprandial hydroxytyrosol and derivates on oxidation of LDL, cardiometabolic state and gene expression: A nutrigenomic approach for cardiovascular prevention. J. Cardiovasc. Med. 2019, 20, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Valls, R.-M.; Farràs, M.; Suárez, M.; Fernández-Castillejo, S.; Fitó, M.; Konstantinidou, V.; Fuentes, F.; López-Miranda, J.; Giralt, M.; Covas, M.-I.; et al. Effects of functional olive oil enriched with its own phenolic compounds on endothelial function in hypertensive patients. A randomised controlled trial. Food Chem. 2015, 167, 30–35. [Google Scholar] [CrossRef]
- Gordon, M.H.; Wishart, K. Effects of Chlorogenic acid and bovine serum albumin on the oxidative stability of low density lipoproteins in vitro. J. Agric. Food Chem. 2010, 58, 5828–5833. [Google Scholar] [CrossRef] [PubMed]
- Ohmori, R.; Kondo, K.; Momiyama, Y. Antioxidant beverages: Green tea intake and coronary artery disease. Clin. Med. Insights Cardiol. 2014, 8, 7–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edirisinghe, I.; Burton-Freeman, B.; Tissa Kappagoda, C. Mechanism of the endothelium-dependent relaxation evoked by a grape seed extract. Clin. Sci. 2008, 114, 331–337. [Google Scholar] [CrossRef]
- Davinelli, S.; Corbi, G.; Zarrelli, A.; Arisi, M.; Calzavara-Pinton, P.; Grassi, D.; De Vivo, I.; Scapagnini, G. Short-term supplementation with flavanol-rich cocoa improves lipid profile, antioxidant status and positively influences the AA/EPA ratio in healthy subjects. J. Nutr. Biochem. 2018, 61, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Ibero-Baraibar, I.; Abete, I.; Navas-Carretero, S.; Massis-Zaid, A.; Martinez, J.A.; Zulet, M.A. Oxidised LDL levels decreases after the consumption of ready-to-eat meals supplemented with cocoa extract within a hypocaloric diet. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 416–422. [Google Scholar] [CrossRef] [Green Version]
- Kirch, N.; Berk, L.; Liegl, Y.; Adelsbach, M.; Zimmermann, B.F.; Stehle, P.; Stoffel-Wagner, B.; Ludwig, N.; Schieber, A.; Helfrich, H.-P.; et al. A nutritive dose of pure (–)-epicatechin does not beneficially affect increased cardiometabolic risk factors in overweight-to-obese adults—A randomized, placebo-controlled, double-blind crossover study. Am. J. Clin. Nutr. 2018, 107, 948–956. [Google Scholar] [CrossRef]
- Van Hoydonck, P.G.A.; Schouten, E.G.; Manuel-Y.-Keenoy, B.; Van Campenhout, A.; Hoppenbrouwers, K.P.M.; Temme, E.H.M. Does vitamin C supplementation influence the levels of circulating oxidized LDL, sICAM-1, sVCAM-1 and vWF-antigen in healthy male smokers? Eur. J. Clin. Nutr. 2004, 58, 1587–1593. [Google Scholar] [CrossRef]
- Isakov, V.A.; Bogdanova, A.A.; Bessonov, V.V.; Sentsova, T.B.; Tutelyan, V.A.; Lin, Y.; Kazlova, V.; Hong, J.; Velliquette, R.A. Effects of multivitamin, multimineral and phytonutrient supplementation on nutrient status and biomarkers of heart health risk in a russian population: A randomized, double blind, placebo controlled study. Nutrients 2018, 10, 120. [Google Scholar] [CrossRef] [Green Version]
- Michel, F.; Bonnefont-Rousselot, D.; Mas, E.; Drai, J.; Thérond, P. Biomarkers of lipid peroxidation: Analytical aspects. Ann. Biol. Clin. 2008, 66, 605–620. [Google Scholar] [CrossRef]
- Bacchiega, B.C.; Bacchiega, A.B.; Usnayo, M.J.G.; Bedirian, R.; Singh, G.; Pinheiro, G. da R.C. Interleukin 6 Inhibition and coronary artery disease in a high-risk population: A prospective community-based clinical study. J. Am. Heart Assoc. 2017, 6. [Google Scholar] [CrossRef]
- Rodríguez-Ramiro, I.; Martín, M.A.; Ramos, S.; Bravo, L.; Goya, L. Comparative effects of dietary flavanols on antioxidant defences and their response to oxidant-induced stress on Caco2 cells. Eur. J. Nutr. 2011, 50, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Noronha, N.Y.; Souza Pinhel, M.A.; Nicoletti, C.F.; Quinhoneiro, D.C.; Pinhanelli, V.C.; de Oliveira, B.A.P.; Cortes-Oliveira, C.; Delfino, H.B.P.; Wolf, L.S.; Frantz, F.G.; et al. Green tea supplementation improves oxidative stress biomarkers and modulates IL-6 circulating levels in obese women. Nutr. Hosp. 2019, 36, 583–588. [Google Scholar] [PubMed]
- Spadiene, A.; Savickiene, N.; Ivanauskas, L.; Jakstas, V.; Skesters, A.; Silova, A.; Rodovicius, H. Antioxidant effects of Camellia sinensis L. extract in patients with type 2 diabetes. J. Food Drug Anal. 2014, 22, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Basu, A.; Du, M.; Sanchez, K.; Leyva, M.J.; Betts, N.M.; Blevins, S.; Wu, M.; Aston, C.E.; Lyons, T.J. Green tea minimally affects biomarkers of inflammation in obese subjects with metabolic syndrome. Nutrition 2011, 27, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Kamali, A.; Amirani, E.; Asemi, Z. Effects of selenium supplementation on metabolic status in patients undergoing for coronary artery bypass grafting (CABG) surgery: A randomized, double-blind, placebo-controlled trial. Biol. Trace Elem. Res. 2019, 191, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Bendich, A.; Machlin, L.J.; Scandurra, O.; Burton, G.W.; Wayner, D.D.M. The antioxidant role of vitamin C. Adv. Free Radic. Biol. Med. 1986, 2, 419–444. [Google Scholar] [CrossRef]
- Fraker, P.J.; King, L.E. Reprogramming of the immune system during zinc deficiency. Annu. Rev. Nutr. 2004, 24, 277–298. [Google Scholar] [CrossRef] [PubMed]
- Bunpo, P.; Anthony, T.G. Ascorbic acid supplementation does not alter oxidative stress markers in healthy volunteers engaged in a supervised exercise program. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2016, 41, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Jamilian, M.; Foroozanfard, F.; Bahmani, F.; Talaee, R.; Monavari, M.; Asemi, Z. Effects of zinc supplementation on endocrine outcomes in women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial. Biol. Trace Elem. Res. 2016, 170, 271–278. [Google Scholar] [CrossRef]
- Katada, S.; Watanabe, T.; Mizuno, T.; Kobayashi, S.; Takeshita, M.; Osaki, N.; Kobayashi, S.; Katsuragi, Y. Effects of chlorogenic acid-enriched and hydroxyhydroquinone-reduced coffee on postprandial fat oxidation and antioxidative capacity in healthy men: A randomized, double-blind, placebo-controlled, crossover trial. Nutrients 2018, 10, 525. [Google Scholar] [CrossRef] [Green Version]
- Martínez-López, S.; Sarriá, B.; Mateos, R.; Bravo-Clemente, L. Moderate consumption of a soluble green/roasted coffee rich in caffeoylquinic acids reduces cardiovascular risk markers: Results from a randomized, cross-over, controlled trial in healthy and hypercholesterolemic subjects. Eur. J. Nutr. 2019, 58, 865–878. [Google Scholar] [CrossRef] [Green Version]
- Salonen, R.M.; Nyyssönen, K.; Kaikkonen, J.; Porkkala-Sarataho, E.; Voutilainen, S.; Rissanen, T.H.; Tuomainen, T.P.; Valkonen, V.P.; Ristonmaa, U.; Lakka, H.M.; et al. Six-year effect of combined vitamin C and E supplementation on atherosclerotic progression: The antioxidant supplementation in atherosclerosis prevention (ASAP) study. Circulation 2003, 107, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Neri, S.; Signorelli, S.S.; Torrisi, B.; Pulvirenti, D.; Mauceri, B.; Abate, G.; Ignaccolo, L.; Bordonaro, F.; Cilio, D.; Calvagno, S.; et al. Effects of antioxidant supplementation on postprandial oxidative stress and endothelial dysfunction: A single-blind, 15-day clinical trial in patients with untreated type 2 diabetes, subjects with impaired glucose tolerance, and healthy controls. Clin. Ther. 2005, 27, 1764–1773. [Google Scholar] [CrossRef]
- Neri, S.; Calvagno, S.; Mauceri, B.; Misseri, M.; Tsami, A.; Vecchio, C.; Mastrosimone, G.; Di Pino, A.; Maiorca, D.; Judica, A.; et al. Effects of antioxidants on postprandial oxidative stress and endothelial dysfunction in subjects with impaired glucose tolerance and Type 2 diabetes. Eur. J. Nutr. 2010, 49, 409–416. [Google Scholar] [CrossRef]
- Huang, H.Y.; Appel, L.J.; Croft, K.D.; Miller, E.R.; Mori, T.A.; Puddey, I.B. Effects of vitamin C and vitamin E on in vivo lipid peroxidation: Results of a randomized controlled trial. Am. J. Clin. Nutr. 2002, 76, 549–555. [Google Scholar] [CrossRef] [Green Version]
- Cook, N.R.; Albert, C.M.; Gaziano, J.M.; Zaharris, E.; MacFadyen, J.; Danielson, E.; Buring, J.E.; Manson, J.A.E. A randomized factorial trial of vitamins C and E and beta carotene in the secondary prevention of cardiovascular events in women: Results from the women’s antioxidant cardiovascular study. Arch. Intern. Med. 2007, 167, 1610–1618. [Google Scholar] [CrossRef] [Green Version]
- Salonen, J.T.; Nyyssönen, K.; Salonen, R.; Lakka, H.M.; Kaikkonen, J.; Porkkala-Sarataho, E.; Voutilainen, S.; Lakka, T.A.; Rissanen, T.; Leskinen, L.; et al. Antioxidant supplementation in atherosclerosis prevention (ASAP) study: A randomized trial of the effect of vitamins E and C on 3-year progression of carotid atherosclerosis. J. Intern. Med. 2000, 248, 377–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engler, M.M.; Engler, M.B.; Malloy, M.J.; Chiu, E.Y.; Schloetter, M.C.; Paul, S.M.; Stuehlinger, M.; Lin, K.Y.; Cooke, J.P.; Morrow, J.D.; et al. Antioxidant vitamins C and E improve endothelial function in children with hyperlipidemia: Endothelial assessment of risk from lipids in youth (EARLY) trial. Circulation 2003, 108, 1059–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zureik, M.; Galan, P.; Bertrais, S.; Mennen, L.; Czernichow, S.; Blacher, J.; Ducimetière, P.; Hercberg, S. Effects of long-term daily low-dose supplementation with antioxidant vitamins and minerals on structure and function of large arteries. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1485–1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Mohsen, M.A.; Marks, J.; Kuhnle, G.; Moore, K.; Debnam, E.; Srai, S.K.; Rice-Evans, C.; Spencer, J.P.E. Absorption, tissue distribution and excretion of pelargonidin and its metabolites following oral administration to rats. Br. J. Nutr. 2006, 95, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Urpi-Sarda, M.; Ramiro-Puig, E.; Khan, N.; Ramos-Romero, S.; Llorach, R.; Castell, M.; Gonzalez-Manzano, S.; Santos-Buelga, C.; Andres-Lacueva, C. Distribution of epicatechin metabolites in lymphoid tissues and testes of young rats with a cocoa-enriched diet. Br. J. Nutr. 2010, 103, 1393–1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serra, A.; Macià, A.; Rubió, L.; Anglès, N.; Ortega, N.; Morelló, J.R.; Romero, M.P.; Motilva, M.J. Distribution of procyanidins and their metabolites in rat plasma and tissues in relation to ingestion of procyanidin-enriched or procyanidin-rich cocoa creams. Eur. J. Nutr. 2013, 52, 1029–1038. [Google Scholar] [CrossRef]
- Talavéra, S.; Felgines, C.; Texier, O.; Besson, C.; Gil-Izquierdo, A.; Lamaison, J.L.; Rémésy, C. Anthocyanin metabolism in rats and their distribution to digestive area, kidney, and brain. J. Agric. Food Chem. 2005, 53, 3902–3908. [Google Scholar] [CrossRef] [PubMed]
- Harada, M.; Kan, Y.; Naoki, H.; Fukui, Y.; Kageyama, N.; Nakai, M.; Miki, W.; Kiso, Y. Identification of the major antioxidative metabolites in biological fluids of the rat with ingested (+)-catechin and (−)-epicatechin. Biosci. Biotechnol. Biochem. 1999, 63, 973–977. [Google Scholar] [CrossRef] [PubMed]
Control Cooked Ham | Antioxidant Cooked Ham | |
---|---|---|
Energy value (KJ/Kcal) | 383.1/91.5 | 386.4/92.3 |
Fats (%) | 1.5 | 1.5 |
Saturated Fats (%) | 0.5 | 0.5 |
Monounsaturated Fats (%) | 0.75 | 0.76 |
Polyunsaturated Fats (%) | 0.2 | 0.19 |
Carbohydrates (%) | 1.5 | 1.46 |
Sugars (%) | 1.2 | 1.17 |
Proteins (%) | 19.00 | 19.04 |
Salt (%) | 1.4 | 1.41 |
Sodium (ppm) | 5650 | 5523 |
Selenium (µg/100 g) | 6.1 | 11.00 |
Zinc (mg/100 g) | 0.89 | 2.9 |
Vitamin C (mg/100 g) | 72.6 | 124.0 |
Total Polyphenols (mg/100 g) | 0.00 | 33.69 |
Chlorogenic Acids (mg/100 g) | 0.00 | 22.50 |
Catechins and Epigallocatechin (mg/100 g) | 0.00 | 6.58 |
Hydroxytyrosol (mg/100 g) | 0.00 | 4.45 |
Other Phenolic Acids (mg/100 g) | 0.00 | 0.16 |
Control Cooked Ham | Antioxidant Cooked Ham | p-Value | |
---|---|---|---|
Age (years) | 40.2 ± 8.3 | 41.6 ± 9.8 | 0.540 |
Men | 15 | 17 | 0.708 |
Women | 17 | 16 | |
Weight (kg) | 75.2 ± 13.4 | 75.2 ± 13.4 | 0.993 |
BMI (kg/m2) | 26.3 ± 3.2 | 25.1 ± 3.6 | 0.161 |
Fat Mass (%) | 21.7 ± 7.5 | 20.8 ± 7.4 | 0.626 |
Fat-Free mass (kg) | 53.5 ± 11.3 | 54.4 ± 10.9 | 0.736 |
Total Cholesterol (mg/dL) | 222.8 ± 36.7 | 219 ± 30.8 | 0.645 |
LDL Cholesterol (mg/dL) | 140.9 ± 32.6 | 137.3 ± 30.8 | 0.643 |
SBP (mmHg) | 113.6 ±11.2 | 112.8 ± 11.2 | 0.789 |
DBP (mmHg) | 71.7 ± 6.8 | 72.3 ± 9.2 | 0.784 |
BASELINE | FINAL | p-Value Time | p-Value Product × Time | ||
---|---|---|---|---|---|
Laboratory Test | |||||
Total Cholesterol (mg/dL) | Placebo | 222.8 ± 36.7 | 220.6 ± 38.7 | 0.528 | 0.282 |
Extract | 219 ± 30.8 | 211.3 ± 33.7 | 0.032 | ||
LDL Cholesterol (mg/dL) | Placebo | 140.9 ± 32.6 | 140.2 ± 32.6 | 0.857 | 0.495 |
Extract | 137.3 ± 30.8 | 132.7 ± 27.3 | 0.250 | ||
HDL Cholesterol (mg/dL) | Placebo | 63.6 ± 16.5 | 61.7 ± 15.0 | 0.859 | 0.788 |
Extract | 63.0 ± 18.6 | 59.6 ± 17.1 | 0.495 | ||
Triglycerides (mg/dL) | Placebo | 91.7 ± 42.8 | 93.2 ± 45.4 | 0.859 | 0.896 |
Extract | 92.9 ± 48.1 | 94.8 ± 49.7 | 0.865 | ||
Oxidized LDL (pg/mL) | Placebo | 417.4 ± 273.2 | 458.0 ± 247.3 | 0.307 | 0.036 |
Extract | 443.3 ± 277.6 | 364.2 ± 212.9 | 0.050 | ||
Oxidized LDL (pg/mL) IMC < 25 | Placebo | 410.7 ± 231.9 | 411.5 ± 222.1 | 0.988 | 0.638 |
Extract | 382.3 ± 276.7 | 348.6 ± 226.1 | 0.488 | ||
Oxidized LDL (pg/mL) IMC > 25 | Placebo | 421.9 ± 304.2 | 489.8 ± 246.8 | 0.228 | 0.026 |
Extract | 501.2 ± 266.2 | 378.6 ± 196.4 | 0.050 | ||
Hs-CRP (mg/L) | Placebo | 1.84 ± 1.66 | 2.03 ± 1.6 | 0.443 | 0.023 |
Extract | 2.07 ± 2.37 | 1.4 ± 1.26 | 0.006 | ||
IL-6 (pg/mL) | Placebo | 1.23 ± 1.36 | 1.20 ± 2.38 | 0.059 | 0.331 |
Extract | 1.37 ± 1.22 | 0.71 ± 0.47 | 0.001 | ||
MDA (ng/mL) | Placebo | 414.6 ± 378.2 | 434.6 ± 414.5 | 0.293 | 0.035 |
Extract | 443.7 ± 294.5 | 406.6 ± 288.2 | 0.050 | ||
SOD (ng/mL) | Placebo | 14.7 ± 3.9 | 14.6 ± 4.5 | 0.909 | 0.247 |
Extract | 14.8 ± 3.4 | 13.7 ± 5.5 | 0.082 | ||
Blood Pressure | |||||
SBP (mmHg) | Placebo | 113.6 ± 11.2 | 113.8 ± 11.4 | 0.953 | 0.650 |
Extract | 112.8 ± 11.2 | 110.3 ± 22.2 | 0.635 | ||
DBP (mmHg) | Placebo | 71.7 ± 6.8 | 71.4 ± 6.8 | 0.618 | 0.538 |
Extract | 72.3 ± 9.2 | 71.3 ± 8.8 | 0.169 | ||
Pulse Pressure (mmHg) | Placebo | 41.8 ± 6.5 | 42.4 ± 6.7 | 0.276 | 0.536 |
Extract | 40.5 ± 6.3 | 38.9 ± 1.3 | 0.141 | ||
Daytime SBP (mmHg) | Placebo | 116.8 ± 11.5 | 117.1 ± 12.0 | 0.735 | 0.913 |
Extract | 115.9 ± 12.0 | 116.4 ± 12.5 | 0.623 | ||
Daytime DBP (mmHg) | Placebo | 74.8 ± 7.5 | 74.2 ± 7.4 | 0.530 | 0.787 |
Extract | 74.6 ± 8.1 | 74.2 ± 8.7 | 0.950 | ||
Daytime Pulse Pressure (mmHg) | Placebo | 41.9 ± 6.4 | 41.9 ± 7.1 | 0.245 | 0.916 |
Extract | 41.3 ± 7.4 | 42.2 ± 6.7 | 0.786 | ||
Nighttime SBP (mmHg) | Placebo | 107.6 ± 12.4 | 107.9 ± 12.4 | 0.799 | 0.125 |
Extract | 107.8 ± 10.3 | 105.7 ± 10.5 | 0.050 | ||
Nighttime DBP (mmHg) | Placebo | 65.9 ± 7.0 | 65.3 ± 6.8 | 0.462 | 0.911 |
Extract | 66.5 ± 9.5 | 65.7 ± 8.8 | 0.365 | ||
Nighttime Pulse Pressure (mmHg) | Placebo | 41.7 ± 7.6 | 41.4 ± 7.3 | 0.341 | 0.092 |
Extract | 42.6 ± 8.3 | 40.0 ± 7.5 | 0.148 | ||
SBP Load (mmHg) | Placebo | 14.1 ± 20.2 | 13.8 ± 18.6 | 0.070 | 0.756 |
Extract | 14.4 ± 23.3 | 12.4 ± 23.0 | 0.247 | ||
DBP Load (mmHg) | Placebo | 22.3 ± 20.7 | 20.1 ± 20.1 | 0.234 | 0.478 |
Extract | 21.1 ± 25.7 | 20.3 ± 24.6 | 0.839 | ||
SBP Dipping (%) | Placebo | 7.8 ± 6.2 | 6.7 ± 6.9 | 0.967 | 0.163 |
Extract | 6.7 ± 6.9 | 8.9 ± 5.5 | 0.053 | ||
DBP Dipping (%) | Placebo | 11.7 ± 7.2 | 11.8 ± 7.3 | 0.929 | 0.830 |
Extract | 10.9 ± 7.5 | 11.4 ± 6.0 | 0.691 |
BASELINE | FINAL | p-Value Product × Time | ||
---|---|---|---|---|
Body Composition | ||||
Weight (kg) | Placebo | 72.5 ± 13.4 | 75.0 ± 12.9 | 0.987 |
Extract | 75.2 ± 13.4 | 75.0 ± 13.1 | ||
BMI (kg/m2) | Placebo | 26.3 ± 3.2 | 26.2 ± 3.0 | 0.958 |
Extract | 25.1 ± 3.6 | 25.1 ± 3.4 | ||
Fat Mass (%) | Placebo | 21.7 ± 7.5 | 22.0 ± 7.3 | 0.349 |
Extract | 20.8 ± 7.4 | 20.7 ± 7.2 | ||
Fat-Free Mass (Kg) | Placebo | 53.5 ± 11.3 | 53.0 ± 11.0 | 0.232 |
Extract | 54.4 ± 10.9 | 54.3 ± 10.9 |
SBP Dipping Data | TIME | TOTAL | ||||
---|---|---|---|---|---|---|
BASALINE | FINAL | |||||
Placebo | SBP Dipping | Riser | Count | 4 | 7 | 11 |
% within time | 12.5 | 21.9 | 17.2 | |||
Non-Dipper | Count | 16 | 15 | 31 | ||
% within time | 50.0 | 46.9 | 48.4 | |||
Dipper | Count | 12 | 9 | 21 | ||
% within time | 37.5 | 28.1 | 32.8 | |||
Extreme Dipper | Count | 0 | 1 | 1 | ||
% within time | 0.0 | 3.1 | 1.6 | |||
Total | Count | 32 | 32 | 64 | ||
% within time | 100.0 | 100.0 | 100.0 | |||
Extract | SBP Dipping | Riser | Count | 5 | 3 | 8 |
% within time | 15.2 | 9.1 | 12.1 | |||
Non-Dipper | Count | 18 | 16 | 34 | ||
% within time | 54.5 | 48.5 | 51.5 | |||
Dipper | Count | 10 | 13 | 23 | ||
% within time | 30.3 | 39.4 | 34.8 | |||
Extreme Dipper | Count | 0 | 1 | 1 | ||
% within time | 0.0 | 3.0 | 1.5 | |||
Total | Count | 33 | 33 | 66 | ||
% within time | 100.0 | 100.0 | 100.0 | |||
DBP Dipping Data | TIME | TOTAL | ||||
BASALINE | FINAL | |||||
Placebo | DBP Dipping | Riser | Count | 3 | 2 | 5 |
% within time | 9.4 | 6.3 | 7.8 | |||
Non-Dipper | Count | 9 | 12 | 21 | ||
% within time | 28.1 | 37.5 | 32.8 | |||
Dipper | Count | 17 | 14 | 31 | ||
% within time | 53.1 | 43.8 | 48.4 | |||
Extreme Dipper | Count | 3 | 4 | 7 | ||
% within time | 9.4 | 12.5 | 10.9 | |||
Total | Count | 32 | 32 | 64 | ||
% within time | 100.0 | 100.0 | 100.0 | |||
Extract | DBP Dipping | Riser | Count | 3 | 0 | 3 |
% within time | 9.1 | 0.0 | 4.5 | |||
Non-Dipper | Count | 12 | 16 | 28 | ||
% within time | 36.4 | 48.5 | 42.4 | |||
Dipper | Count | 16 | 14 | 30 | ||
% within time | 48.5 | 42.4 | 45.5 | |||
Extreme Dipper | Count | 2 | 3 | 5 | ||
% within time | 6.1 | 9.1 | 7.6 | |||
Total | Count | 33 | 33 | 66 | ||
% within time | 100.0 | 100.0 | 100.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Victoria-Montesinos, D.; Arcusa, R.; García-Muñoz, A.M.; Pérez-Piñero, S.; Sánchez-Macarro, M.; Avellaneda, A.; López-Román, F.J. Effects of the Consumption of Low-Fat Cooked Ham with Reduced Salt Enriched with Antioxidants on the Improvement of Cardiovascular Health: A Randomized Clinical Trial. Nutrients 2021, 13, 1480. https://doi.org/10.3390/nu13051480
Victoria-Montesinos D, Arcusa R, García-Muñoz AM, Pérez-Piñero S, Sánchez-Macarro M, Avellaneda A, López-Román FJ. Effects of the Consumption of Low-Fat Cooked Ham with Reduced Salt Enriched with Antioxidants on the Improvement of Cardiovascular Health: A Randomized Clinical Trial. Nutrients. 2021; 13(5):1480. https://doi.org/10.3390/nu13051480
Chicago/Turabian StyleVictoria-Montesinos, Desirée, Raúl Arcusa, Ana María García-Muñoz, Silvia Pérez-Piñero, Maravillas Sánchez-Macarro, Antonio Avellaneda, and Francisco Javier López-Román. 2021. "Effects of the Consumption of Low-Fat Cooked Ham with Reduced Salt Enriched with Antioxidants on the Improvement of Cardiovascular Health: A Randomized Clinical Trial" Nutrients 13, no. 5: 1480. https://doi.org/10.3390/nu13051480
APA StyleVictoria-Montesinos, D., Arcusa, R., García-Muñoz, A. M., Pérez-Piñero, S., Sánchez-Macarro, M., Avellaneda, A., & López-Román, F. J. (2021). Effects of the Consumption of Low-Fat Cooked Ham with Reduced Salt Enriched with Antioxidants on the Improvement of Cardiovascular Health: A Randomized Clinical Trial. Nutrients, 13(5), 1480. https://doi.org/10.3390/nu13051480