Tropical Oil Consumption and Cardiovascular Disease: An Umbrella Review of Systematic Reviews and Meta Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search and Selection Criteria
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Quality Assessment
2.5. Data Analysis
3. Results
3.1. LDL–c Outcome
3.2. Total Cholesterol Outcome
3.3. HDL–c Outcome
3.4. Triacylglycerol (TAG) Outcome
3.5. Total Cholesterol to HDL-c Ratio Outcome
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roth, G.A.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef] [Green Version]
- Wong, N.D. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat. Rev. Cardiol. 2014, 11, 276–289. [Google Scholar] [CrossRef]
- Yusuf, S.; Hawken, S.; Ounpuu, S.; Dans, T.; Avezum, A.; Lanas, F.; McQueen, M.; Budaj, A.; Pais, P.; Varigos, J.; et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (The INTERHEART Study): Case-control study. Lancet 2004, 364, 937–952. [Google Scholar] [CrossRef]
- GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1923–1994. [Google Scholar] [CrossRef] [Green Version]
- Joris, P.J.; Mensink, R.P. Role of cis-Monounsaturated fatty acids in the prevention of coronary heart disease. Curr. Atheroscler. Rep. 2016, 18, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siri-Tarino, P.W.; Sun, Q.; Hu, F.B.; Krauss, R.M. Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. Am. J. Clin. Nutr. 2010, 91, 535–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamley, S. The effect of replacing saturated fat with mostly n-6 polyunsaturated fat on coronary heart disease: A meta-analysis of randomised controlled trials. Nutr. J. 2017, 16, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United States Department of Agcriculture [Internet]. Washington: Global Oilseed Demand Growth Forecast to Outpace Production (Again). Oilseeds: World Markets and Trade. 3 May 2018. Available online: https://www.fas.usda.gov/data/oilseeds-world-markets-and-trade (accessed on 23 April 2021).
- L’Abbé, M.R.; Stender, S.; Skeaff, C.M.; Ghafoorunissa; Tavella, M. Approaches to removing trans fats from the food supply in industrialized and developing countries. Eur. J. Clin. Nutr. 2009, 63, S50–S67. [Google Scholar] [CrossRef] [Green Version]
- Aromataris, E.; Fernandez, R.; Godfrey, C.M.; Holly, C.; Khalil, H.; Tungpunkom, P. Summarizing systematic reviews: Methodological development, conduct and reporting of an umbrella review approach. Int. J. Evid. Based Healthc. 2015, 13, 132–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ioannidis, J.P. Integration of evidence from multiple meta-analyses: A primer on umbrella reviews, treatment networks and multiple treatments meta-analyses. CMAJ 2009, 181, 488–493. [Google Scholar] [CrossRef] [Green Version]
- Shea, B.J.; Reeves, B.C.; Wells, G.; Thuku, M.; Hamel, C.; Moran, J.; Moher, D.; Tugwell, P.; Welch, V.; Kristjansson, E.; et al. AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 2017, 358, j4008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pieper, D.; Antoine, S.L.; Mathes, T.; Neugebauer, E.A.; Eikermann, M. Systematic review finds overlapping reviews were not mentioned in every other overview. J. Clin. Epidemiol. 2014, 67, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Harland, J.I. An Assessment of the economic and heart health benefits of replacing saturated fat in the diet with monounsaturates in the form of rapeseed (canola) oil. Nutr. Bull. 2009, 34, 174–184. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Clarke, R. Quantitative effects on cardiovascular risk factors and coronary heart disease risk of replacing partially hydrogenated vegetable oils with other fats and oils. Eur. J. Clin. Nutr. 2009, 63 (Suppl. 2), S22–S33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fattore, E.; Bosetti, C.; Brighenti, F.; Agostoni, C.; Fattore, G. Palm oil and blood lipid-related markers of cardiovascular disease: A systematic review and meta-analysis of dietary intervention trials. Am. J. Clin. Nutr. 2014, 99, 1331–1350. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Neelakantan, N.; Wu, Y.; Lote-Oke, R.; Pan, A.; van Dam, R.M. Palm oil consumption increases LDL cholesterol compared with vegetable oils low in saturated fat in a meta-analysis of clinical trials. J. Nutr. 2015, 145, 1549–1558. [Google Scholar] [CrossRef] [Green Version]
- Jolfaie, N.R.; Rouhani, M.H.; Surkan, P.J.; Siassi, F.; Azadbakht, L. Rice bran oil decreases total and LDL cholesterol in humans: A systematic review and meta-analysis of randomized controlled clinical trials. Horm. Metab. Res. 2016, 48, 417–426. [Google Scholar] [CrossRef]
- Ghobadi, S.; Hassanzadeh-Rostami, Z.; Mohammadian, F.; Zare, M.; Faghih, S. Effects of canola oil consumption on lipid profile: A systematic review and meta-analysis of randomized controlled clinical trials. J. Am. Coll. Nutr. 2019, 38, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Ghobadi, S.; Hassanzadeh-Rostami, Z.; Mohammadian, F.; Nikfetrat, A.; Ghasemifard, N.; Raeisi Dehkordi, H.; Faghih, S. Comparison of blood lipid-lowering effects of olive oil and other plant oils: A systematic review and meta-analysis of 27 randomized placebo-controlled clinical trials. Crit. Rev. Food Sci. Nutr. 2018, 59, 2110–2124. [Google Scholar] [CrossRef]
- Panth, N.; Abbott, K.A.; Dias, C.B.; Wynne, K.; Garg, M.L. Differential effects of medium- and long-chain saturated fatty acids on blood lipid profile: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2018, 108, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Bogensberger, B.; Bencic, A.; Knuppel, S.; Boeing, H.; Hoffmann, G. Effects of oils and solid fats on blood lipids: A systematic review and network meta-analysis. J. Lipid Res. 2018, 59, 1771–1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zong, G.; Li, Y.; Sampson, L.; Dougherty, L.W.; Willett, W.C.; Wanders, A.J.; Alssema, M.; Zock, P.L.; Hu, F.B.; Sun, Q. Monounsaturated fats from plant and animal sources in relation to risk of coronary heart disease among US men and women. Am. J. Clin. Nutr. 2018, 107, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Zong, G.; Willett, W.C.; Zock, P.L.; Wanders, A.J.; Hu, F.B.; Sun, Q. Associations of monounsaturated fatty acids from plant and animal sources with total and cause-specific mortality in two US prospective cohort studies. Circ. Res. 2019, 124, 1266–1275. [Google Scholar] [CrossRef]
- Mao, L.; Zhang, Y.; Wang, W.; Zhuang, P.; Wu, F.; Jiao, J. Plant-sourced and animal-sourced monounsaturated fatty acid intakes in relation to mortality: A prospective nationwide cohort study. Eur. J. Nutr. 2020, 59, 1989–1998. [Google Scholar] [CrossRef]
- Nettleton, J.A.; Brouwer, I.A.; Mensink, R.P.; Diekman, C.; Hornstra, G. Fats in foods: Current evidence for dietary advice. Ann. Nutr. Metab. 2018, 72, 248–254. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Ludwig, D.S. The 2015 US dietary guidelines: Lifting the ban on total dietary fat. JAMA 2015, 313, 2421–2422. [Google Scholar] [CrossRef] [PubMed]
- Lahey, R.; Khan, S.S. Trends in obesity and risk of cardiovascular disease. Curr. Epidemiol. Rep. 2018, 5, 243–251. [Google Scholar] [CrossRef]
- McGuire, S. Scientific Report of the 2015 Dietary Guidelines Advisory Committee. Washington, DC: US departments of agriculture and health and human services, 2015. Adv. Nutr. 2016, 7, 202–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the primary prevention of cardiovascular disease: A report of the American college of cardiology/American Heart Association task force on clinical practice guidelines. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef]
- Song, M.; Fung, T.T.; Hu, F.B.; Willett, W.C.; Longo, V.D.; Chan, A.T.; Giovannucci, E.L. Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Int. Med. 2016, 176, 1453–1463. [Google Scholar] [CrossRef]
- Tharrey, M.; Mariotti, F.; Mashchak, A.; Barbillon, P.; Delattre, M.; Fraser, G.E. Patterns of plant and animal protein intake are strongly associated with cardiovascular mortality: The Adventist Health Study-2 cohort. Int. J. Epidemiol. 2018, 47, 1603–1612. [Google Scholar] [CrossRef] [PubMed]
- Piepoli, M.F.; Abreu, A.; Albus, C.; Ambrosetti, M.; Brotons, C.; Catapano, A.L.; Corra, U.; Cosyns, B.; Deaton, C.; Graham, I.; et al. Update on cardiovascular prevention in clinical practice: A position paper of the European Association of Preventive Cardiology of the European Society of Cardiology. Eur. J. Prev. Cardiol. 2020, 27, 181–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boateng, L.; Ansong, R.; Owusu, W.B.; Steiner-Asiedu, M. Coconut oil and palm oil’s role in nutrition, health and national development: A review. Ghana Med. J. 2016, 50, 189–196. [Google Scholar]
- Szajewska, H.; Szajewski, T. Saturated fat controversy: Importance of systematic reviews and meta-analyses. Crit. Rev. Food Sci. Nutr. 2016, 56, 1947–1951. [Google Scholar] [CrossRef]
- Obahiagbon, F.I. A Review: Aspects of the African Oil Palm (Elaeis guineesis jacq.) and the implications of its bioactives in human health. Am. J. Biochem. Mol. Biol. 2012, 2, 106–119. [Google Scholar] [CrossRef] [Green Version]
- Ismail, S.R.; Maarof, S.K.; Siedar Ali, S.; Ali, A. Systematic review of palm oil consumption and the risk of cardiovascular disease. PLoS ONE 2018, 13, e0193533. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.K.; Seligman, B.; Farquhar, J.W.; Goldhaber-Fiebert, J.D. Multi-Country analysis of palm oil consumption and cardiovascular disease mortality for countries at different stages of economic development: 1980–1997. Global Health 2011, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Berry, S.E.; Sanders, T.A. Influence of triacylglycerol structure of stearic acid-rich fats on postprandial lipaemia. Proc. Nutr. Soc. 2005, 64, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Bracco, U. Effect of triglyceride structure on fat absorption. Am. J. Clin. Nutr. 1994, 60, 1002S–1009S. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Yu, S. Individual fatty acid effects on plasma lipids and lipoproteins: Human studies. Am. J. Clin. Nutr. 1997, 65, 1628s–1644s. [Google Scholar] [CrossRef] [Green Version]
- Zock, P.L.; de Vries, J.H.; Katan, M.B. Impact of myristic acid versus palmitic acid on serum lipid and lipoprotein levels in healthy women and men. Arterioscler. Thromb. 1994, 14, 567–575. [Google Scholar] [CrossRef] [Green Version]
- Eyres, L.; Eyres, M.F.; Chisholm, A.; Brown, R.C. Coconut oil consumption and cardiovascular risk factors in humans. Nutr. Rev. 2016, 74, 267–280. [Google Scholar] [CrossRef] [Green Version]
- Prior, I.A.; Davidson, F.; Salmond, C.E.; Czochanska, Z. Cholesterol, coconuts, and diet on Polynesian atolls: A natural experiment: The Pukapuka and Tokelau island studies. Am. J. Clin. Nutr. 1981, 34, 1552–1561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, S.E.; Miller, G.J.; Sanders, T.A. The solid fat content of stearic acid-rich fats determines their postprandial effects. Am. J. Clin. Nutr. 2007, 85, 1486–1494. [Google Scholar] [CrossRef] [Green Version]
- Orsavova, J.; Misurcova, L.; Ambrozova, J.V.; Vicha, R.; Mlcek, J. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. [Google Scholar] [CrossRef]
- Juliano, C.; Cossu, M.; Alamanni, M.C.; Piu, L. Antioxidant activity of gamma-oryzanol: Mechanism of action and its effect on oxidative stability of pharmaceutical oils. Int. J. Pharm. 2005, 299, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Bumrungpert, A.; Chongsuwat, R.; Phosat, C.; Butacnum, A. Rice bran oil containing gamma-oryzanol improves lipid profiles and antioxidant status in hyperlipidemic subjects: A randomized double-blind controlled trial. J. Altern. Complement. Med. 2019, 25, 353–358. [Google Scholar] [CrossRef]
- Shakib, M.-C.; Gabrial, S.; Gabrial, G. Rice bran oil compared to atorvastatin for treatment of dyslipidemia in patients with type 2 diabetes. Open Access Maced. J. Med. Sci. 2014, 2, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Lichtenstein, A.H.; Ausman, L.M.; Carrasco, W.; Gualtieri, L.J.; Jenner, J.L.; Ordovas, J.M.; Nicolosi, R.J.; Goldin, B.R.; Schaefer, E.J. Rice bran oil consumption and plasma lipid levels in moderately hypercholesterolemic humans. Arterioscler. Thromb. 1994, 14, 549–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author, Year | Country | Number of Included Studies | n | % Male | Mean Age (years) | Intervention Oil | Comparator Oil | Duration of Intervention (days) | Outcome | Baseline Serum Total Cholesterol (mg/dL) | Conflict of Interest Funding Source | AMSTAR2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Harland et al., 2009 [15] | UK | 2 | 34 | 52.9 | 18–78 | Mixed saturated fat Palm oil (22 g/d) (*30%–39% of total calorie intake from fat) | Canola oil (23 g/d) | 18–56 | LDL-c, TC, HDL-c, TAG | 170 to 275 | CI: Food industry organizations FS: Dow AgroSciences, Hertfordshire, UK. | Critically low |
Mozaffarian et al., 2009 [16] | USA | 13 for lipid parameters | 528 | 53 | 25–63 | Palm oil Lard Soybean oil (* 7.5% of total calorie intake from fat) | 20%Trans fatty acid PHO 35% Trans fatty acid PHO 45% Trans fatty acid PHO | 17–70 | TC/HDL-c, Lap(a) | 116 to 278 | CI: no conflict of interest FS: University of Otago Research and Enterprise Unit. | Critically low |
4 prospective cohorts for clinical outcomes | 139,836 | 43.6 | 30–84 (min to max) | 5–20 years | Adjusted risk reduction in coronary heart disease (nonfatal myocardial infarction or CHD death) | 190 to 282 | Critically low | |||||
Fattore et al., 2014 [17] | Italy | 51 | 1526 | 66 | 16–75 | Palm oil (*4%–43% of total calorie intake from fat) | Stearic acid Myristic/lauric oil MUFA PUFA Trans fatty acid PHO Interestified palm oil | 14–112 | LDL-c, TC, HDL-c, TAG, VLDL-c, apo B, apo A-I, TC/HDL-c, LDL-c/HDL-c, Lap(a) | 108 to 271 | CI: no conflict of interest FS: Universita Bocconi, Soremartec Italia s.r.l. | Critically low |
Sun et al., 2015 [18] | Singapore | 32 | 1073 | 65.4 | 16–68 | Palm oil (*12%–43% of total energy intake from fat) | Vegetable oil low in saturated fat Trans fat-containing oil Animal fat | 14–112 | LDL-c, TC, HDL-c, TAG | 120 to 341 | CI: no conflict of interest FS: The National Medical Research Council, Singapore | Low |
Jolfaie et al., 2016 [19] | Iran | 11 | 344 | 36 | 34–61 | Rice bran oil | Other oils | 21–90 | LDL-c, TC, HDL-c, TAG, VLDL-c, apo B, apo A, TC/HDL-c, LDL-c/HDL-c, Lap(a) | 134 to 325 | CI: no conflict of interest FS: NR | Low |
Ghobadi et al., 2018 [20] | Iran | 9 | 292 | 49.31 | 22–65 | Saturated fat (*7%–20% of total energy intake from fat) | Canola oil (12–50 g/d) | 21–180 | LDL-c, TC, HDL-c, TAG, apo B, apo A-I, LDL/HDL, TC/HDL | 130 to 309 | CI: no conflict of interest FS: no funding source | Moderate |
Ghobadi et al., 2018 [21] | Iran | 3 | 198 | 58.08 | 23–84 | Palm oil (*3%–81% of total energy intake from fat) | Olive oil (25–60 g/d) | 21–180 | LDL-c, TC, HDL-c, TAG, apo B, apo A-I | 167 to 257 | CI: no conflict of interest FS: Shiraz University of Medical Sciences | High |
Panth et al., 2018 [22] | Australia | 10 | 299 | 53.5 | 21–66 | Naturally occurring medium chain fatty acid (*14.2–108 g/d) | Long-chain fatty acid | 21–42 | LDL-c, TC, HDL-c, TAG, VLDL-c apo A-I, apo B | 113 to 274 | CI: no conflict of interest FS: no funding source | High |
Schwingshackl et al., 2018 [23] | Germany | 28 | 2065 | 54 | 22–84 | Soy oil, palm oil, coconut oil, lard | Other oils and solid fat | 21–189 | LDL-c, TC, HDL-c, TAG | 130 to 274 | CI: no conflict of interest FS: no funding source | High |
Studies | Intervention | Comparator | n | Effect Size (95%CI) | Heterogeneity I2 (%) |
---|---|---|---|---|---|
Fattore et al., 2014 | Palm oil | MUFA-rich oils | 5 | 0.02 (−0.1, 0.14) | 0.00% |
Harland et al.,2009 | Canola oil | 2 | 0.77 | ||
Fattore et al., 2014 | Palm oil | PUFA-rich oils | 5 | −0.19 (−0.43, 0.06) | 22.71% |
Fattore et al., 2014 | Palm oil | Stearic acid | 3 | −0.12 (−0.4, 0.16) | 18.43% |
Fattore et al., 2014 | Palm oil | TFA | 3 | −0.45 (−0.58, −0.31) | 0.00% |
Mozaffarian et al., 2009 | 20% TFA PHO | 13 | −0.02 | ||
Mozaffarian et al., 2009 | 35% TFA PHO | 13 | −0.1 | ||
Mozaffarian et al., 2009 | 45% TFA PHO | 13 | −0.14 | ||
Ghobadi et al., 2018 [20] | Palm oil, animal fat | Canola oil | 8 | 0.07 (−0.15, 0.3) | 23.2% |
Mozaffarian et al., 2009 | Lard | 20% TFA PHO | 13 | −0.02 | |
Mozaffarian et al., 2009 | 35% TFA PHO | 13 | −0.09 | ||
Mozaffarian et al., 2009 | 45% TFA PHO | 13 | −0.14 | ||
Mozaffarian et al., 2009 | Soybean oil | 20% TFA PHO | 13 | −0.12 | |
Mozaffarian et al., 2009 | 35% TFA PHO | 13 | −0.20 | ||
Mozaffarian et al., 2009 | 45% TFA PHO | 13 | −0.25 | ||
Jolfaie et al., 2016 | Rice bran oil | Vegetable oils | 4 | −0.08 (−0.22, 0.07) | 13% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Unhapipatpong, C.; Shantavasinkul, P.C.; Kasemsup, V.; Siriyotha, S.; Warodomwichit, D.; Maneesuwannarat, S.; Vathesatogkit, P.; Sritara, P.; Thakkinstian, A. Tropical Oil Consumption and Cardiovascular Disease: An Umbrella Review of Systematic Reviews and Meta Analyses. Nutrients 2021, 13, 1549. https://doi.org/10.3390/nu13051549
Unhapipatpong C, Shantavasinkul PC, Kasemsup V, Siriyotha S, Warodomwichit D, Maneesuwannarat S, Vathesatogkit P, Sritara P, Thakkinstian A. Tropical Oil Consumption and Cardiovascular Disease: An Umbrella Review of Systematic Reviews and Meta Analyses. Nutrients. 2021; 13(5):1549. https://doi.org/10.3390/nu13051549
Chicago/Turabian StyleUnhapipatpong, Chanita, Prapimporn Chattranukulchai Shantavasinkul, Vijj Kasemsup, Sukanya Siriyotha, Daruneewan Warodomwichit, Sirikan Maneesuwannarat, Prin Vathesatogkit, Piyamitr Sritara, and Ammarin Thakkinstian. 2021. "Tropical Oil Consumption and Cardiovascular Disease: An Umbrella Review of Systematic Reviews and Meta Analyses" Nutrients 13, no. 5: 1549. https://doi.org/10.3390/nu13051549
APA StyleUnhapipatpong, C., Shantavasinkul, P. C., Kasemsup, V., Siriyotha, S., Warodomwichit, D., Maneesuwannarat, S., Vathesatogkit, P., Sritara, P., & Thakkinstian, A. (2021). Tropical Oil Consumption and Cardiovascular Disease: An Umbrella Review of Systematic Reviews and Meta Analyses. Nutrients, 13(5), 1549. https://doi.org/10.3390/nu13051549