Neonatal Hyperglycemia Related to Parenteral Nutrition Affects Long-Term Neurodevelopment in Preterm Newborn: A Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Outcome
2.3. Data Collection
2.4. Hyperglycemia and Blood Glucose Management
2.5. Nutritional Protocol
2.6. Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Platt, M. Outcomes in preterm infants. Public Health 2014, 128, 399–403. [Google Scholar] [CrossRef]
- Maiocco, G.; Migliaretti, G.; Cresi, F.; Peila, C.; DeAntoni, S.; Trapani, B.; Giuliani, F.; Bertino, E.; Coscia, A. Evaluation of Extrauterine Head Growth From 14–21 days to Discharge With Longitudinal Intergrowth-21st Charts: A New Approach to Identify Very Preterm Infants at Risk of Long-Term Neurodevelopmental Impairment. Front. Pediatr. 2020, 8, 572930. [Google Scholar] [CrossRef] [PubMed]
- Joosten, K.; Embleton, N.; Yan, W.; Senterre, T.; Braegger, C.; Bronsky, J.; Cai, W.; Campoy, C.; Carnielli, V.; Darmaun, D.; et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Energy. Clin. Nutr. 2018, 37, 2309–2314. [Google Scholar] [CrossRef] [PubMed]
- Chien, H.-C.; Chen, C.-H.; Wang, T.-M.; Hsu, Y.-C.; Lin, M.-C. Neurodevelopmental outcomes of infants with very low birth weights are associated with the severity of their extra-uterine growth retardation. Pediatr. Neonatol. 2018, 59, 168–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terrin, G.; Coscia, A.; Boscarino, G.; Faccioli, F.; Di Chiara, M.; Greco, C.; Onestà, E.; Oliva, S.; Aloi, M.; Dito, L.; et al. Long-term effects on growth of an energy-enhanced parenteral nutrition in preterm newborn: A quasi-experimental study. PLoS ONE 2020, 15, e0235540. [Google Scholar] [CrossRef] [PubMed]
- Terrin, G.; Boscarino, G.; Gasparini, C.; Di Chiara, M.; Faccioli, F.; Onestà, E.; Parisi, P.; Spalice, A.; De Nardo, M.C.; Dito, L.; et al. Energy-Enhanced Parenteral Nutrition and Neurodevelopment of Preterm Newborns: A Cohort Study. Nutrition 2021, 89, 111219. [Google Scholar] [CrossRef] [PubMed]
- Bonsante, F.; Gouyon, J.-B.; Robillard, P.-Y.; Gouyon, B.; Iacobelli, S. Early optimal parenteral nutrition and metabolic acidosis in very preterm infants. PLoS ONE 2017, 12, e0186936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moltu, S.J.; Bronsky, J.; Embleton, N.; Gerasimidis, K.; Indrio, F.; Köglmeier, J.; de Koning, B.; Lapillonne, A.; Norsa, L.; Verduci, E.; et al. Nutritional Management of the Critically ill Neonate: A Position Paper of the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2021. [Google Scholar] [CrossRef] [PubMed]
- Casaer, M.P.; Mesotten, D.; Hermans, G.; Wouters, P.J.; Schetz, M.; Meyfroidt, G.; Van Cromphaut, S.; Ingels, C.; Meersseman, P.; Muller, J.; et al. Early versus Late Parenteral Nutrition in Critically Ill Adults. N. Engl. J. Med. 2011, 365, 506–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanhorebeek, I.; Verbruggen, S.; Casaer, M.P.; Gunst, J.; Wouters, P.J.; Hanot, J.; Guerra, G.G.; Vlasselaers, D.; Joosten, K.; Berghe, G.V.D. Effect of early supplemental parenteral nutrition in the paediatric ICU: A preplanned observational study of post-randomisation treatments in the PEPaNIC trial. Lancet Respir. Med. 2017, 5, 475–483. [Google Scholar] [CrossRef]
- Verlinden, I.; Dulfer, K.; Vanhorebeek, I.; Güiza, F.; Hordijk, J.A.; Wouters, P.J.; Guerra, G.G.; Joosten, K.F.; Verbruggen, S.C.; Berghe, G.V.D. Role of age of critically ill children at time of exposure to early or late parenteral nutrition in determining the impact hereof on long-term neurocognitive development: A secondary analysis of the PEPaNIC-RCT. Clin. Nutr. 2021, 40, 1005–1012. [Google Scholar] [CrossRef]
- van Puffelen, E.; Vanhorebeek, I.; Joosten, K.F.M.; Wouters, P.J.; Berghe, G.V.D.; Verbruggen, S.C.A.T. Early versus late parenteral nutrition in critically ill, term neonates: A preplanned secondary subgroup analysis of the PEPaNIC multicentre, randomised controlled trial. Lancet Child Adolesc. Health 2018, 2, 505–515. [Google Scholar] [CrossRef]
- Stensvold, H.J.; Strommen, K.; Lang, A.M.; Abrahamsen, T.G.; Steen, E.K.; Pripp, A.H.; Ronnestad, A.E. Early Enhanced Parenteral Nutrition, Hyperglycemia, and Death Among Extremely Low-Birth-Weight Infants. JAMA Pediatr. 2015, 169, 1003–1010. [Google Scholar] [CrossRef] [Green Version]
- Ramel, S.; Rao, R. Hyperglycemia in Extremely Preterm Infants. NeoReviews 2020, 21, e89–e97. [Google Scholar] [CrossRef] [PubMed]
- Alexandrou, G.; Karlén, J.; Tessma, M.K.; Norman, M.; Vanpee, M.; Skiöld, B.; Ådén, U. Early Hyperglycemia Is a Risk Factor for Death and White Matter Reduction in Preterm Infants. Pediatrics 2010, 125, e584–e591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Lugt, N.M.; Smits-Wintjens, V.E.; Van Zwieten, P.H.; Walther, F.J. Short and long term outcome of neonatal hyperglycemia in very preterm infants: A retrospective follow-up study. BMC Pediatr. 2010, 10, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passariello, A.; Terrin, G.; Baldassarre, M.E.; De Curtis, M.; Paludetto, R.; Canani, R.B. Diarrhea in neonatal intensive care unit. World J. Gastroenterol. 2010, 16, 2664–2668. [Google Scholar] [CrossRef]
- Canani, R.B.; Terrin, G. Recent Progress in Congenital Diarrheal Disorders. Curr. Gastroenterol. Rep. 2011, 13, 257–264. [Google Scholar] [CrossRef]
- Ferreira, C.R.; van Karnebeek, C.D.M. Inborn errors of metabolism. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 162, pp. 449–481. ISBN 978-0-444-64029-1. [Google Scholar]
- Salvia, G.; Cascioli, C.F.; Ciccimarra, F.; Terrin, G.; Cucchiara, S. A Case of Protein-Losing Enteropathy Caused by Intestinal Lymphangiectasia in a Preterm Infant. Pediatrics 2001, 107, 416–417. [Google Scholar] [CrossRef]
- Galderisi, A.; Facchinetti, A.; Steil, G.M.; Ortiz-Rubio, P.; Cavallin, F.; Tamborlane, W.V.; Baraldi, E.; Cobelli, C.; Trevisanuto, D. Continuous Glucose Monitoring in Very Preterm Infants: A Randomized Controlled Trial. Pediatrics 2017, 140, e20171162. [Google Scholar] [CrossRef] [Green Version]
- Terrin, G.; Di Chiara, M.; Boscarino, G.; Versacci, P.; Di Donato, V.; Giancotti, A.; Pacelli, E.; Faccioli, F.; Onestà, E.; Corso, C.; et al. Echocardiography-Guided Management of Preterms With Patent Ductus Arteriosus Influences the Outcome: A Cohort Study. Front. Pediatr. 2020, 8, 582735. [Google Scholar] [CrossRef] [PubMed]
- Terrin, G.; Di Chiara, M.; Boscarino, G.; Metrangolo, V.; Faccioli, F.; Onestà, E.; Giancotti, A.; Di Donato, V.; Cardilli, V.; De Curtis, M. Morbidity associated with patent ductus arteriosus in preterm newborns: A retrospective case-control study. Ital. J. Pediatr. 2021, 47, 9. [Google Scholar] [CrossRef] [PubMed]
- Conti, M.G.; Angelidou, A.; Diray-Arce, J.; Smolen, K.K.; Lasky-Su, J.; De Curtis, M.; Levy, O. Immunometabolic approaches to prevent, detect, and treat neonatal sepsis. Pediatr. Res. 2020, 87, 399–405. [Google Scholar] [CrossRef]
- Naeem, A.; Ahmed, I.; Silveyra, P. Bronchopulmonary Dysplasia: An Update on Experimental Therapeutics. Eur. Med. J. 2019, 4, 20–29. [Google Scholar]
- Terrin, G.; Scipione, A.; De Curtis, M. Update in Pathogenesis and Prospective in Treatment of Necrotizing Enterocolitis. BioMed Res. Int. 2014, 2014, 543765. [Google Scholar] [CrossRef] [Green Version]
- Peila, C.; Spada, E.; Giuliani, F.; Maiocco, G.; Raia, M.; Cresi, F.; Bertino, E.; Coscia, A. Extrauterine Growth Restriction: Definitions and Predictability of Outcomes in a Cohort of Very Low Birth Weight Infants or Preterm Neonates. Nutrients 2020, 12, 1224. [Google Scholar] [CrossRef]
- Bayley, N. Bayley Scales of Infant and Toddler Development, 3rd ed.; Administration Manual; Harcourt Assessment: San Antonio, TX, USA, 2006. [Google Scholar]
- Johnson, S.; Moore, T.; Marlow, N. Using the Bayley-III to assess neurodevelopmental delay: Which cut-off should be used? Pediatr. Res. 2014, 75, 670–674. [Google Scholar] [CrossRef] [Green Version]
- Gasparini, C.; Caravale, B.; Rea, M.; Coletti, M.F.; Tonchei, V.; Bucci, S.; Dotta, A.; De Curtis, M.; Gentile, S.; Ferri, R. Neurodevelopmental outcome of Italian preterm children at 1year of corrected age by Bayley-III scales: An assessment using local norms. Early Hum. Dev. 2017, 113, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Boscarino, G.; Conti, M.; De Luca, F.; Di Chiara, M.; Deli, G.; Bianchi, M.; Favata, P.; Cardilli, V.; Di Nardo, G.; Parisi, P.; et al. Intravenous Lipid Emulsions Affect Respiratory Outcome in Preterm Newborn: A Case-Control Study. Nutrients 2021, 13, 1243. [Google Scholar] [CrossRef]
- Terrin, G.; De Nardo, M.C.; Boscarino, G.; Di Chiara, M.; Cellitti, R.; Ciccarelli, S.; Gasparini, C.; Parisi, P.; Urna, M.; Ronchi, B.; et al. Early Protein Intake Influences Neonatal Brain Measurements in Preterms: An Observational Study. Front. Neurol. 2020, 11, 885. [Google Scholar] [CrossRef] [PubMed]
- Terrin, G.; Boscarino, G.; Di Chiara, M.; Iacobelli, S.; Faccioli, F.; Greco, C.; Onestà, E.; Sabatini, G.; Pietravalle, A.; Oliva, S.; et al. Nutritional Intake Influences Zinc Levels in Preterm Newborns: An Observational Study. Nutrients 2020, 12, 529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terrin, G.; Passariello, A.; Canani, R.B.; Manguso, F.; Paludetto, R.; Cascioli, C. Minimal enteral feeding reduces the risk of sepsis in feed-intolerant very low birth weight newborns. Acta Paediatr. 2009, 98, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Canani, R.B.; Passariello, A.; Buccigrossi, V.; Terrin, G.; Guarino, A. The Nutritional Modulation of the Evolving Intestine. J. Clin. Gastroenterol. 2008, 42, S197–S200. [Google Scholar] [CrossRef] [PubMed]
- Villamizar, J.D.G.; Haapala, J.L.; Scheurer, J.M.; Rao, R.; Ramel, S.E. Relationships between Early Nutrition, Illness, and Later Outcomes among Infants Born Preterm with Hyperglycemia. J. Pediatr. 2020, 223, 29–33.e2. [Google Scholar] [CrossRef]
- Ramel, S.E.; Long, J.D.; Gray, H.; Durrwachter-Erno, K.; Demerath, E.W.; Rao, R. Neonatal hyperglycemia and diminished long-term growth in very low birth weight preterm infants. J. Perinatol. 2013, 33, 882–886. [Google Scholar] [CrossRef] [PubMed]
- Pertierra-Cortada, Á.; Ramon-Krauel, M.; Iriondo-Sanz, M.; Iglesias-Platas, I. Instability of Glucose Values in Very Preterm Babies at Term Postmenstrual Age. J. Pediatr. 2014, 165, 1146–1153.e2. [Google Scholar] [CrossRef] [PubMed]
- Rose, J.; Butler, E.E.; Lamont, L.E.; Barnes, P.D.; Atlas, S.W.; Stevenson, D.K. Neonatal brain structure on MRI and diffusion tensor imaging, sex, and neurodevelopment in very-low-birthweight preterm children. Dev. Med. Child Neurol. 2009, 51, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Kao, L.S.; Morris, B.H.; Lally, K.P.; Stewart, C.D.; Huseby, V.; Kennedy, K.A. Hyperglycemia and morbidity and mortality in extremely low birth weight infants. J. Perinatol. 2006, 26, 730–736. [Google Scholar] [CrossRef] [Green Version]
- Fendler, W.; Walenciak, J.; Mlynarski, W.; Piotrowski, A. Higher glycemic variability in very low birth weight newborns is associated with greater early neonatal mortality. J. Matern. Fetal Neonatal Med. 2011, 25, 1122–1126. [Google Scholar] [CrossRef]
- Hays, S.P.; Smith, E.O.; Sunehag, A.L. Hyperglycemia Is a Risk Factor for Early Death and Morbidity in Extremely Low Birth-Weight Infants. Pediatrics 2006, 118, 1811–1818. [Google Scholar] [CrossRef]
- Temming, P.; Tröger, B.; Thonnissen, S.; Holterhus, P.-M.; Schultz, C.; Härtel, C. The effect of hyperglycemia on neonatal immune responses in-vitro. J. Matern. Fetal Neonatal Med. 2011, 25, 94–98. [Google Scholar] [CrossRef]
- Tayman, C.; Yis, U.; Hirfanoglu, I.; Oztekin, O.; Göktaş, G.; Bilgin, B.C. Effects of Hyperglycemia on the Developing Brain in Newborns. Pediatr. Neurol. 2014, 51, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Loos, R.J.; Phillips, D.I.; Fagard, R.; Beunen, G.; Derom, C.; Mathieu, C.; Verhaeghe, J.; Vlietinck, R.; Frcp, M. The Influence of Maternal BMI and Age in Twin Pregnancies on Insulin Resistance in the Offspring. Diabetes Care 2002, 25, 2191–2196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harel-Gadassi, A.; Friedlander, E.; Yaari, M.; Bar-Oz, B.; Eventov-Friedman, S.; Mankuta, D.; Yirmiya, N. Do developmental and temperamental characteristics mediate the association between preterm birth and the quality of mother-child interaction? Infant Behav. Dev. 2020, 58, 101421. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, F.; Azari, N.; Ghiasvand, H.; Shahrokhi, A.; Rahmani, N.; FatollahIerad, S. Do NICU developmental care improve cognitive and motor outcomes for preterm infants? A systematic review and meta-analysis. BMC Pediatr. 2020, 20, 67. [Google Scholar] [CrossRef]
- Doyle, L.W.; Cheong, J.L.; Ehrenkranz, R.A.; Halliday, H.L. Early (<8 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst. Rev. 2017, 10, CD001146. [Google Scholar]
- Del Rosario, C.; Slevin, M.; Molloy, E.J.; Quigley, J.; Nixon, E. How to use the Bayley Scales of Infant and Toddler Development. Arch. Dis. Child. Educ. Pract. Ed. 2021, 106, 108–112. [Google Scholar] [CrossRef] [PubMed]
Total n = 280 | Cohort A (HG) n = 82 | Cohort B (Control) n = 198 | OR (95% CI) | p Value # | |
---|---|---|---|---|---|
Maternal age, years old | 34 (33 to 35) | 34 (33 to 35) | 35 (34 to 35) | - | 0.364 |
Maternal age ≥ 35 years old, No. (%) | 132 (47.1) | 61 (74.4) | 71 (35.9) | 0.422 (0.243–0.731) | 0.002 |
Gestational age, weeks | 29 (29 to 30) | 27 (27 to 28) | 30 (29 to 30) | - | <0.001 |
Gestational age ≤ 29 weeks, No. (%) | 148 (52.9) | 21 (25.6) | 127 (64.1) | 0.192 (0.108–0.342) | <0.001 |
Birth weight, g | 1248 (1207 to 1291) | 1010 (936 to 1085) | 1347 (1303 to 1391) | - | <0.001 |
Birth weight ≤ 1000 g, No. (%) | 72 (25.7) | 44 (53.7) | 28 (14.1) | 7.030 (3.897–12.683) | <0.001 |
Male sex, No. (%) | 151 (53.9) | 43 (52.4) | 108 (54.5) | 0.919 (0.549–1.539) | 0.748 |
Caucasian, No. (%) | 231 (82.5) | 63 (76.8) | 168 (84.8) | 1.689 (0.887–3.214) | 0.108 |
Cesarean section, No. (%) | 243 (86.8) | 70 (85.4) | 173 (87.4) | 0.843 (0.401–1.771) | 0.652 |
Antenatal corticosteroids a, No. (%) | 195 (69.6) | 56 (68.3) | 139 (70.2) | 0.951 (0.542–1.667) | 0.860 |
Intrauterine growth restriction, No (%) | 35 (12.5) | 9 (10.9) | 26 (13.1) | 0.817 (0.365–1.831) | 0.624 |
Pregnancy-induced hypertension, No. (%) | 68 (24.3) | 20 (24.4) | 48 (24.2) | 1.018 (0.558–1.856) | 0.954 |
Gestational diabetes, No. (%) | 27 (9.6) | 6 (7.3) | 21 (10.6) | 0.672 (0.261–1.732) | 0.408 |
Small for gestational age at birth, No. (%) | 59 (21.1) | 16 (19.5) | 43 (21.7) | 0.901 (0.473–1.715) | 0.751 |
Twins, No. (%) | 80 (28.6) | 28 (34.1) | 52 (26.3) | 1.456 (0.835–2.537) | 0.184 |
pH on cord blood | 7.3 (7.2 to 7.3) | 7.2 (7.2 to 7.3) | 7.3 (7.2 to 7.3) | - | 0.784 |
CRIB II score | 6 (5 to 8) | 9 (8 to 10) | 5 (4 to 6) | - | <0.001 |
Mechanical Ventilation, No. (%) | 226 (80.7) | 78 (95.1) | 148 (74.7) | 6.588 (2.295–18.914) | <0.001 |
Invasive mechanical ventilation, No. (%) | 89 (31.8) | 46 (56.1) | 43 (21.7) | 4.606 (2.653–7.997) | <0.001 |
Non-invasive mechanical ventilation, No. (%) | 220 (78.6) | 74 (90.2) | 146 (73.7) | 3.295 (1.488–7.297) | 0.002 |
Patent Ductus Arteriosus, No. (%) | 73 (26.1) | 36 (43.9) | 37 (18.7) | 3.405 (1.938–5.985) | <0.001 |
Total n = 280 | Cohort A (HG) n = 82 | Cohort B (Control) n = 198 | OR (95% CI) | p Value # | |
---|---|---|---|---|---|
Necrotizing enterocolitis | 13 (4.6) | 5 (6.1) | 8 (4.0) | 1.542 (0.489–4.862) | 0.322 |
Intraventricular hemorrhage all stage | 19 (6.8) | 12 (14.6) | 7 (3.6) | 4.653 (1.761–12.294) | 0.001 |
Intraventricular hemorrhage stage > II | 11 (3.9) | 8 (9.8) | 3 (1.5) | 7.027 (1.815–27.204) | 0.003 |
Periventricular leukomalacia | 7 (2.5) | 3 (3.7) | 4 (2.0) | 1.842 (0.403–8.418) | 0.336 |
Sepsis all diagnosis | 26 (9.3) | 14 (17.1) | 12 (6.1) | 3.191 (1.406–7.242) | 0.004 |
Sepsis proven by positive culture | 23 (8.2) | 12 (14.6) | 11 (5.6) | 2.914 (1.230–6.908) | 0.012 |
Retinopathy of prematurity all stage | 52 (18.6) | 26 (31.7) | 26 (13.1) | 3.071 (1.650–5.719) | <0.001 |
Retinopathy of prematurity stage ≥ II | 40 (14.3) | 21 (25.6) | 19 (9.6) | 3.243 (1.635–6.435) | <0.001 |
Bronchopulmonary dysplasia | 18 (6.4) | 12 (14.8) | 6 (3.0) | 5.536 (2.001–15.321) | <0.001 |
Overall morbidity | 68 (24.3) | 35 (42.7) | 33 (16.7) | 3.723 (2.094–6.620) | <0.001 |
Overall | In TPN in the First Week of Life | |||
---|---|---|---|---|
Cohort A (HG) n = 32 | Cohort B (Control) n = 76 | Cohort A (HG) n = 25 | Cohort B (Control) n = 39 | |
Cognitive scale | ||||
Scaled score | 6.8 (6.0 to 7.7) * | 7.9 (7.5 to 8.5) | 6.6 (5.6 to 7.6) | 7.8 (6.9 to 8.7) |
Composite score | 84.2 (80.1 to 88.3) * | 89.9 (87.3 to 92.5) | 83.0 (77.8 to 88.1) | 88.9 (84.5 to 93.4) |
Language scale | ||||
Receptive Language | 6.1 (5.4 to 6.8) * | 7.1 (6.7 to 7.5) | 5.9 (5.0 to 6.7) * | 7.0 (6.3 to 7.7) |
Expressive Language | 6.3 (5.6 to 6.9) | 7.0 (6.5 to 7.4) | 5.8 (5.1 to 6.6) * | 6.9 (6.2 to 7.6) |
Total Scaled score | 12.4 (11.1 to 13.7) * | 14.1 (13.3 to 14.9) | 11.7 (10.2 to 13.2) * | 13.9 (12.6 to 15.2) |
Total Composite score | 78.0 (74.2 to 81.9) * | 82.9 (80.6 to 85.3) | 76.0 (71.5 to 80.6) * | 82.5 (78.7 to 86.3) |
Motor scale | ||||
Fine Motor | 8.9 (7.9 to 9.9) | 10.2 (9.7 to 10.6) | 8.2 (7.1 to 9.4) * | 9.9 (9.2 to 10.7) |
Gross Motor | 7.0 (6.3 to 7.7) *** | 8.3 (7.9 to 8.6) | 6.6 (5.8 to 7.4) *** | 8.1 (7.7 to 8.5) |
Total Scaled score | 15.9 (14.4 to 17.5) ** | 18.4 (17.8 to 19.1) | 14.8 (13.2 to 16.5) ** | 18.1 (17.0 to 19.1) |
Total Composite score | 87.9 (83.3 to 92.6) ** | 95.4 (93.4 to 97.4) | 84.5 (79.5 to 89.5) ** | 94.3 (91.1 to 97.4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boscarino, G.; Conti, M.G.; Gasparini, C.; Onestà, E.; Faccioli, F.; Dito, L.; Regoli, D.; Spalice, A.; Parisi, P.; Terrin, G. Neonatal Hyperglycemia Related to Parenteral Nutrition Affects Long-Term Neurodevelopment in Preterm Newborn: A Prospective Cohort Study. Nutrients 2021, 13, 1930. https://doi.org/10.3390/nu13061930
Boscarino G, Conti MG, Gasparini C, Onestà E, Faccioli F, Dito L, Regoli D, Spalice A, Parisi P, Terrin G. Neonatal Hyperglycemia Related to Parenteral Nutrition Affects Long-Term Neurodevelopment in Preterm Newborn: A Prospective Cohort Study. Nutrients. 2021; 13(6):1930. https://doi.org/10.3390/nu13061930
Chicago/Turabian StyleBoscarino, Giovanni, Maria Giulia Conti, Corinna Gasparini, Elisa Onestà, Francesca Faccioli, Lucia Dito, Daniela Regoli, Alberto Spalice, Pasquale Parisi, and Gianluca Terrin. 2021. "Neonatal Hyperglycemia Related to Parenteral Nutrition Affects Long-Term Neurodevelopment in Preterm Newborn: A Prospective Cohort Study" Nutrients 13, no. 6: 1930. https://doi.org/10.3390/nu13061930