Self-Reported Nutritional Factors Are Associated with Weight Loss at 18 Months in a Self-Managed Commercial Program with Food Categorization System: Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Program and Food Categorization System
2.3. Participants
2.4. Measures
2.5. Statistical Analyses
3. Results
3.1. 4 Months
3.2. 18 Months
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hales, C.M.; Fryar, C.D.; Carroll, M.D.; Freedman, D.S.; Ogden, C.L. Trends in Obesity and Severe Obesity Prevalence in US Youth and Adults by Sex and Age, 2007–2008 to 2015–2016. JAMA 2018, 319, 1723–1725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pi-Sunyer, F.X. The Obesity Epidemic: Pathophysiology and Consequences of Obesity. Obes. Res. 2002, 10 (Suppl. 2), 97S–104S. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, K.B. Can Obesity and Health Coexist? Nutr. Today 2019, 54, 64–66. [Google Scholar] [CrossRef]
- Ryan, D.H.; Yockey, S.R. Weight Loss and Improvement in Comorbidity: Differences at 5%, 10%, 15%, and Over. Curr. Obes. Rep. 2017, 6, 187–194. [Google Scholar] [CrossRef]
- Stubbs, J.; Whybrow, S.; Teixeira, P.; Blundell, J.; Lawton, C.; Westenhoefer, J.; Engel, D.; Shepherd, R.; Mcconnon, Á.; Gilbert, P.; et al. Problems in Identifying Predictors and Correlates of Weight Loss and Maintenance: Implications for Weight Control Therapies Based on Behaviour Change: Predicting Weight Outcomes. Obes. Rev. 2011, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, E.S.; Yang, Q.; Behr, H.; Ho, A.; DeLuca, L.; May, C.N.; Michaelides, A. Psychosocial Characteristics by Weight Loss and Engagement in a Digital Intervention Supporting Self-Management of Weight. Int. J. Environ. Res. Public Health 2021, 18, 1712. [Google Scholar] [CrossRef] [PubMed]
- Carels, R.A.; Darby, L.A.; Rydin, S.; Douglass, O.M.; Cacciapaglia, H.M.; O’Brien, W.H. The Relationship between Self-Monitoring, Outcome Expectancies, Difficulties with Eating and Exercise, and Physical Activity and Weight Loss Treatment Outcomes. Ann. Behav. Med. 2005, 30, 182–190. [Google Scholar] [CrossRef]
- Gardner, C.D.; Trepanowski, J.F.; Del Gobbo, L.C.; Hauser, M.E.; Rigdon, J.; Ioannidis, J.P.A.; Desai, M.; King, A.C. Effect of Low-Fat vs. Low-Carbohydrate Diet on 12-Month Weight Loss in Overweight Adults and the Association with Genotype Pattern or Insulin Secretion: The DIETFITS Randomized Clinical Trial. JAMA 2018, 319, 667–679. [Google Scholar] [CrossRef]
- Klohe-Lehman, D.M.; Freeland-Graves, J.; Anderson, E.R.; McDowell, T.; Clarke, K.K.; Hanss-Nuss, H.; Cai, G.; Puri, D.; Milani, T.J. Nutrition Knowledge Is Associated with Greater Weight Loss in Obese and Overweight Low-Income Mothers. J. Am. Diet. Assoc. 2006, 106, 65–75. [Google Scholar] [CrossRef]
- Ledikwe, J.H.; Blanck, H.M.; Khan, L.K.; Serdula, M.K.; Seymour, J.D.; Tohill, B.C.; Rolls, B.J. Low-energy-density diets are associated with high diet quality in adults in the United States. J. Am. Diet. Assoc. 2006, 106, 1172–1180. [Google Scholar] [CrossRef]
- Ledikwe, J.H.; Blanck, H.M.; Kettel Khan, L.; Serdula, M.K.; Seymour, J.D.; Tohill, B.C.; Rolls, B.J. Dietary Energy Density Is Associated with Energy Intake and Weight Status in US Adults. Am. J. Clin. Nutr. 2006, 83, 1362–1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLoughlin, R.F.; McDonald, V.M.; Gibson, P.G.; Scott, H.A.; Hensley, M.J.; MacDonald-Wicks, L.; Wood, L.G. The Impact of a Weight Loss Intervention on Diet Quality and Eating Behaviours in People with Obesity and COPD. Nutrients 2017, 9, 1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sartorelli, D.S.; Franco, L.J.; Cardoso, M.A. High Intake of Fruits and Vegetables Predicts Weight Loss in Brazilian Overweight Adults. Nutr. Res. 2008, 28, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.D.; Hou, T.; Hu, F.B.; Rimm, E.B.; Spiegelman, D.; Willett, W.C.; Mozaffarian, D. A Comparison of Different Methods for Evaluating Diet, Physical Activity, and Long-Term Weight Gain in 3 Prospective Cohort Studies. J. Nutr. 2015, 145, 2527–2534. [Google Scholar] [CrossRef] [Green Version]
- Ogden, L.G.; Stroebele, N.; Wyatt, H.R.; Catenacci, V.A.; Peters, J.C.; Stuht, J.; Wing, R.R.; Hill, J.O. Cluster Analysis of the National Weight Control Registry to Identify Distinct Subgroups Maintaining Successful Weight Loss. Obesity 2012, 20, 2039–2047. [Google Scholar] [CrossRef] [Green Version]
- Chambers, J.A.; Swanson, V. Stories of Weight Management: Factors Associated with Successful and Unsuccessful Weight Maintenance: Factors Associated with Weight Maintenance. Br. J. Health Psychol. 2012, 17, 223–243. [Google Scholar] [CrossRef]
- Freire, R. Scientific Evidence of Diets for Weight Loss: Different Macronutrient Composition, Intermittent Fasting, and Popular Diets. Nutrition 2020, 69, 110549. [Google Scholar] [CrossRef]
- De Souza, R.J.; Swain, J.F.; Appel, L.J.; Sacks, F.M. Alternatives for Macronutrient Intake and Chronic Disease: A Comparison of the OmniHeart Diets with Popular Diets and with Dietary Recommendations. Am. J. Clin. Nutr. 2008, 88, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Obert, J.; Pearlman, M.; Obert, L.; Chapin, S. Popular Weight Loss Strategies: A Review of Four Weight Loss Techniques. Curr. Gastroenterol. Rep. 2017, 19, 61. [Google Scholar] [CrossRef]
- Dansinger, M.L.; Gleason, J.A.; Griffith, J.L.; Selker, H.P.; Schaefer, E.J. Comparison of the Atkins, Ornish, Weight Watchers, and Zone Diets for Weight Loss and Heart Disease Risk Reduction: A Randomized Trial. JAMA 2005, 293, 43–53. [Google Scholar] [CrossRef]
- Ello-Martin, J.A.; Roe, L.S.; Ledikwe, J.H.; Beach, A.M.; Rolls, B.J. Dietary Energy Density in the Treatment of Obesity: A Year-Long Trial Comparing 2 Weight-Loss Diets. Am. J. Clin. Nutr. 2007, 85, 1465–1477. [Google Scholar] [CrossRef] [PubMed]
- Greene, L.F.; Malpede, C.Z.; Henson, C.S.; Hubbert, K.A.; Heimburger, D.C.; Ard, J.D. Weight Maintenance 2 Years after Participation in a Weight Loss Program Promoting Low-Energy Density Foods. Obesity 2006, 14, 1795–1801. [Google Scholar] [CrossRef] [PubMed]
- Ledikwe, J.H.; Rolls, B.J.; Smiciklas-Wright, H.; Mitchell, D.C.; Ard, J.D.; Champagne, C.; Karanja, N.; Lin, P.-H.; Stevens, V.J.; Appel, L.J. Reductions in Dietary Energy Density Are Associated with Weight Loss in Overweight and Obese Participants in the PREMIER Trial. Am. J. Clin. Nutr. 2007, 85, 1212–1221. [Google Scholar] [CrossRef] [PubMed]
- Rolls, B.J. Dietary Energy Density: Applying Behavioural Science to Weight Management. Nutr. Bull. 2017, 42, 246–253. [Google Scholar] [CrossRef]
- Rolls, B.J.; Roe, L.S.; Meengs, J.S. Reductions in Portion Size and Energy Density of Foods Are Additive and Lead to Sustained Decreases in Energy Intake. Am. J. Clin. Nutr. 2006, 83, 11–17. [Google Scholar] [CrossRef]
- Raynor, H.A.; Looney, S.M.; Steeves, E.A.; Spence, M.; Gorin, A.A. The Effects of an Energy Density Prescription on Diet Quality and Weight Loss: A Pilot Randomized Controlled Trial. J. Acad. Nutr. Diet. 2012, 112, 1397–1402. [Google Scholar] [CrossRef]
- Mendes, A.; Pereira, J.L.; Fisberg, R.M.; Marchioni, D.M.L. Dietary Energy Density Was Associated with Diet Quality in Brazilian Adults and Older Adults. Appetite 2016, 97, 120–126. [Google Scholar] [CrossRef]
- Zhu, Y.; Hollis, J.H. Associations between Eating Frequency and Energy Intake, Energy Density, Diet Quality and Body Weight Status in Adults from the USA. Br. J. Nutr. 2016, 115, 2138–2144. [Google Scholar] [CrossRef] [Green Version]
- Spronk, I.; Kullen, C.; Burdon, C.; O’Connor, H. Relationship between Nutrition Knowledge and Dietary Intake. Br. J. Nutr. 2014, 111, 1713–1726. [Google Scholar] [CrossRef] [Green Version]
- Akkartal, Ş.; Gezer, C. Is Nutrition Knowledge Related to Diet Quality and Obesity? Ecol. Food Nutr. 2020, 59, 119–129. [Google Scholar] [CrossRef]
- Hartmann-Boyce, J.; Boylan, A.-M.; Jebb, S.A.; Fletcher, B.; Aveyard, P. Cognitive and Behavioural Strategies for Self-Directed Weight Loss: Systematic Review of Qualitative Studies. Obes. Rev. 2017, 18, 335–349. [Google Scholar] [CrossRef] [Green Version]
- Temple, N.J.; Fraser, J. Food Labels: A Critical Assessment. Nutrition 2014, 30, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Michaelides, A.; Major, J.; Pienkosz, E., Jr.; Wood, M.; Kim, Y.; Toro-Ramos, T. Usefulness of a Novel Mobile Diabetes Prevention Program Delivery Platform with Human Coaching: 65-Week Observational Follow-Up. JMIR mHealth uHealth 2018, 6, e93. [Google Scholar] [CrossRef] [Green Version]
- Toro-Ramos, T.; Michaelides, A.; Anton, M.; Karim, Z.; Kang-Oh, L.; Argyrou, C.; Loukaidou, E.; Charitou, M.M.; Sze, W.; Miller, J.D. Mobile Delivery of the Diabetes Prevention Program in People with Prediabetes: Randomized Controlled Trial. JMIR mHealth uHealth 2020, 8, e17842. [Google Scholar] [CrossRef] [PubMed]
- Gilhooly, C.H. Are Calorie Counting Apps Ready to Replace Traditional Dietary Assessment Methods? Nutr. Today 2017, 52, 10–18. [Google Scholar] [CrossRef]
- Vernarelli, J.A.; Mitchell, D.C.; Rolls, B.J.; Hartman, T.J. Dietary Energy Density and Obesity: How Consumption Patterns Differ by Body Weight Status. Eur. J. Nutr. 2018, 57, 351–361. [Google Scholar] [CrossRef]
- Marmot, M.; Atinmo, T.; Byers, T.; Chen, J.; Hirohata, T.; Jackson, A.; James, W.; Kolonel, L.; Kumanyika, S.; Leitzmann, C.; et al. Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective; Report; World Cancer Research Fund: London, UK; American Institute for Cancer Research: Washington, DC, USA, 2007. [Google Scholar]
- Rolls, B.J.; Ello-Martin, J.A.; Tohill, B.C. What Can Intervention Studies Tell Us about the Relationship between Fruit and Vegetable Consumption and Weight Management? Nutr. Rev. 2004, 62, 1–17. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture. What Is MyPlate? Available online: https://www.myplate.gov/eat-healthy/what-is-myplate (accessed on 18 February 2021).
- National Heart, Lung and Blood Institute. Managing Overweight and Obesity in Adults: Systematic Evidence Review from the Obesity Expert Panel, 2013; US Department of Health and Human Services: Washington, DC, USA; National Institutes of Health, National Heart, Lung and Blood Institute: Bethesda, MD, USA, 2013.
- Barte, J.C.; Bogt, N.t.; Bogers, R.P.; Teixeira, P.J.; Blissmer, B.; Mori, T.A.; Bemelmans, W.J. Maintenance of Weight Loss after Lifestyle Interventions for Overweight and Obesity, a Systematic Review; Centre for Reviews and Dissemination: York, UK, 2010. [Google Scholar]
- Yaroch, A.L.; Tooze, J.; Thompson, F.E.; Blanck, H.M.; Thompson, O.M.; Colón-Ramos, U.; Shaikh, A.; McNutt, S.; Nebeling, L.C. Evaluation of Three Short Dietary Instruments to Assess Fruit and Vegetable Intake: The National Cancer Institute’s Food Attitudes and Behaviors (FAB) Survey. J. Acad. Nutr. Diet 2012, 112, 1570–1577. [Google Scholar] [CrossRef] [Green Version]
- Warren-Findlow, J.; Reeve, C.L.; Racine, E.F. Psychometric Validation of a Brief Self-Report Measure of Diet Quality: The DASH-Q. J. Nutr. Educ. Behav. 2017, 49, 92–99.e1. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Bogensberger, B.; Hoffmann, G. Diet Quality as Assessed by the Healthy Eating Index, Alternate Healthy Eating Index, Dietary Approaches to Stop Hypertension Score, and Health Outcomes: An Updated Systematic Review and Meta-Analysis of Cohort Studies. J. Acad. Nutr. Diet 2018, 118, 74–100.e11. [Google Scholar] [CrossRef] [Green Version]
- Bailey, R.L.; Mitchell, D.C.; Miller, C.K.; Still, C.D.; Jensen, G.L.; Tucker, K.L.; Smiciklas-Wright, H. A Dietary Screening Questionnaire Identifies Dietary Patterns in Older Adults. J. Nutr. 2007, 137, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Mikhail, D.; Rolls, B.; Yost, K.; Balls-Berry, J.; Gall, M.; Blixt, K.; Novotny, P.; Albertie, M.; Jensen, M. Development and Validation Testing of a Weight Management Nutrition Knowledge Questionnaire for Adults. Int. J. Obes. 2020, 44, 579–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiber, M.; Bucher, T.; Collins, C.E.; Dohle, S. The Multiple Food Test: Development and Validation of a New Tool to Measure Food Choice and Applied Nutrition Knowledge. Appetite 2020, 150, 104647. [Google Scholar] [CrossRef] [PubMed]
- Arambepola, C.; Scarborough, P.; Rayner, M. Validating a Nutrient Profile Model. Public Health Nutr. 2008, 11, 371–378. [Google Scholar] [CrossRef] [Green Version]
- Rayner, M.; Scarborough, P.; Boxer, A.; Stockley, L. Nutrient Profiles: Development of Final Model; Food Standards Agency: London, UK, 2005.
- Aljadani, H.M.; Patterson, A.; Sibbritt, D.; Hutchesson, M.J.; Jensen, M.E.; Collins, C.E. Diet Quality, Measured by Fruit and Vegetable Intake, Predicts Weight Change in Young Women. J. Obes. 2013, 2013, 525161. [Google Scholar] [CrossRef] [Green Version]
- Scarborough, P.; Burg, M.R.; Foster, C.; Swinburn, B.; Sacks, G.; Rayner, M.; Webster, P.; Allender, S. Increased Energy Intake Entirely Accounts for Increase in Body Weight in Women but Not in Men in the UK between 1986 and 2000. Br. J. Nutr. 2011, 105, 1399–1404. [Google Scholar] [CrossRef] [Green Version]
- Rouhani, M.H.; Haghighatdoost, F.; Surkan, P.J.; Azadbakht, L. Associations between Dietary Energy Density and Obesity: A Systematic Review and Meta-Analysis of Observational Studies. Nutrition 2016, 32, 1037–1047. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, P.J.; Going, S.B.; Sardinha, L.B.; Lohman, T.G. A Review of Psychosocial Pre-Treatment Predictors of Weight Control. Obes. Rev. 2005, 6, 43–65. [Google Scholar] [CrossRef]
- Frankenfield, D.C.; Rowe, W.A.; Smith, J.S.; Cooney, R.N. Validation of Several Established Equations for Resting Metabolic Rate in Obese and Nonobese People. J. Am. Diet. Assoc. 2003, 103, 1152–1159. [Google Scholar] [CrossRef]
- Pérez-Escamilla, R.; Obbagy, J.E.; Altman, J.M.; Essery, E.V.; McGrane, M.M.; Wong, Y.P.; Spahn, J.M.; Williams, C.L. Dietary Energy Density and Body Weight in Adults and Children: A Systematic Review. J. Acad. Nutr. Diet. 2012, 112, 671–684. [Google Scholar] [CrossRef]
- Elfhag, K.; Rossner, S. Who Succeeds in Maintaining Weight Loss? A Conceptual Review of Factors Associated with Weight Loss Maintenance and Weight Regain. Obes. Rev. 2005, 6, 67–85. [Google Scholar] [CrossRef] [PubMed]
- Soini, S.; Mustajoki, P.; Eriksson, J.G. Weight Loss Methods and Changes in Eating Habits among Successful Weight Losers. Ann. Med. 2016, 48, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, B.B.; Kinzel, L.S.; Gabriel, K.P.; Chang, Y.; Kuller, L.H. Short- and Long-Term Eating Habit Modification Predict Weight Change in Overweight, Post-Menopausal Women: Results from the WOMAN Study. J. Acad. Nutr. Diet. 2012, 112, 1347–1355.e2. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarian, D.; Hao, T.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Changes in Diet and Lifestyle and Long-Term Weight Gain in Women and Men. N. Engl. J. Med. 2011, 364, 2392–2404. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.S.; Rasmussen, S.; Christensen, B.J.; Ritz, C.; le Roux, C.W.; Schmidt, J.B.; Sjödin, A. Bariatric Surgery Does Not Affect Food Preferences, but Individual Changes in Food Preferences May Predict Weight Loss. Obesity 2018, 26, 1879–1887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laz, T.H.; Rahman, M.; Pohlmeier, A.M.; Berenson, A.B. Level of Nutrition Knowledge and Its Association with Weight Loss Behaviors among Low-Income Reproductive-Age Women. J. Community Health 2015, 40, 542–548. [Google Scholar] [CrossRef] [Green Version]
- Rolls, B.J.; Roe, L.S.; Beach, A.M.; Kris-Etherton, P.M. Provision of Foods Differing in Energy Density Affects Long-Term Weight Loss. Obes. Res. 2005, 13, 1052–1060. [Google Scholar] [CrossRef] [Green Version]
- Fogelholm, M.; Anderssen, S.; Gunnarsdottir, I.; Lahti-Koski, M. Dietary Macronutrients and Food Consumption as Determinants of Long-Term Weight Change in Adult Populations: A Systematic Literature Review. Food Nutr. Res. 2012, 56, 19103. [Google Scholar] [CrossRef] [Green Version]
- Soltani, S.; Shirani, F.; Chitsazi, M.J.; Salehi-Abargouei, A. The Effect of Dietary Approaches to Stop Hypertension (DASH) Diet on Weight and Body Composition in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Obes. Rev. 2016, 17, 442–454. [Google Scholar] [CrossRef]
- Zade, M.R.; Telkabadi, M.H.; Bahmani, F.; Salehi, B.; Farshbaf, S.; Asemi, Z. The Effects of DASH Diet on Weight Loss and Metabolic Status in Adults with Non-Alcoholic Fatty Liver Disease: A Randomized Clinical Trial. Liver Int. 2016, 36, 563–571. [Google Scholar] [CrossRef]
- Kaiser, K.A.; Brown, A.W.; Bohan Brown, M.M.; Shikany, J.M.; Mattes, R.D.; Allison, D.B. Increased Fruit and Vegetable Intake Has No Discernible Effect on Weight Loss: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2014, 100, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Persell, S.D.; Peprah, Y.A.; Lipiszko, D.; Lee, J.Y.; Li, J.J.; Ciolino, J.D.; Karmali, K.N.; Sato, H. Effect of Home Blood Pressure Monitoring via a Smartphone Hypertension Coaching Application or Tracking Application on Adults with Uncontrolled Hypertension: A Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e200255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chacko, S.; Jeemon, P. Role of Family Support and Self-Care Practices in Blood Pressure Control in Individuals with Hypertension: Results from a Cross-Sectional Study in Kollam District, Kerala. Wellcome Open Res. 2020, 5. [Google Scholar] [CrossRef] [PubMed]
- DeLuca, L.; Toro-Ramos, T.; Michaelides, A.; Seng, E.; Swencionis, C. Relationship between Age and Weight Loss in Noom: Quasi-Experimental Study. JMIR Diabetes 2020, 5, e18363. [Google Scholar] [CrossRef] [PubMed]
- Kraschnewski, J.; Boan, J.; Esposito, J.; Sherwood, N.; Lehman, E.; Kephart, D.; Sciamanna, C. Long-Term Weight Loss Maintenance in the United States. Int. J. Obes. 2010, 34, 1644–1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phelan, S.; Halfman, T.; Pinto, A.M.; Foster, G.D. Behavioral and Psychological Strategies of Long-Term Weight Loss Maintainers in a Widely Available Weight Management Program. Obesity Silver Spring 2020, 28, 421–428. [Google Scholar] [CrossRef]
- Macdiarmid, J.; Blundell, J. Assessing Dietary Intake: Who, What and Why of under-Reporting. Nutr. Res. Rev. 1998, 11, 231–253. [Google Scholar] [CrossRef] [Green Version]
- Moroshko, I.; Brennan, L.; O’Brien, P. Predictors of Dropout in Weight Loss Interventions: A Systematic Review of the Literature: Dropout in Weight Loss Interventions. Obes. Rev. 2011, 12, 912–934. [Google Scholar] [CrossRef]
- Levine, D.M.; Savarimuthu, S.; Squires, A.; Nicholson, J.; Jay, M. Technology-Assisted Weight Loss Interventions in Primary Care: A Systematic Review. J. Gen. Intern. Med. 2015, 30, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Gudzune, K.A.; Doshi, R.S.; Mehta, A.K.; Chaudhry, Z.W.; Jacobs, D.K.; Vakil, R.M.; Lee, C.J.; Bleich, S.N.; Clark, J.M. Efficacy of Commercial Weight Loss Programs: An Updated Systematic Review. Ann. Intern. Med. 2015, 162, 501–512. [Google Scholar] [CrossRef] [Green Version]
- Finley, C.; Barlow, C.; Greenway, F.; Rock, C.; Rolls, B.; Blair, S. Retention Rates and Weight Loss in a Commercial Weight Loss Program. Int. J. Obes. 2007, 31, 292–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shih, T.-H.; Fan, X. Comparing Response Rates in E-Mail and Paper Surveys: A Meta-Analysis. Educ. Res. Rev. 2009, 4, 26–40. [Google Scholar] [CrossRef]
- Harvey, J.; Krukowski, R.; Priest, J.; West, D. Log Often, Lose More: Electronic Dietary Self-Monitoring for Weight Loss. Obesity Silver Spring 2019, 27, 380–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
4 Months | ||||
Characteristic | Moderate Weight Loss (≥5%) (n = 2887) | Stable Weight (0 ± 1%) (n = 374) | p Value | |
Gender, n (%) | ||||
Male | 585 (20.3) | 49 (13.1) | 0.001 | |
Female | 2302 (79.7) | 325 (86.9) | ||
Age (years), mean (SD) | 51.0 (12.4) | 49.7 (12.5) | 0.07 | |
Initial weight (kg), mean (SD) | 101.1 (16.2) | 102.8 (17.4) | 0.07 | |
Height (inches), mean (SD) | 66.3 (3.6) | 65.8 (3.3) | 0.007 | |
Baseline BMI (kg/m2), mean (SD) | 30.0 (4.3) | 30.7 (4.8) | 0.004 | |
Average weight loss (kg) at 4 months, mean (SD) | 9.0 (3.4) | 0.2 (0.6) | <0.001 | |
Average weight loss (%) at 4 months, % (SD) | 8.9% (3.0%) | 0.2% (0.6%) | <0.001 | |
18 months | ||||
Characteristic | High weight loss (>10%) (n = 71) | Moderate weight loss (5–10%) (n = 35) | Low weight loss (less than 5%) (n = 42) | p value |
Gender, n (%) | 0.93 | |||
Male | 13 (18%) | 7 (20%) | 7 (17%) | |
Female | 58 (82%) | 28 (80%) | 35 (83%) | |
Age (years), mean (SD) | 57.0 (10.9) | 54.7 (15.5) | 50.3 (12.3) | 0.03 |
Initial weight (kg), mean (SD) | 103.1 (15.8) | 102.3 (14.0) | 100.6 (14.0) | 0.68 |
Height (inches), mean (SD) | 66.5 (3.1) | 66.9 (3.6) | 65.9 (2.9) | 0.37 |
Baseline BMI (kg/m2), mean (SD) | 36.9 (5.9) | 36.0 (4.1) | 36.5 (4.6) | 0.68 |
Average weight loss (kg) at 18 months, mean (SD) | 19.4 (7.9) | 7.4 (1.7) | 1.5 (2.8) | <0.001 |
Average weight loss (%) at 18 months | 19% (7.1%) | 7.3% (1.3%) | 1.5% (2.7%) | <0.001 |
4 Months | ||||
Characteristic | Moderate Weight Loss (n = 2887) | Stable Weight (n = 374) | p Value | |
Mean (SD) | Mean (SD) | |||
Breakfast | ||||
Calories per meal | 255.9 (103.4) | 288.5 (127.1) | <0.001 | |
Low-energy-dense proportion | 0.35 (0.26) | 0.25 (0.24) | <0.001 | |
Medium-energy-dense proportion | 0.33 (0.23) | 0.35 (0.25) | <0.001 | |
High-energy-dense proportion | 0.28 (0.23) | 0.36 (0.25) | <0.001 | |
Lunch | ||||
Calories per meal | 373.0 (139.8) | 413.2 (162.9) | <0.001 | |
Low-energy-dense proportion | 0.23 (0.17) | 0.16 (0.15) | <0.001 | |
Medium-energy-dense proportion | 0.43 (0.2) | 0.43 (0.22) | 0.73 | |
High-energy-dense proportion | 0.30 (0.19) | 0.38 (0.22) | <0.001 | |
Dinner | ||||
Calories per meal | 492.6 (179.1) | 508.7 (239.6) | <0.001 | |
Low-energy-dense proportion | 0.19 (0.14) | 0.14 (0.14) | <0.001 | |
Medium-energy-dense proportion | 0.45 (0.18) | 0.45 (0.21) | 0.44 | |
High-energy-dense proportion | 0.32 (0.19) | 0.38 (0.22) | <0.001 | |
18 months | ||||
High weight loss (>10%) (n = 71) | Moderate weight loss (5–10%) (n = 35) | Low weight loss (less than 5%) (n = 42) | p value | |
Breakfast | ||||
Calories per month | 15,636.6 (9245.4) a | 14,026.4 (8200.4) a | 11,629.2 (7793.8) a | <0.001 |
Low-energy-dense proportion | 0.37 (0.26) a | 0.37 (0.24) b | 0.34 (0.25) ab | 0.02 |
Medium-energy-dense proportion | 0.41(0.24) a | 0.36 (0.21) ab | 0.4 (0.24) b | <0.001 |
High-energy-dense proportion | 0.21 (0.2) ab | 0.27 (0.21) b | 0.26 (0.19) a | <0.001 |
Lunch | ||||
Calories per month | 19,652.4 (9753.7) a | 17,760.5 (9264.9) a | 14,814.0 (9705.4) a | <0.001 |
Low-energy-dense proportion | 0.29 (0.16) a | 0.27 (0.16) | 0.25 (0.18) a | <0.001 |
Medium-energy-dense proportion | 0.37 (0.16) | 0.38 (0.16) | 0.37 (0.18) | 0.54 |
High-energy-dense proportion | 0.34 (0.18) a | 0.35 (0.19) ab | 0.37 (0.21) ab | 0.002 |
Dinner | ||||
Calories per month | 27,922.2 (14495.4) a | 23,261.7 (14505.0) a | 20,145.6 (14120.7) a | <0.001 |
Low-energy-dense proportion | 0.22 (0.15) a | 0.20 (0.14) a | 0.16 (0.13) a | <0.001 |
Medium-energy-dense proportion | 0.42 (0.15) | 0.42 (0.16) | 0.41 (0.18) | 0.68 |
High-energy-dense proportion | 0.36 (0.17) a | 0.39 (0.18) a | 0.43 (0.21) a | <0.001 |
Low-Energy-Dense Proportion | ||||
---|---|---|---|---|
Characteristic | Coefficient | 95% CI | SE | p Value |
Group | ||||
Stable | - | - | - | - |
Weight loss group | 6.67 | 5.64, 7.70 | 0.53 | <0.001 |
Time | −0.11 | −0.18, 0.04 | 0.04 | 0.002 |
Age | 0.13 | 0.11, 0.16 | 0.01 | <0.001 |
Gender | ||||
Female | - | - | - | - |
Male | −1.68 | −2.45, −0.91 | 0.39 | <0.001 |
Baseline BMI | −0.11 | −0.18, −0.04 | 0.03 | 0.003 |
Time × Group | ||||
Time × Stable | - | - | - | - |
Time × Weight loss group | −0.01 | −0.08, 0.06 | 0.04 | 0.80 |
High Weight Loss (>10%) n = 71 | Moderate Weight Loss (5–10%) n = 35 | Low Weight Loss (Less than 5%) n = 42 | p Value | |
---|---|---|---|---|
Dietary quality (Range: 0 to 77) | 41.8 (10.5) a | 42.5 (9.4) b | 36.9 (9.1) ab | 0.02 |
Fruit/vegetable intake (Range: 0 to 30) | 7.2 (4.7) a | 6.3 (2.3) | 5.1 (3.8) a | 0.03 |
Nutrition knowledge (% correct) | 82% (9%) a | 83% (11%) b | 74% (12%) ab | <0.001 |
Food choice (range: 0 to 4) | 3.0 (0.4) a | 2.9 (0.5) | 2.7 (0.5) a | 0.003 |
Predictor | Model | Coefficient (95% CI) | Std. Error | T Value | p Value |
---|---|---|---|---|---|
Dietary quality | crude | −0.08 (−0.24, 0.08) | 0.08 | −0.96 | 0.33 |
adjusted | 0.00 (−0.17, 0.17) | 0.09 | 0.02 | 0.98 | |
Fruit/veggie intake | crude | −0.42 (−0.81, −0.04) | 0.19 | −2.17 | 0.03 |
adjusted | −0.28 (−0.68, 0.12) | 0.2 | −1.38 | 0.17 | |
Nutrition knowledge | crude | −21.59 (−35.58, −7.61) | 7.08 | −3.05 | 0.003 |
adjusted | −19.44 (33.19, −5.69) | 6.96 | −2.79 | 0.006 | |
Food choice | crude | −5.48 (−8.67, −2.28) | 1.62 | −3.38 | 0.001 |
adjusted | −5.49 (−8.87, −2.11) | 1.71 | −3.21 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitchell, E.S.; Yang, Q.; Ho, A.S.; Behr, H.; May, C.N.; DeLuca, L.; Michaelides, A. Self-Reported Nutritional Factors Are Associated with Weight Loss at 18 Months in a Self-Managed Commercial Program with Food Categorization System: Observational Study. Nutrients 2021, 13, 1733. https://doi.org/10.3390/nu13051733
Mitchell ES, Yang Q, Ho AS, Behr H, May CN, DeLuca L, Michaelides A. Self-Reported Nutritional Factors Are Associated with Weight Loss at 18 Months in a Self-Managed Commercial Program with Food Categorization System: Observational Study. Nutrients. 2021; 13(5):1733. https://doi.org/10.3390/nu13051733
Chicago/Turabian StyleMitchell, Ellen S., Qiuchen Yang, Annabell S. Ho, Heather Behr, Christine N. May, Laura DeLuca, and Andreas Michaelides. 2021. "Self-Reported Nutritional Factors Are Associated with Weight Loss at 18 Months in a Self-Managed Commercial Program with Food Categorization System: Observational Study" Nutrients 13, no. 5: 1733. https://doi.org/10.3390/nu13051733