Effects of Energy Drink Consumption on Physical Performance and Potential Danger of Inordinate Usage
Abstract
:1. Introduction
2. ED Ingredients—Caffeine and Taurine Contribution
3. Energy Drinks in Sport Performance
4. Alarming Effects Associated with Energy Drink Consumption
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Higgins, J.P.; Liras, G.N.; Liras, I.N. Some Popular Energy Shots and Their Ingredients: Are They Safe and Should They Be Used? A Literature Review. Beverages 2018, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Heckman, M.A.; Sherry, K.; De Mejia, E.G. Energy Drinks: An Assessment of Their Market Size, Consumer Demographics, Ingredient Profile, Functionality, and Regulations in the United States. Compr. Rev. Food Sci. Food Saf. 2010, 9, 303–317. [Google Scholar] [CrossRef]
- Zucconi, S.; Volpato, C.; Adinolfi, F.; Gandini, E.; Gentile, E.; Loi, A.; Fioriti, L. Gathering Consumption Data on Specific Consumer Groups of Energy Drinks. EFSA Support. Publ. 2013, 10, 394E. [Google Scholar] [CrossRef] [Green Version]
- Azagba, S.; Langille, D.; Asbridge, M. An Emerging Adolescent Health Risk: Caffeinated Energy Drink Consumption Patterns among High School Students. Prev. Med. 2014, 62, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Galimov, A.; Hanewinkel, R.; Hansen, J.; Unger, J.B.; Sussman, S.; Morgenstern, M. Energy Drink Consumption among German Adolescents: Prevalence, Correlates, and Predictors of Initiation. Appetite 2019, 139, 172–179. [Google Scholar] [CrossRef]
- Degirmenci, N.; Fossum, I.N.; Strand, T.A.; Vaktskjold, A.; Holten-Andersen, M.N. Consumption of Energy Drinks among Adolescents in Norway: A Cross-Sectional Study. BMC Public Health 2018, 18, 1391. [Google Scholar] [CrossRef] [PubMed]
- Larson, N.; Laska, M.N.; Story, M.; Neumark-Sztainer, D. Sports and Energy Drink Consumption Are Linked to Health-Risk Behaviours among Young Adults. Public Health Nutr. 2015, 18, 2794–2803. [Google Scholar] [CrossRef] [Green Version]
- Petróczi, A.; Naughton, D.P.; Pearce, G.; Bailey, R.; Bloodworth, A.; McNamee, M. Nutritional Supplement Use by Elite Young UK Athletes: Fallacies of Advice Regarding Efficacy. J. Int. Soc. Sports Nutr. 2008, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.; Jasionowski, A. Analysis of Consumption of Energy Drinks by a Group of Adolescent Athletes. Int. J. Environ. Res. Public Health 2016, 13, 768. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.; Jasionowski, A. Analysis of the Consumption of Caffeinated Energy Drinks among Polish Adolescents. Int. J. Environ. Res. Public Health 2015, 12, 7910–7921. [Google Scholar] [CrossRef] [Green Version]
- Gallucci, A.R.; Martin, R.J.; Morgan, G.B. The Consumption of Energy Drinks Among a Sample of College Students and College Student Athletes. J. Community Health 2016, 41, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Martens, M.P.; Dams-O’Connor, K.; Beck, N.C. A Systematic Review of College Student-Athlete Drinking: Prevalence Rates, Sport-Related Factors, and Interventions. J. Subst. Abuse Treat. 2006, 31, 305–316. [Google Scholar] [CrossRef]
- Woolsey, C.; Waigandt, A.; Beck, N.C. Athletes and Energy Drinks: Reported Risk-Taking and Consequences from the Combined Use of Alcohol and Energy Drinks. J. Appl. Sport Psychol. 2010, 22, 65–71. [Google Scholar] [CrossRef]
- Buchanan, L.; Yeatman, H.; Kelly, B.; Kariippanon, K. Digital Promotion of Energy Drinks to Young Adults Is More Strongly Linked to Consumption Than Other Media. J. Nutr. Educ. Behav. 2018, 50, 888–895. [Google Scholar] [CrossRef]
- Demirhan, G.; Aşçi, F.H.; Kangalgil, M.; Saraçbaşi, O. Perception of Risk and Attractiveness of Extreme Sports among Turkish University Students. Spor Bilim. Derg. 2014, 25, 11–22. [Google Scholar]
- Keiper, M.C.; Manning, R.D.; Jenny, S.; Olrich, T.; Croft, C. No Reason to LoL at LoL: The Addition of Esports to Intercollegiate Athletic Departments. J. Study Sports Athletes Educ. 2017, 11, 143–160. [Google Scholar] [CrossRef]
- Larson, N.; DeWolfe, J.; Story, M.; Neumark-Sztainer, D. Adolescent Consumption of Sports and Energy Drinks: Linkages to Higher Physical Activity, Unhealthy Beverage Patterns, Cigarette Smoking, and Screen Media Use. J. Nutr. Educ. Behav. 2014, 46, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Rothwell, G.; Shaffer, M. ESports in K-12 and Post-Secondary Schools. Educ. Sci. 2019, 9, 105. [Google Scholar] [CrossRef] [Green Version]
- Pollack, C.C.; Kim, J.; Emond, J.A.; Brand, J.; Gilbert-Diamond, D.; Masterson, T.D. Prevalence and Strategies of Energy Drink, Soda, Processed Snack, Candy and Restaurant Product Marketing on the Online Streaming Platform Twitch. Public Health Nutr. 2020, 23, 2793–2803. [Google Scholar] [CrossRef]
- Thomas, C.J.; Rothschild, J.; Earnest, C.P.; Blaisdell, A. The Effects of Energy Drink Consumption on Cognitive and Physical Performance in Elite League of Legends Players. Sports 2019, 7, 196. [Google Scholar] [CrossRef] [Green Version]
- Attipoe, S.; Leggit, J.; Deuster, P.A. Caffeine Content in Popular Energy Drinks and Energy Shots. Mil. Med. 2016, 181, 1016–1020. [Google Scholar] [CrossRef] [Green Version]
- Ferré, S. An Update on the Mechanisms of the Psychostimulant Effects of Caffeine. J. Neurochem. 2008, 105, 1067–1079. [Google Scholar] [CrossRef]
- Barcelos, R.P.; Lima, F.D.; Carvalho, N.R.; Bresciani, G.; Royes, L.F. Caffeine Effects on Systemic Metabolism, Oxidative-Inflammatory Pathways, and Exercise Performance. Nutr. Res. 2020, 80, 1–17. [Google Scholar] [CrossRef]
- Tallis, J.; Duncan, M.J.; James, R.S. What Can Isolated Skeletal Muscle Experiments Tell Us about the Effects of Caffeine on Exercise Performance? Br. J. Pharmacol. 2015, 172, 3703–3713. [Google Scholar] [CrossRef] [Green Version]
- Domaszewski, P.; Pakosz, P.; Konieczny, M.; Bączkowicz, D.; Sadowska-Krępa, E. Caffeine-Induced Effects on Human Skeletal Muscle Contraction Time and Maximal Displacement Measured by Tensiomyography. Nutrients 2021, 13, 815. [Google Scholar] [CrossRef]
- Laurent, D.; Schneider, K.E.; Prusaczyk, W.K.; Franklin, C.; Vogel, S.M.; Krssak, M.; Petersen, K.F.; Goforth, H.W.; Shulman, G.I. Effects of Caffeine on Muscle Glycogen Utilization and the Neuroendocrine Axis during Exercise. J. Clin. Endocrinol. Metab. 2000, 85, 2170–2175. [Google Scholar] [CrossRef]
- Beaudoin, M.-S.; Graham, T.E. Methylxanthines and Human Health: Epidemiological and Experimental Evidence. Handb. Exp. Pharmacol. 2011, 509–548. [Google Scholar] [CrossRef]
- McLellan, T.M.; Lieberman, H.R. Do Energy Drinks Contain Active Components Other than Caffeine? Nutr. Rev. 2012, 70, 730–744. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C.; Grgic, J. Caffeine and Exercise: What Next? Sports Med. 2019, 49, 1007–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salinero, J.J.; Lara, B.; Del Coso, J. Effects of Acute Ingestion of Caffeine on Team Sports Performance: A Systematic Review and Meta-Analysis. Res. Sports Med. Print 2019, 27, 238–256. [Google Scholar] [CrossRef]
- Mielgo-Ayuso, J.; Marques-Jiménez, D.; Refoyo, I.; Del Coso, J.; León-Guereño, P.; Calleja-González, J. Effect of Caffeine Supplementation on Sports Performance Based on Differences Between Sexes: A Systematic Review. Nutrients 2019, 11, 2313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenzo Calvo, J.; Fei, X.; Domínguez, R.; Pareja-Galeano, H. Caffeine and Cognitive Functions in Sports: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 868. [Google Scholar] [CrossRef]
- Chepkova, A.N.; Doreulee, N.; Yanovsky, Y.; Mukhopadhyay, D.; Haas, H.L.; Sergeeva, O.A. Long-Lasting Enhancement of Corticostriatal Neurotransmission by Taurine. Eur. J. Neurosci. 2002, 16, 1523–1530. [Google Scholar] [CrossRef] [PubMed]
- McCarty, M.F. A Taurine-Supplemented Vegan Diet May Blunt the Contribution of Neutrophil Activation to Acute Coronary Events. Med. Hypotheses 2004, 63, 419–425. [Google Scholar] [CrossRef]
- Finnegan, D. The Health Effects of Stimulant Drinks. Nutr. Bull. 2003, 28, 147–155. [Google Scholar] [CrossRef]
- Rai, K.P.; Rai, H.B.; Dahal, S.; Chaudhary, S.; Shrestha, S. Determination of Caffeine and Taurine Contents in Energy Drinks by HPLC-UV. J. Food Sci. Technol. 2016, 9, 66–73. [Google Scholar] [CrossRef]
- Ripps, H.; Shen, W. Review: Taurine: A “Very Essential” Amino Acid. Mol. Vis. 2012, 18, 2673–2686. [Google Scholar]
- Dutka, T.L.; Lamboley, C.R.; Murphy, R.M.; Lamb, G.D. Acute Effects of Taurine on Sarcoplasmic Reticulum Ca2+ Accumulation and Contractility in Human Type I and Type II Skeletal Muscle Fibers. J. Appl. Physiol. 1985 2014, 117, 797–805. [Google Scholar] [CrossRef] [Green Version]
- Caine, J.J.; Geracioti, T.D. Taurine, Energy Drinks, and Neuroendocrine Effects. Clevel. Clin. J. Med. 2016, 83, 895–904. [Google Scholar] [CrossRef] [Green Version]
- Allen, D.G.; Lamb, G.D.; Westerblad, H. Skeletal Muscle Fatigue: Cellular Mechanisms. Physiol. Rev. 2008, 88, 287–332. [Google Scholar] [CrossRef] [Green Version]
- Thirupathi, A.; Pinho, R.A.; Baker, J.S.; István, B.; Gu, Y. Taurine Reverses Oxidative Damages and Restores the Muscle Function in Overuse of Exercised Muscle. Front. Physiol. 2020, 11, 582449. [Google Scholar] [CrossRef] [PubMed]
- Seidel, U.; Huebbe, P.; Rimbach, G. Taurine: A Regulator of Cellular Redox Homeostasis and Skeletal Muscle Function. Mol. Nutr. Food Res. 2019, 63, e1800569. [Google Scholar] [CrossRef] [PubMed]
- Jong, C.J.; Azuma, J.; Schaffer, S. Mechanism Underlying the Antioxidant Activity of Taurine: Prevention of Mitochondrial Oxidant Production. Amino Acids 2012, 42, 2223–2232. [Google Scholar] [CrossRef] [PubMed]
- Waldron, M.; Patterson, S.D.; Tallent, J.; Jeffries, O. The Effects of an Oral Taurine Dose and Supplementation Period on Endurance Exercise Performance in Humans: A Meta-Analysis. Sports Med. 2018, 48, 1247–1253. [Google Scholar] [CrossRef] [Green Version]
- Tallis, J.; Higgins, M.F.; Cox, V.M.; Duncan, M.J.; James, R.S. Does a Physiological Concentration of Taurine Increase Acute Muscle Power Output, Time to Fatigue, and Recovery in Isolated Mouse Soleus (Slow) Muscle with or without the Presence of Caffeine? Can. J. Physiol. Pharmacol. 2014, 92, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Chaban, R.; Kornberger, A.; Branski, N.; Buschmann, K.; Stumpf, N.; Beiras-Fernandez, A.; Vahl, C.F. In-Vitro Examination of the Positive Inotropic Effect of Caffeine and Taurine, the Two Most Frequent Active Ingredients of Energy Drinks. BMC Cardiovasc. Disord. 2017, 17, 220. [Google Scholar] [CrossRef]
- Warnock, R.; Jeffries, O.; Patterson, S.; Waldron, M. The Effects of Caffeine, Taurine, or Caffeine-Taurine Coingestion on Repeat-Sprint Cycling Performance and Physiological Responses. Int. J. Sports Physiol. Perform. 2017, 12, 1341–1347. [Google Scholar] [CrossRef] [PubMed]
- Jeffries, O.; Hill, J.; Patterson, S.D.; Waldron, M. Energy Drink Doses of Caffeine and Taurine Have a Null or Negative Effect on Sprint Performance. J. Strength Cond. Res. 2020, 34, 3475–3481. [Google Scholar] [CrossRef]
- Kammerer, M.; Jaramillo, J.A.; García, A.; Calderón, J.C.; Valbuena, L.H. Effects of Energy Drink Major Bioactive Compounds on the Performance of Young Adults in Fitness and Cognitive Tests: A Randomized Controlled Trial. J. Int. Soc. Sports Nutr. 2014, 11, 44. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, R.; Mishra, A.; Crochet, P.; Sirimanna, P.; Darzi, A. Effect of Caffeine and Taurine on Simulated Laparoscopy Performed Following Sleep Deprivation. Br. J. Surg. 2011, 98, 1666–1672. [Google Scholar] [CrossRef] [PubMed]
- Simulescu, V.; Ilia, G.; Macarie, L.; Merghes, P. Sport and Energy Drinks Consumption before, during and after Training. Sci. Sports 2019, 34, 3–9. [Google Scholar] [CrossRef]
- Souza, D.B.; Del Coso, J.; Casonatto, J.; Polito, M.D. Acute Effects of Caffeine-Containing Energy Drinks on Physical Performance: A Systematic Review and Meta-Analysis. Eur. J. Nutr. 2017, 56, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Prins, P.J.; Goss, F.L.; Nagle, E.F.; Beals, K.; Robertson, R.J.; Lovalekar, M.T.; Welton, G.L. Energy Drinks Improve Five-Kilometer Running Performance in Recreational Endurance Runners. J. Strength Cond. Res. 2016, 30, 2979–2990. [Google Scholar] [CrossRef] [PubMed]
- Collier, N.B.; Hardy, M.A.; Millard-Stafford, M.L.; Warren, G.L. Small Beneficial Effect of Caffeinated Energy Drink Ingestion on Strength. J. Strength Cond. Res. 2016, 30, 1862–1870. [Google Scholar] [CrossRef]
- Jacobson, B.H.; Hester, G.M.; Palmer, T.B.; Williams, K.; Pope, Z.K.; Sellers, J.H.; Conchola, E.C.; Woolsey, C.; Estrada, C. Effect of Energy Drink Consumption on Power and Velocity of Selected Sport Performance Activities. J. Strength Cond. Res. 2018, 32, 1613–1618. [Google Scholar] [CrossRef] [PubMed]
- Gallo-Salazar, C.; Areces, F.; Abián-Vicén, J.; Lara, B.; Salinero, J.J.; Gonzalez-Millán, C.; Portillo, J.; Muñoz, V.; Juarez, D.; Del Coso, J. Enhancing Physical Performance in Elite Junior Tennis Players with a Caffeinated Energy Drink. Int. J. Sports Physiol. Perform. 2015, 10, 305–310. [Google Scholar] [CrossRef]
- Fernández-Campos, C.; Dengo, A.L.; Moncada-Jiménez, J. Acute Consumption of an Energy Drink Does Not Improve Physical Performance of Female Volleyball Players. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 271–277. [Google Scholar] [CrossRef]
- Al-Fares, M.N.; Alsunni, A.A.; Majeed, F.; Badar, A. Effect of Energy Drink Intake before Exercise on Indices of Physical Performance in Untrained Females. Saudi Med. J. 2015, 36, 580–586. [Google Scholar] [CrossRef]
- Ali, F.; Rehman, H.; Babayan, Z.; Stapleton, D.; Joshi, D.-D. Energy Drinks and Their Adverse Health Effects: A Systematic Review of the Current Evidence. Postgrad. Med. 2015, 127, 308–322. [Google Scholar] [CrossRef]
- Nadeem, I.M.; Shanmugaraj, A.; Sakha, S.; Horner, N.S.; Ayeni, O.R.; Khan, M. Energy Drinks and Their Adverse Health Effects: A Systematic Review and Meta-Analysis. Sports Health 2021, 13, 265–277. [Google Scholar] [CrossRef]
- Özde, C.; Kaya, A.; Akbudak, I.H.; Aktüre, G.; Kayapinar, O. Acute Effects of Red Bull Energy Drinks on Atrial Electromechanical Function in Healthy Young Adults. Am. J. Cardiol. 2020, 125, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Wajih Ullah, M.; Lakhani, S.; Siddiq, W.; Handa, A.; Kahlon, Y.; Siddiqui, T. Energy Drinks and Myocardial Infarction. Cureus 2018, 10, e2658. [Google Scholar] [CrossRef] [Green Version]
- Somers, K.R.; Svatikova, A. Cardiovascular and Autonomic Responses to Energy Drinks-Clinical Implications. J. Clin. Med. 2020, 9, 431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccioni, A.; Covino, M.; Zanza, C.; Longhitano, Y.; Tullo, G.; Bonadia, N.; Rinninella, E.; Ojetti, V.; Gasbarrini, A.; Franceschi, F. Energy Drinks: A Narrative Review of Their Physiological and Pathological Effects. Intern. Med. J. 2021, 51, 636–646. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, C.; Rosioru, C.; Tarba, C.; Lang, C. Long-Term Consumption of Energy Drinks Induces Biochemical and Ultrastructural Alterations in the Heart Muscle. Anatol. J. Cardiol. 2018, 19, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Masengo, L.; Sampasa-Kanyinga, H.; Chaput, J.-P.; Hamilton, H.A.; Colman, I. Energy Drink Consumption, Psychological Distress, and Suicidality among Middle and High School Students. J. Affect. Disord. 2020, 268, 102–108. [Google Scholar] [CrossRef]
- Kim, H.; Park, J.; Lee, S.; Lee, S.A.; Park, E.-C. Association between Energy Drink Consumption, Depression and Suicide Ideation in Korean Adolescents. Int. J. Soc. Psychiatry 2020, 66, 335–343. [Google Scholar] [CrossRef]
- Kaur, S.; Christian, H.; Cooper, M.N.; Francis, J.; Allen, K.; Trapp, G. Consumption of Energy Drinks Is Associated with Depression, Anxiety, and Stress in Young Adult Males: Evidence from a Longitudinal Cohort Study. Depress. Anxiety 2020, 37, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Trapp, G.; Hurworth, M.; Jacoby, P.; Christian, H.; Ambrosini, G.; Oddy, W.; Straker, L.; Mori, T.; Beilin, L.; Allen, K. Energy Drink Intake and Metabolic Syndrome: A Prospective Investigation in Young Adults. Nutr. Metab. Cardiovasc. Dis. NMCD 2020, 30, 1679–1684. [Google Scholar] [CrossRef]
- Shearer, J.; Reimer, R.A.; Hittel, D.S.; Gault, M.A.; Vogel, H.J.; Klein, M.S. Caffeine-Containing Energy Shots Cause Acute Impaired Glucoregulation in Adolescents. Nutrients 2020, 12, 3850. [Google Scholar] [CrossRef]
- Almulla, A.A.; Faris, M.A.-I.E. Energy Drinks Consumption Is Associated with Reduced Sleep Duration and Increased Energy-Dense Fast Foods Consumption Among School Students: A Cross-Sectional Study. Asia Pac. J. Public Health 2020, 32, 266–273. [Google Scholar] [CrossRef]
- Clapp, O.; Morgan, M.Z.; Fairchild, R.M. The Top Five Selling UK Energy Drinks: Implications for Dental and General Health. Br. Dent. J. 2019, 226, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Wee, J.H.; Min, C.; Park, M.W.; Park, I.-S.; Park, B.; Choi, H.G. Energy-Drink Consumption Is Associated with Asthma, Allergic Rhinitis, and Atopic Dermatitis in Korean Adolescents. Eur. J. Clin. Nutr. 2020. [Google Scholar] [CrossRef]
- Garg, A.; Rodriguez, A.; Lewis, J.T.; Bansal, R.; Brahmbhatt, B. Energy Drinks: A Reversible Risk Factor for Atrophic Gastritis and Gastric Intestinal Metaplasia. Cureus 2020, 12, e12298. [Google Scholar] [CrossRef]
- Tóth, Á.; Soós, R.; Szovák, E.; Najbauer, N.M.; Tényi, D.; Csábí, G.; Wilhelm, M. Energy Drink Consumption, Depression, and Salutogenic Sense of Coherence Among Adolescents and Young Adults. Int. J. Environ. Res. Public Health 2020, 17, 1290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author | Research Design | Study Group | Energy Drink | Caffeine Doses | Taurine Doses | Time of Ingestion before the Experimental Session | Performance Metric | Results |
---|---|---|---|---|---|---|---|---|
Prins et al. 2016 [53] | Double-blind, crossover | N = 18 (13 M, 5 W) Recreational runners; 20.39 ± 3.27 years; 71.25 ± 17.17 kg; 178.00 ± 7.57 cm | 2 × Red Bull | ~2.9 mg/kg 160 mg | 2 g | 60 min | 5-km running | Significant difference ED 1413.2 ± 169.7 vs. PL 1443.6 ± 179.2 s; p = 0.016 |
Collier et al. 2016 [54] | Double-blind | N = 15 (7 M, 8 W) Physically active students; 26.1 ± 3.5 years; 70.7 ± 12.1 kg; 174.6 ± 6 cm | Full Throttle | 5 mg/kg | Present, not disclosed | 30 min | Maximum voluntary isometric contraction strength of the knee extensors | Significant difference ED 5.0 ± 1.7 vs. PL 0.5 ± 1%; p = 0.015 |
Jacobson et al. 2018 [55] | Double-blind, independent groups | N = 36 (17 M, 19 W) Physically active students; age range = 19–26 years | 5 h Energy | 240 mg | Present, not disclosed | 30 min | Peak velocity of isolated forehand stroke | Significant difference ED +5.9 vs. PL −1.9%; p < 0.05 |
Average velocity of isolated forehand stroke | Significant difference ED +8.6 vs. PL −1.1%; p < 0.05 | |||||||
Peak power of countermovement vertical jump | No significant difference ED +2.3 vs. PL −0.2%; p > 0.05 | |||||||
Peak velocity of countermovement vertical | No significant difference ED +2.9 vs. PL −0.1%; p > 0.03 | |||||||
Gallo-Salazar et al. 2015 [56] | Double-blind | N = 18 (13 M, 5 W) Recreational runners; 20.39 ± 3.27 years; 65.2 ± 10.6 kg; 174.4 ± 9.5 cm | Fure | 3 mk/kg | 18.7 mg/kg | 60 min | Right handgrip force | Significant difference ED 402 ± 83 vs. PL 387 ± 83 N; p = 0.03 |
Left handgrip force | Significant difference ED 361 ± 74 vs. PL 348 ± 76 N; p = 0.03 | |||||||
Maximal serve velocity | No significant difference ED 42.7 ± 50 vs. PL 42.6 ± 4.8 m/s; p = 0.49 | |||||||
Mean serve velocity | No significant difference ED 41.4 ± 5.2 vs. PL 41.6 ± 5.1 m/s; p = 0.41 | |||||||
Maximal running speed | No significant difference ED 22.9 ± 2.1 vs. PL 22.3 ± 2.0 km/h; p = 0.07 | |||||||
Mean running speed | No significant difference ED 21.3 ± 1.5 vs. PL 20.7 ± 2.2 km/h; p = 0.12 | |||||||
Running pace at high intensity | Significant difference ED 63.3 ± 27.7 vs. PL 46.7 ± 28.5 m/h; p = 0.02 | |||||||
Distance | No significant difference ED 2904 ± 430 vs. PL 3058 ± 620 m/h; p = 0.24 | |||||||
Sprints | Significant difference ED 13.2 ± 1.7 vs. PL 12.1 ± 1.7 number/h; p = 0.05 | |||||||
Peak running velocity | No significant difference ED 20.5 ± 2.8 vs. PL 19.5 ± 2.3; p = 0.44 | |||||||
Fernández-Campos et al. 2015 [57] | Double-blind, crossover | N = 19 (19 W) Professional volleyball players; 22.3 ± 4.9 years; 65.2 ± 10.1 kg; 171.8 ± 9.4 cm | Unknown | 2 mg/kg | 2 g | 30 min | Right hand grip strength | Significant difference ED vs. PL p = 0.025 ED vs. no beverage p = 0.0025 |
Left hand grip strength | No significant difference | |||||||
Countermovement jump | No significant difference | |||||||
Squat jump | No significant difference | |||||||
Al-Fares et al. 2015 [58] | Single-blind crossover | N = 32 (32 W) Untrained students; 19.9 ± 0.8 years; 51.7 ± 3.7 kg; 156.4 ± 3.8 cm | Unknown | ~3.1 mg/kg 160 mg | 38.7 mg/kg2 g | 45 min | Time to exhaustion | No significant difference ED 11.41 ± 1.56 vs. PL 11.67 ± 1.51 min; p < 0.157 |
Maximum oxygen consumption (VO2max) | No significant difference ED 34.06 ± 6.62 vs. PL 32.89 ± 6.83 min; p < 0.154 |
Author | Research Design | Study Group | Adverse Effects |
---|---|---|---|
Ali et al. 2015 [59] | Systemic review | N = 43 reports | The most common associated with cardiovascular (arrhythmias) and neurological (seizures) systems |
Nadeem et al. 2021 [60] | Systemic review and meta-analysis | N = 96,549 participants | Pediatric population: insomnia (35.4%), stress (35.4%), depressive mood (23.1%) Adult population: restlessness/jitteriness/shaking hands (29.8%), insomnia (24.7%), gastrointestinal upset (21.6%) |
Özde et al. 2020 [61] | Prospective, observational, open-label study | N = 54 young adults | Prolonged atrial electromechanical conduction times: atrial electromechanical coupling-lateral, atrial electromechanical coupling-septal, intra-atrial electromechanical delay |
Ullah et al. 2018 [62] | Case report | Healthy 25-year-old man | Myocardial infarction |
Masengo et al. 2020 [66] | Cross-sectional study | N = 5538 middle and high school students | Association with greater risk of moderate and serious levels of psychological distress, suicidal thoughts, suicide attempts |
Kim et al. 2020 [67] | Cross-sectional study | N = 53,312 adolescents | Association with depressive mood and suicide ideation |
Kaur et al. 2020 [68] | Longitudinal cohort study | N = 429 young adults | After 2-year follow-up, males had increase in depression, anxiety, and stress scores |
Trapp et al. 2020 [69] | Prospective study | N = 1117 young adults | After 2-year follow-up, no significant associations between energy drink consumption and BMI or metabolic syndrome |
Shearer et al. 2020 [70] | Double-blind, randomized cross-over study | N = 20 adolescents | Acute, transient insulin resistance |
Almulla et al. 2020 [71] | Cross-sectional study | N = 1611 school students | Association with reduced sleep duration and increased fast foods consumption |
Wee et al. 2020 [73] | Cross-sectional study | N = 129,809 adolescents | Association with allergic diseases such as asthma, allergic rhinitis, and atopic dermatitis |
Garg et al. 2020 [74] | Case report | 35-year-old woman | Energy drinks as a possible risk factor of atrophic gastritis and gastric intestinal metaplasia |
Tóth et al. 2020 [75] | Cross-sectional study | N = 642 high school and college students | The most common effects: tachycardia, insomnia, tremors, headache |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erdmann, J.; Wiciński, M.; Wódkiewicz, E.; Nowaczewska, M.; Słupski, M.; Otto, S.W.; Kubiak, K.; Huk-Wieliczuk, E.; Malinowski, B. Effects of Energy Drink Consumption on Physical Performance and Potential Danger of Inordinate Usage. Nutrients 2021, 13, 2506. https://doi.org/10.3390/nu13082506
Erdmann J, Wiciński M, Wódkiewicz E, Nowaczewska M, Słupski M, Otto SW, Kubiak K, Huk-Wieliczuk E, Malinowski B. Effects of Energy Drink Consumption on Physical Performance and Potential Danger of Inordinate Usage. Nutrients. 2021; 13(8):2506. https://doi.org/10.3390/nu13082506
Chicago/Turabian StyleErdmann, Jakub, Michał Wiciński, Eryk Wódkiewicz, Magdalena Nowaczewska, Maciej Słupski, Stephan Walter Otto, Karol Kubiak, Elżbieta Huk-Wieliczuk, and Bartosz Malinowski. 2021. "Effects of Energy Drink Consumption on Physical Performance and Potential Danger of Inordinate Usage" Nutrients 13, no. 8: 2506. https://doi.org/10.3390/nu13082506
APA StyleErdmann, J., Wiciński, M., Wódkiewicz, E., Nowaczewska, M., Słupski, M., Otto, S. W., Kubiak, K., Huk-Wieliczuk, E., & Malinowski, B. (2021). Effects of Energy Drink Consumption on Physical Performance and Potential Danger of Inordinate Usage. Nutrients, 13(8), 2506. https://doi.org/10.3390/nu13082506