Primary Prevention of Food Allergy—Environmental Protection beyond Diet
Abstract
:1. Introduction
2. Route of Delivery
3. Animal Exposure
4. Cutaneous Exposure—Dual-Allergen Exposure Hypothesis
5. Vaccinations
6. Smoking
7. Air Pollution
8. Obesity
9. Daycare
10. Conclusions
Funding
Conflicts of Interest
References
- Calvani, M.; Anania, C.; Caffarelli, C.; Martelli, A.; Miraglia Del Giudice, M.; Cravidi, C.; Duse, M.; Manti, S.; Tosca, M.A.; Cardinale, F.; et al. Food allergy: An updated review on pathogenesis, diagnosis, prevention and management. Acta Biomed. 2020, 15, 91. [Google Scholar]
- Sicherer, S.H.; Sampson, H.A. Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J. Allergy Clin. Immunol. 2018, 141, 41–58. [Google Scholar] [CrossRef] [Green Version]
- Sampson, H.A.; Gerth van Wijk, R.; Bindslev-Jensen, C.; Sicherer, S.; Teuber, S.S.; Burks, A.W.; Dubois, A.E.; Beyer, K.; Eigenmann, P.A.; Spergel, J.M.; et al. Standardizing double-blind, placebo-controlled oral food challenges: American Academy of Allergy, Asthma & Immunology-European Academy of Allergy and Clinical Immunology PRACTALL consensus report. J. Allergy Clin. Immunol. 2012, 130, 1260–1274. [Google Scholar]
- Du Toit, G.; Roberts, G.; Sayre, P.H.; Bahnson, H.T.; Radulovic, S.; Santos, A.F.; Brough, H.A.; Phippard, D.; Basting, M.; Feeney, M.; et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N. Engl. J. Med. 2015, 372, 803–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkin, M.; Logan, K.; Tseng, A.; Raji, B.; Ayis, S.; Peacock, J.; Brough, H.; Marrs, T.; Radulovic, S.; Craven, J.; et al. Randomized trial of introduction of allergenic foods in breast-fed infants. N. Engl. J. Med. 2016, 374, 1733–1743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ierodiakonou, D.; Garcia-Larsen, V.; Logan, A.; Groome, A.; Cunha, S.; Chivinge, J.; Robinson, Z.; Geoghegan, N.; Jarrold, K.; Reeves, T.; et al. Timing of allergenic food introduction to the infant diet and risk of allergic or autoimmune disease: A systematic review and meta-analysis. JAMA 2016, 316, 1181–1892. [Google Scholar] [CrossRef] [PubMed]
- Venter, C.; Agostoni, C.; Arshad, S.H.; Ben-Abdallah, M.; Du Toit, G.; Fleischer, D.M.; Greenhawt, M.; Glueck, D.H.; Groetch, M.; Lunjani, N.; et al. Dietary factors during pregnancy and atopic outcomes in childhood: A systematic review from the European Academy of Allergy and Clinical Immunology. Pediatr. Allergy Immunol. 2020, 31, 889–912. [Google Scholar] [CrossRef]
- Lack, G. Epidemiologic risks for food allergy. J. Allergy Clin. Immunol. 2008, 121, 1331–1336. [Google Scholar] [CrossRef]
- Marrs, T.; Bruce, K.D.; Logan, K.; Rivett, D.W.; Perkin, M.R.; Lack, G.; Flohr, C. Is there an association between microbial exposure and food allergy? A systematic review. Pediatr. Allergy Immunol. 2013, 24, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Young, V.B. The role of the microbiome in human health and disease: An introduction for clinicians. BMJ 2017, 356, j831. [Google Scholar] [CrossRef]
- Shu, S.A.; Yuen, A.W.T.; Woo, E.; Chu, K.H.; Kwan, H.S.; Yang, G.X.; Yang, Y.; Leung, P.S.C. Microbiota and Food Allergy. Clin. Rev. Allergy Immunol. 2019, 57, 83–97. [Google Scholar] [CrossRef] [PubMed]
- Chinthrajah, R.S.; Hernandez, J.D.; Boyd, S.D.; Galli, S.J.; Nadeau, K.C. Molecular and cellular mechanisms of food allergy and food tolerance. J. Allergy Clin. Immunol. 2016, 137, 984–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.H.; Song, Y.; Wu, W.; Yu, K.; Zhang, G. The gut microbiota, environmental factors, and links to the development of food allergy. Clin. Mol. Allergy. 2020, 18, 5. [Google Scholar] [CrossRef] [PubMed]
- Molloy, J.; Allen, K.; Collier, F.; Tang, M.L.K.; Ward, A.C.; Vuillermin, P. The potential link between gut microbiota and IgE-mediated food allergy in early life. Int J. Environ. Res. Public Health 2013, 10, 7235–7256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azad, M.B.; Konya, T.; Maughan, H.; Guttman, D.S.; Field, C.J.; Chari, R.S.; Sears, M.R.; Becker, A.B.; Scott, J.A.; Kozyrskyj, A.L.; et al. Gut microbiota of healthy canadian infants: Profiles by mode of delivery and infant diet at 4 months. CMAJ 2013, 185, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Adlerberth, I.; Wold, A.E. Establishment of the gut microbiota in western infants. Acta Paediat. 2009, 98, 229–238. [Google Scholar] [CrossRef]
- Dominguez-Bello, M.G.; De Jesus-Laboy, K.M.; Shen, N.; Cox, L.M.; Amir, A.; Gonzalez, A.; Bokulich, N.A.; Song, S.J.; Hoashi, M.; Rivera-Vinas, J.I.; et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. 2016, 22, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Haahtela, T. A biodiversity hypothesis. Allergy 2019, 74, 1445–1456. [Google Scholar] [CrossRef] [Green Version]
- Mitselou, N.; Hallberg, J.; Stephansson, O.; Almqvist, C.; Melén, E.; Ludvigsson, J.F. Cesarean delivery, preterm birth, and risk of food allergy: Nationwide Swedish cohort study of more than 1 million children. J. Allergy Clin. Immunol. 2018, 142, 1510–1514.e2. [Google Scholar] [CrossRef] [Green Version]
- Metsala, J.; Lundqvist, A.; Kaila, M.; Gissler, M.; Klaukka, T.; Virtanen, S.M. Maternal and Perinatal Characteristics and the Risk of Cow’s Milk Allergy in Infants up to 2 Years of Age: A Case-Control Study Nested in the Finnish Population. Am. J. Epidemiol. 2010, 171, 1310–1316. [Google Scholar] [CrossRef] [Green Version]
- Gabet, S.; Just, J.; Couderc, R.; Seta, N.; Momas, I. Allergic sensitisation in early childhood: Patterns and related factors in PARIS birth cohort. Int. J. Hyg. Environ. Health 2016, 219, 792–800. [Google Scholar] [CrossRef]
- Eggesbø, M.; Botten, G.; Stigum, H.; Nafstad, P.; Magnus, P. Is delivery by cesarean section a risk factor for food allergy? J. Allergy Clin. Immunol. 2003, 112, 420–426. [Google Scholar] [CrossRef]
- Papathoma, E.; Triga, M.; Fouzas, S.; Dimitriou, G. Cesarean section delivery and development of food allergy and atopic dermatitis in early childhood. Pediatr. Allergy Immunol. 2016, 27, 419–424. [Google Scholar] [CrossRef]
- Kvenshagen, B.; Halvorsen, R.; Jacobsen, M. Is there an increased frequency of food allergy in children delivered by caesarean section compared to those delivered vaginally? Acta Paediatr. 2009, 98, 324–327. [Google Scholar] [CrossRef] [PubMed]
- McGowan, E.C.; Bloomberg, G.R.; Gergen, P.J.; Visness, C.M.; Jaffee, K.F.; Sandel, M.; O’Connor, G.; Kattan, M.; Gern, J.; Wood, R.A. Influence of early-life exposures on food sensitization and food allergy in an inner-city birth cohort. J. Allergy Clin. Immunol. 2015, 135, 171–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyrhönen, K.; Näyhä, S.; Hiltunen, L.; Läärä, E. Caesarean section and allergic manifestations: Insufficient evidence of association found in population-based study of children aged 1 to 4 years. Acta Paediatr. 2013, 102, 982–989. [Google Scholar] [CrossRef] [PubMed]
- Marrs, T.; Jo, J.H.; Perkin, M.R.; Rivett, D.W.; Witney, A.A.; Bruce, K.D.; Logan, K.; Craven, J.; Radulovic, S.; Versteeg, S.A.; et al. Gut microbiota development during infancy: Impact of introducing allergenic foods. J. Allergy Clin. Immunol. 2021, 147, 613–621. [Google Scholar] [CrossRef]
- Heinrich, J.; Gehring, U.; Douwes, J.; Koch, A.; Fahlbusch, B.; Bischof, W.; Wichmann, H.E.; INGA-Study Group. Pets and vermin are associated with high endotoxin levels in house dust. Clin. Exp. Allergy 2001, 31, 1839–1845. [Google Scholar] [CrossRef]
- Brunekreef, B.; von Mutius, E.; Wong, G.K.; Odhiambo, J.A.; Clayton, T.O.; ISAAC Phase Three Study Group. Early life exposure to farm animals and symptoms of asthma, rhinoconjunctivitis and eczema: An ISAAC Phase Three Study. Int. J. Epidemiol. 2012, 41, 753–761. [Google Scholar] [CrossRef]
- Portengen, L.; Sigsgaard, T.; Omland, Ø.; Hjort, C.; Heederik, D.; Doekes, G. Low prevalence of atopy in young Danish farmers and farming students born and raised on a farm. Clin. Exp. Allergy 2002, 32, 247–253. [Google Scholar] [CrossRef]
- von Mutius, E. Asthma and allergies in rural areas of Europe. Proc. Am. Thorac. Soc. 2007, 4, 212–216. [Google Scholar] [CrossRef]
- Sozańska, B.; Pearce, N.; Dudek, K.; Cullinan, P. Consumption of unpasteurized milk and its effects on atopy and asthma in children and adult inhabitants in rural Poland. Allergy 2013, 68, 644–650. [Google Scholar] [CrossRef]
- Chen, C.M.; Rzehak, P.; Zutavern, A.; Fahlbusch, B.; Bischof, W.; Herbarth, O.; Borte, M.; Lehmann, I.; Behrendt, H.; Krämer, U.; et al. Longitudinal study on cat allergen exposure and the development of allergy in young children. J. Allergy Clin. Immunol. 2007, 119, 1148–1155. [Google Scholar] [CrossRef]
- Mandhane, P.J.; Sears, M.R.; Poulton, R.; Greene, J.M.; Lou, W.Y.; Taylor, D.R.; Hancox, R.J. Cats and dogs and the risk of atopy in childhood and adulthood. J. Allergy Clin. Immunol. 2009, 124, 745–750. [Google Scholar] [CrossRef]
- Marrs, T.; Logan, K.; Craven, J.; Radulovic, S.; McLean, W.H.A.I.; Lack, G.; Flohr, C.; Perkin, M.R.; EAT Study Team. Dog ownership at three months of age is associated with protection against food allergy. Allergy 2019, 74, 2212–2219. [Google Scholar] [CrossRef]
- Koplin, J.J.; Dharmage, S.C.; Ponsonby, A.L.; Tang, M.L.; Lowe, A.J.; Gurrin, L.C.; Osborne, N.J.; Martin, P.E.; Robinson, M.N.; Wake, M.; et al. Environmental and demographic risk factors for egg allergy in a population-based study of infants. Allergy 2012, 67, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Grimshaw, K.E.; Maskell, J.; Oliver, E.M.; Morris, R.C.; Foote, K.D.; Mills, E.N.; Margetts, B.M.; Roberts, G. Diet and food allergy development during infancy: Birth cohort study findings using prospective food diary data. J. Allergy Clin. Immunol. 2014, 133, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.E.; Botha, M.; Basera, W.; Facey-Thomas, H.E.; Gaunt, B.; Gray, C.L.; Kiragu, W.; Ramjith, J.; Watkins, A.; Genuneit, J. Environmental factors associated with allergy in urban and rural children from the South African Food Allergy (SAFFA) cohort. J. Allergy Clin. Immunol. 2020, 145, 415–426. [Google Scholar] [CrossRef] [Green Version]
- Du Toit, G.; Sampson, H.A.; Plaut, M.; Burks, A.W.; Akdis, C.A.; Lack, G. Food allergy: Update on prevention and tolerance. J. Allergy Clin. Immunol. 2018, 141, 30–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsakok, T.; Marrs, T.; Mohsin, M.; Baron, S.; du Toit, G.; Till, S.; Flohr, C. Does atopic dermatitis cause food allergy? A systematic review. J. Allergy Clin. Immunol. 2016, 137, 1071–1078. [Google Scholar] [CrossRef] [Green Version]
- Martin, P.E.; Eckert, J.K.; Koplin, J.J.; Lowe, A.J.; Gurrin, L.C.; Dharmage, S.C.; Vuillermin, P.; Tang, M.L.; Ponsonby, A.L.; Matheson, M.; et al. Which infants with eczema are at risk of food allergy? Results from a population-based cohort. Clin. Exp. Allergy 2015, 45, 255–264. [Google Scholar] [CrossRef]
- Flohr, C.; Perkin, M.; Logan, K.; Marrs, T.; Radulovic, S.; Campbell, L.E.; MacCallum, S.F.; McLean, W.H.I.; Lack, G. Atopic dermatitis and disease severity are the main risk factors for food sensitization in exclusively breastfed infants. J. Investig. Dermatol. 2014, 134, 345–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brough, H.A.; Santos, A.F.; Makinson, K.; Penagos, M.; Stephens, A.C.; Douiri, A.; Fox, A.T.; Du Toit, G.; Turcanu, V.; Lack, G. Peanut protein in household dust is related to household peanut consumption and is biologically active. J. Allergy Clin. Immunol. 2013, 132, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Fox, A.T.; Sasieni, P.; du Toit, G.; Syed, H.; Lack, G. Household peanut consumption as a risk factor for the development of peanut allergy. J. Allergy Clin. Immunol. 2009, 123, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Shroba, J.; Barnes, C.; Nanda, M.; Dinakar, C.; Ciaccio, C. Ara h2 levels in dust from homes of individuals with peanut allergy and individuals with peanut tolerance. Allergy Asthma Proc. 2017, 38, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Trendelenburg, V.; Tschirner, S.; Niggemann, B.; Beyer, K. Hen’s egg allergen in house and bed dust is significantly increased after hen’s egg consumption-A pilot study. Allergy 2018, 73, 261–264. [Google Scholar] [CrossRef]
- Kelleher, M.M.; Tran, L.; Boyle, R.J. Prevention of food allergy–skin barrier interventions. Allergol. Int. 2020, 69, 3–10. [Google Scholar] [CrossRef]
- Brown, S.; Asai, Y.; Cordell, H.; Campbell, L.; Zhao, Y.; Liao, H.; Northstone, K.; Henderson, J.; Alizadehfar, R.; Ben-Shoshan, M. Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. J. Allergy Clin. Immunol. 2011, 127, 661–667. [Google Scholar] [CrossRef] [Green Version]
- Marrs, T.; Perkin, M.R.; Logan, K.; Craven, J.; Radulovic, S.; McLean, W.H.I.; Versteeg, S.A.; van Ree, R.; Lack, G.; Flohr, C.; et al. Bathing frequency is associated with skin barrier dysfunction and atopic dermatitis at three months of age. J. Allergy Clin. Immunol Pract. 2020, 8, 2820–2822. [Google Scholar] [CrossRef]
- Perkin, M.R.; Logan, K.; Marrs, T.; Radulovic, S.; Craven, J.; Boyle, R.J.; Chalmers, J.R.; Williams, H.C.; Versteeg, S.A.; van Ree, R.; et al. EAT Study Team. Association of frequent moisturizer use in early infancy with the development of food allergy. J. Allergy Clin. Immunol. 2021, 147, 967–976.e1. [Google Scholar] [CrossRef]
- Rousseau, M.C.; Parent, M.E.; St-Pierre, Y. Potential health effects from non-specific stimulation of the immune function in early age: The example of BCG vaccination. Pediatr. Allergy Immunol. 2008, 19, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Arnoldussen, D.L.; Linehan, M.; Sheikh, A. BCG vaccination and allergy: A systematic review and meta-analysis. J. Allergy Clin. Immunol. 2011, 127, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Alm, J.S.; Lilja, G.; Pershagen, G.; Scheynius, A. Early BCG vaccination and development of atopy. Lancet 1997, 350, 400–403. [Google Scholar] [CrossRef]
- Steenhuis, T.J.; van Aalderen, W.M.; Bloksma, N.; Nijkamp, F.P.; van der Laag, J.; van Loveren, H.; Rijkers, G.T.; Kuis, W.; Hoekstra, M.O. Bacille-Calmette-Guerin vaccination and the development of allergic disease in children: A randomized, prospective, single-blind study. Clin. Exp. Allergy 2008, 38, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Kiraly, N.; Benn, C.S.; Biering-Sřrensen, S.; Rodrigues, A.; Jensen, K.J.; Ravn, H.; Allen, K.J.; Aaby, P. Vitamin A supplementation and BCG vaccination at birth may affect atopy in childhood: Long-term follow-up of a randomized controlled trial. Allergy 2013, 68, 1168–1176. [Google Scholar] [CrossRef]
- Halken, S.; Muraro, A.; de Silva, D.; Khaleva, E.; Angier, E.; Arasi, S.; Arshad, H.; Bahnson, H.T.; Beyer, K.; Boyle, R.; et al. EAACI guideline: Preventing the development of food allergy in infants and young children (2020 update). Pediatr. Allergy Immunol. 2021. Online ahead of print. [Google Scholar] [CrossRef]
- Venter, C.; Stowe, J.; Andrews, N.J.; Miller, E.; Turner, P.J. No association between atopic outcomes and type of pertussis vaccine given in children born on the Isle of Wight 2001–2002. J. Allergy Clin. Immunol. Pract. 2016, 4, 1248–1250. [Google Scholar] [CrossRef] [Green Version]
- Grüber, C.; Warner, J.; Hill, D.; Bauchau, V.; EPAAC Study Group. Early atopic disease and early childhood immunization—Is there a link? Allergy 2008, 63, 1464–1472. [Google Scholar] [CrossRef]
- Matheson, M.C.; Haydn Walters, E.; Burgess, J.A.; Jenkins, M.A.; Giles, G.G.; Hopper, J.L.; Abramson, M.J.; Dharmage, S.C. Childhood immunization and atopic disease into middle-age—A prospective cohort study. Pediatr. Allergy Immunol. 2010, 21, 301–306. [Google Scholar] [CrossRef]
- di Mauro, G.; Bernardini, R.; Barberi, S.; Capuano, A.; Correra, A.; De’ Angelis, G.L.; Iacono, I.D.; de Martino, M.; Ghiglioni, D.; Di Mauro, D.; et al. Prevention of food and airway allergy: Consensus of the Italian Society of Preventive and Social Paediatrics, the Italian Society of Paediatric Allergy and Immunology, and Italian Society of Pediatrics. World Allergy Organ. J. 2016, 18, 9–28. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Zheng, X.; Peake, J.; Joad, J.P.; Pinkerton, K.E. Perinatal environmental tobacco smoke exposure alters the immune response and airway innervation in infant primates. J. Allergy Clin. Immunol. 2008, 122, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Lannero, E.; Wickman, M.; van Hage, M.; Bergstrom, A.; Pershagen, G.; Nordvall, L. Exposure to environmental tobacco smoke and sensitisation in children. Thorax 2008, 63, 172–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feldman, L.Y.; Thacher, J.D.; van Hage, M.; Kull, I.; Melén, E.; Pershagen, G.; Wickman, M.; To, T.; Protudjer, J.L.; Bergström, A. Early-life secondhand smoke exposure and food hypersensitivity through adolescence. Allergy 2018, 73, 1558–1561. [Google Scholar] [CrossRef]
- Saulyte, J.; Regueira, C.; Montes-Martínez, A.; Khudyakov, P.; Takkouche, B. Active or passive exposure to tobacco smoking and allergic rhinitis, allergic dermatitis, and food allergy in adults and children: A systematic review and meta-analysis [published correction appears in PLoS Med. 2016 Feb;13:e1001939]. PLoS Med 2014, 11, 1001611. [Google Scholar]
- Hansen, K.; Mangrio, E.; Lindström, M.; Rosvall, M. Early exposure to secondhand tobacco smoke and the development of allergic diseases in 4 year old children in Malmö, Sweden. BMC Pediatr. 2010, 10, 61. [Google Scholar] [CrossRef] [Green Version]
- WHO Website. Available online: https://www.who.int/health-topics/tobacco#tab=tab_1 (accessed on 21 April 2021).
- Murin, S.; Rafii, R.; Bilello, K. Smoking and smoking cessation in pregnancy. Clin. Chest. Med. 2011, 32, 75–91. [Google Scholar] [CrossRef]
- Gilmour, M.I.; Jaakkola, M.S.; London, S.J.; Nel, A.E.; Rogers, C.A. How exposure to environmental tobacco smoke, outdoor air pollutants, and increased pollen burdens influences the incidence of asthma. Environ. Health Perspect. 2006, 114, 627–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sydbom, A.; Blomberg, A.; Parnia, S.; Stenfors, N.; Sandström, T.; Dahlén, S.E. Health effects of diesel exhaust emissions. Eur. Respir. J. 2001, 17, 733–746. [Google Scholar] [CrossRef]
- Melén, E.; Nyberg, F.; Lindgren, C.M.; Berglind, N.; Zucchelli, M.; Nordling, E.; Hallberg, J.; Svartengren, M.; Morgenstern, R.; Kere, J. Interactions between glutathione S-transferase P1, tumor necrosis factor, and traffic-related air pollution for development of childhood allergic disease. Environ. Health Perspect. 2008, 116, 1077–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sbihi, H.; Allen, R.W.; Becker, A.; Brook, J.R.; Mandhane, P.; Scott, J.A.; Sears, M.R.; Subbarao, P.; Takaro, T.K.; Turvey, S.E. Perinatal Exposure to Traffic-Related Air Pollution and Atopy at 1 Year of Age in a Multi-Center Canadian Birth Cohort Study. Environ. Health Perspect. 2015, 123, 902–908. [Google Scholar] [CrossRef] [Green Version]
- Brauer, M.; Hoek, G.; Smit, H.A.; de Jongste, J.C.; Gerritsen, J.; Postma, D.S.; Kerkhof, M.; Brunekreef, B. Air pollution and development of asthma, allergy and infections in a birth cohort. Eur. Respir. J. 2007, 29, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Shore, S. Obesity, airway hyperresponsiveness, and inflammation. J. Appl. Physiol. 2010, 108, 735–743. [Google Scholar] [CrossRef]
- Guo, X.; Cheng, L.; Yang, S.; Che, H. Pro-inflammatory immunological effects of adipose tissue and risk of food allergy in obesity: Focus on immunological mechanisms. Allergol. Immunopathol. (Madr.) 2020, 48, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Johnston, R.A.; Theman, T.A.; Lu, F.L.; Terry, R.D.; Williams, E.S.; Shore, S.A. Diet-induced obesity causes innate airway hyperresponsiveness to methacholine and enhances ozone- induced pulmonary inflammation. J. Appl. Physiol. 2008, 104, 1727–1735. [Google Scholar] [CrossRef] [PubMed]
- Fantuzzi, G. Adipose tissue, adipokines, inflammation. J. Allergy Clin. Immunol. 2005, 115, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Visness, C.M.; London, S.J.; Daniels, J.L.; Kaufman, J.S.; Yeatts, K.B.; Siega-Riz, A.M.; Liu, A.H.; Calatroni, A.; Zeldin, D.C. Association of obesity with IgE levels and allergy symptoms in children and adolescents: Results from the National Health and Nutrition Examination Survey 2005–2006. J. Allergy Clin. Immunol. 2009, 123, 1163–1169. [Google Scholar] [CrossRef] [Green Version]
- Irei, A.V.; Sato, Y.; Lin, T.L.; Wang, M.F.; Chan, Y.C.; Hung, N.T.; Kunii, D.; Sakai, T.; Kaneda, M.; Yamamoto, S. Overweight is associated with allergy in school children of Taiwan and Vietnam but not Japan. J. Med. Investig. 2005, 52, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Hagerhed-Engman, L.; Bornehag, C.G.; Sundell, J.; Aberg, N. Day-care attendance and increased risk for respiratory and allergic symptoms in preschool age. Allergy 2006, 61, 447–453. [Google Scholar] [CrossRef]
- Kansen, H.M.; Lebbink, M.A.; Mul, J.; van Erp, F.C.; van Engelen, M.; de Vries, E.; Prevaes, S.M.P.J.; Le, T.M.; van der Ent, C.K.; Verhagen, L.M. Risk factors for atopic diseases and recurrent respiratory tract infections in children. Pediatr. Pulmonol. 2020, 55, 3168–3179. [Google Scholar] [CrossRef] [PubMed]
- Koplin, J.J.; Martin, P.E.; Tang, M.L.K.; Gurrin, L.C.; Lowe, A.J.; Osborne, N.J.; Robinson, M.N.; Ponsonby, A.; Dharmage, S.C.; Allen, K.J.; et al. Do factors known to alter infant microbial exposures alter the risk of food allergy and eczema in a population-based infant study? J. Allergy Clin. Immunol. 2012, 129, AB231. [Google Scholar] [CrossRef]
- Custovic, A.; Rothers, J.; Stern, D.; Simpson, A.; Woodcock, A.; Wright, A.L.; Nicolaou, N.C.; Hankinson, J.; Halonen, M.; Martinez, F.D. Effect of day care attendance on sensitization and atopic wheezing differs by Toll-like receptor 2 genotype in 2 population-based birth cohort studies. J. Allergy Clin. Immunol. 2011, 127, 390–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikorska-Szaflik, H.; Sozańska, B. Primary Prevention of Food Allergy—Environmental Protection beyond Diet. Nutrients 2021, 13, 2025. https://doi.org/10.3390/nu13062025
Sikorska-Szaflik H, Sozańska B. Primary Prevention of Food Allergy—Environmental Protection beyond Diet. Nutrients. 2021; 13(6):2025. https://doi.org/10.3390/nu13062025
Chicago/Turabian StyleSikorska-Szaflik, Hanna, and Barbara Sozańska. 2021. "Primary Prevention of Food Allergy—Environmental Protection beyond Diet" Nutrients 13, no. 6: 2025. https://doi.org/10.3390/nu13062025
APA StyleSikorska-Szaflik, H., & Sozańska, B. (2021). Primary Prevention of Food Allergy—Environmental Protection beyond Diet. Nutrients, 13(6), 2025. https://doi.org/10.3390/nu13062025