Link between Omega 3 Fatty Acids Carried by Lipoproteins and Breast Cancer Severity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Lipid Analysis
- Plasma lipid measurements
- HDL and Non-HDL isolation
- EPA and DHA measurements
2.3. Cell Culture and Viability Assay
2.4. Statistical Analysis
3. Results
3.1. Description of Cohort
Anthropometric and Clinical Characteristics of the Patients
3.2. Circulating Lipid Parameters
Cholesterol and Triglycerides
3.3. In Vitro Proliferation Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Burden of Disease Cancer Collaboration; Fitzmaurice, C.; Allen, C.; Barber, R.M.; Barregard, L.; Bhutta, Z.A.; Brenner, H.; Dicker, D.J.; Chimed-Orchir, O.; Dandona, R.; et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life-Years for 32 Cancer Groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2017, 3, 524–548. [Google Scholar] [CrossRef] [PubMed]
- Cholewski, M.; Tomczykowa, M.; Tomczyk, M. A Comprehensive Review of Chemistry, Sources and Bioavailability of Omega-3 Fatty Acids. Nutrients 2018, 10, 1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djuricic, I.; Calder, P.C. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef] [PubMed]
- Agostoni, C.; Bresson, J.L.; Fairweather-Tait, S. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) Scientific Opinion on Dietary Reference Values for Fats, Including Saturated Fatty Acids, Polyunsaturated Fatty Acids, Monounsaturated Fatty Acids, Trans Fatty Acids, and Cholesterol. EFSA J. 2010, 8, 1461. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Ralph, T.; Doyle, J.; Juliano, R.A.; Jiao, L.; et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N. Engl. J. Med. 2018, 380, 11–22. [Google Scholar] [CrossRef]
- Weill, P.; Plissonneau, C.; Legrand, P.; Rioux, V.; Thibault, R. May Omega-3 Fatty Acid Dietary Supplementation Help Reduce Severe Complications in COVID-19 Patients? Biochimie 2020, 179, 275–280. [Google Scholar] [CrossRef]
- Lee, K.H.; Seong, H.J.; Kim, G.; Jeong, G.H.; Kim, J.Y.; Park, H.; Jung, E.; Kronbichler, A.; Eisenhut, M.; Stubbs, B.; et al. Consumption of Fish and ω-3 Fatty Acids and Cancer Risk: An Umbrella Review of Meta-Analyses of Observational Studies. Adv. Nutr. 2020, 11, 1134–1149. [Google Scholar] [CrossRef]
- Bayly, G.R. Chapter 37—Lipids and Disorders of Lipoprotein Metabolism. In Clinical Biochemistry: Metabolic and Clinical Aspects, 3rd ed.; Marshall, W.J., Lapsley, M., Day, A.P., Ayling, R.M., Eds.; Churchill Livingstone: London, UK, 2014; pp. 702–736. ISBN 978-0-7020-5140-1. [Google Scholar]
- Leslie, M.A.; Cohen, D.J.A.; Liddle, D.M.; Robinson, L.E.; Ma, D.W.L. A Review of the Effect of Omega-3 Polyunsaturated Fatty Acids on Blood Triacylglycerol Levels in Normolipidemic and Borderline Hyperlipidemic Individuals. Lipids Health Dis. 2015, 14, 53. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-H.; Amar, M.; Sampson, M.; Courville, A.B.; Sorokin, A.V.; Gordon, S.M.; Aponte, A.M.; Stagliano, M.; Playford, M.P.; Fu, Y.-P.; et al. Comparison of Omega-3 Eicosapentaenoic Acid Versus Docosahexaenoic Acid-Rich Fish Oil Supplementation on Plasma Lipids and Lipoproteins in Normolipidemic Adults. Nutrients 2020, 12, 749. [Google Scholar] [CrossRef] [Green Version]
- Abel, S.; Riedel, S.; Gelderblom, W.C.A. Dietary PUFA and Cancer. Proc. Nutr. Soc. 2014, 73, 361–367. [Google Scholar] [CrossRef]
- Kiyabu, G.Y.; Inoue, M.; Saito, E.; Abe, S.K.; Sawada, N.; Ishihara, J.; Iwasaki, M.; Yamaji, T.; Shimazu, T.; Sasazuki, S.; et al. Fish, n-3 Polyunsaturated Fatty Acids and n-6 Polyunsaturated Fatty Acids Intake and Breast Cancer Risk: The Japan Public Health Center-Based Prospective Study. Int. J. Cancer 2015, 137, 2915–2926. [Google Scholar] [CrossRef] [PubMed]
- Moro, K.; Nagahashi, M.; Ramanathan, R.; Takabe, K.; Wakai, T. Resolvins and Omega Three Polyunsaturated Fatty Acids: Clinical Implications in Inflammatory Diseases and Cancer. World J. Clin. Cases 2016, 4, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Hutchins-Wiese, H.L.; Picho, K.; Watkins, B.A.; Li, Y.; Tannenbaum, S.; Claffey, K.; Kenny, A.M. High-Dose Eicosapentaenoic Acid and Docosahexaenoic Acid Supplementation Reduces Bone Resorption in Postmenopausal Breast Cancer Survivors on Aromatase Inhibitors: A Pilot Study. Nutr. Cancer 2014, 66, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Paixão, E.M.; Oliveira, A.C.d.M.; Pizato, N.; Muniz-Junqueira, M.I.; Magalhães, K.G.; Nakano, E.Y.; Ito, M.K. The Effects of EPA and DHA Enriched Fish Oil on Nutritional and Immunological Markers of Treatment Naïve Breast Cancer Patients: A Randomized Double-Blind Controlled Trial. Nutr. J. 2017, 16, 71. [Google Scholar] [CrossRef] [Green Version]
- Heymann, D.; Verhille, E.; Veron, V.; Vitre, M.; Delmas, F.; Henry, C.; Gouy, Y.; Amiand, M.; Bard, J.-M. Centre de Ressources Biologiques-Tumorothèque: Bioresources and Associated Clinical Data Dedicated to Translational Research in Oncology at the Institut de Cancérologie de l’Ouest, France. Open J. Bioresour. 2020. epub ahead of print. [Google Scholar] [CrossRef] [Green Version]
- Bobin-Dubigeon, C.; Nazih, H.; Blanchard, V.; Croyal, M.; Bard, J.-M. Circulating HDL and Non-HDL Associated Apolipoproteins and Breast Cancer Severity. J. Clin. Med. 2022, 11, 1345. [Google Scholar] [CrossRef]
- Maugeais, C.; Ouguerram, K.; Krempf, M.; Maugeais, P.; Gardette, J.; Bigot, E.; Magot, T. A Minimal Model Using Stable Isotopes to Study the Metabolism of Apolipoprotein B-Containing Lipoproteins in Humans. Diabetes Metab. 1996, 22, 57–63. [Google Scholar]
- Bailhache, E.; Briand, F.; Nguyen, P.; Krempf, M.; Magot, T.; Ouguerram, K. Metabolism of Cholesterol Ester of Apolipoprotein B100-Containing Lipoproteins in Dogs: Evidence for Disregarding Cholesterol Ester Transfer. Eur. J. Clin. Investig. 2004, 34, 527–534. [Google Scholar] [CrossRef]
- Daher-Abdi, A.; Olvera Hernández, S.; Reyes Castro, L.A.; Mezo-González, C.E.; Croyal, M.; García-Santillán, J.A.; Ouguerram, K.; Zambrano, E.; Bolaños-Jiménez, F. Maternal DHA Supplementation during Pregnancy and Lactation in the Rat Protects the Offspring against High-Calorie Diet-Induced Hepatic Steatosis. Nutrients 2021, 13, 3075. [Google Scholar] [CrossRef]
- Chajès, V.; Torres-Mejía, G.; Biessy, C.; Ortega-Olvera, C.; Angeles-Llerenas, A.; Ferrari, P.; Lazcano-Ponce, E.; Romieu, I. ω-3 and ω-6 Polyunsaturated Fatty Acid Intakes and the Risk of Breast Cancer in Mexican Women: Impact of Obesity Status. Cancer Epidemiol. Biomark. Prev. 2012, 21, 319–326. [Google Scholar] [CrossRef] [Green Version]
- D’Angelo, S.; Motti, M.L.; Meccariello, R. ω-3 and ω-6 Polyunsaturated Fatty Acids, Obesity and Cancer. Nutrients 2020, 12, 2751. [Google Scholar] [CrossRef] [PubMed]
- Corsetto, P.A.; Cremona, A.; Montorfano, G.; Jovenitti, I.E.; Orsini, F.; Arosio, P.; Rizzo, A.M. Chemical-Physical Changes in Cell Membrane Microdomains of Breast Cancer Cells after Omega-3 PUFA Incorporation. Cell Biochem. Biophys. 2012, 64, 45–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Tang, H.; Wang, J.; Xie, X.; Liu, P.; Kong, Y.; Ye, F.; Shuang, Z.; Xie, Z.; Xie, X. The Effect of Preoperative Serum Triglycerides and High-Density Lipoprotein-Cholesterol Levels on the Prognosis of Breast Cancer. Breast 2017, 32, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.J.; Melnichouk, O.; Huszti, E.; Connelly, P.W.; Greenberg, C.V.; Minkin, S.; Boyd, N.F. Serum Lipids, Lipoproteins, and Risk of Breast Cancer: A Nested Case-Control Study Using Multiple Time Points. JNCI J. Natl. Cancer Inst. 2015, 107, djv032. [Google Scholar] [CrossRef] [Green Version]
- Metherel, A.H.; Lacombe, R.J.S.; Chouinard-Watkins, R.; Bazinet, R.P. Docosahexaenoic Acid Is Both a Product of and a Precursor to Tetracosahexaenoic Acid in the Rat. J. Lipid Res. 2019, 60, 412–420. [Google Scholar] [CrossRef] [Green Version]
- Maran, L.; Hamid, A.; Hamid, S.B.S. Lipoproteins as Markers for Monitoring Cancer Progression. J. Lipids 2021, 2021, e8180424. [Google Scholar] [CrossRef]
- Sobot, D.; Mura, S.; Rouquette, M.; Vukosavljevic, B.; Cayre, F.; Buchy, E.; Pieters, G.; Garcia-Argote, S.; Windbergs, M.; Desmaële, D.; et al. Circulating Lipoproteins: A Trojan Horse Guiding Squalenoylated Drugs to LDL-Accumulating Cancer Cells. Mol. Ther. 2017, 25, 1596–1605. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.-W.; Park, J.G.; Ilhan, Z.E.; Wallstrom, G.; Labaer, J.; Adams, J.B.; Krajmalnik-Brown, R. Reduced Incidence of Prevotella and Other Fermenters in Intestinal Microflora of Autistic Children. PLoS ONE 2013, 8, e68322. [Google Scholar] [CrossRef] [Green Version]
- LeMay-Nedjelski, L.; Mason-Ennis, J.K.; Taibi, A.; Comelli, E.M.; Thompson, L.U. Omega-3 Polyunsaturated Fatty Acids Time-Dependently Reduce Cell Viability and Oncogenic MicroRNA-21 Expression in Estrogen Receptor-Positive Breast Cancer Cells (MCF-7). Int. J. Mol. Sci. 2018, 19, 244. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Veigas, M.; Williams, P.J.; Fernandes, G. DHA Is a More Potent Inhibitor of Breast Cancer Metastasis to Bone and Related Osteolysis than EPA. Breast Cancer Res. Treat. 2013, 141, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.-H.; Hsia, S.; Chung, C.-H.; Lin, Y.-C.; Shih, M.-Y.; Chen, P.-C.; Peng, C.-L.; Henning, S.M.; Hsu, G.-S.W.; Li, Z. Nutritional Supplements in Combination with Chemotherapy or Targeted Therapy Reduces Tumor Progression in Mice Bearing Triple-Negative Breast Cancer. J. Nutr. Biochem. 2021, 87, 108504. [Google Scholar] [CrossRef] [PubMed]
- Ford, N.A.; Rossi, E.L.; Barnett, K.; Yang, P.; Bowers, L.W.; Hidaka, B.H.; Kimler, B.F.; Carlson, S.E.; Shureiqi, I.; deGraffenried, L.A.; et al. Omega-3-Acid Ethyl Esters Block the Protumorigenic Effects of Obesity in Mouse Models of Postmenopausal Basal-like and Claudin-Low Breast Cancer. Cancer Prev. Res. 2015, 8, 796–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, K.R.; Kikawa, K.D.; Mouradian, M.; Hernandez, K.; McKinnon, K.M.; Ahwah, S.M.; Pardini, R.S. Docosahexaenoic Acid Alters Epidermal Growth Factor Receptor-Related Signaling by Disrupting Its Lipid Raft Association. Carcinogenesis 2010, 31, 1523–1530. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Jing, K.; Jeong, S.; Kim, N.; Song, K.-S.; Heo, J.-Y.; Park, J.-H.; Seo, K.-S.; Han, J.; Park, J.-I.; et al. The Omega-3 Polyunsaturated Fatty Acid DHA Induces Simultaneous Apoptosis and Autophagy via Mitochondrial ROS-Mediated Akt-MTOR Signaling in Prostate Cancer Cells Expressing Mutant P53. BioMed Res. Int. 2013, 2013, 568671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Y.; Sui, C.; Meng, F.; Ma, P.; Jiang, Y. The Omega-3 Polyunsaturated Fatty Acid Docosahexaenoic Acid Inhibits Proliferation and Progression of Non-Small Cell Lung Cancer Cells through the Reactive Oxygen Species-Mediated Inactivation of the PI3K/Akt Pathway. Lipids Health Dis. 2017, 16, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
HR− | HR+ | |||||
---|---|---|---|---|---|---|
Ki-67 ≤ 20% (Prolif−) (n = 19) | Ki-67 ≥ 30% (Prolif+) (n = 29) | p | Ki-67 ≤ 20% (Prolif−) (n = 51) | Ki-67 ≥ 30% (Prolif+) (n = 41) | p | |
Age (years) * | 62.5 [56.0–69.0] | 54.4 [43.0–66.0] | 0.08 | 64.1 [56.0–72.5] | 56.2 [48.0–66.0] | 0.003 |
BMI (kg m−2) * | 24.7 [21.8–27.3] | 25.2 [22.2–27.1] | 0.66 | 25.4 [22.7–27.5] | 26.1 [21.9–28.8] | 0.67 |
Menopausal status ** | 17 (89%) | 21 (72%) | 0.15 | 43 (84.3%) | 24 (58.8%) | 0.006 |
Normolipidemic treatments | 3 (16%) | 4 (14%) | 0.85 | 5 (9.8%) | 5 (12%) | 0.71 |
Type of Cancer ** | 0.29 | 0.01 | ||||
Invasive Carcinoma of No Special Type (Ductal) | 16 (84%) | 28 (97%) | 51 (100%) | 36 (88%) | ||
Invasive Lobular Carcinoma | 2 (11%) | 1 (3%) | 0 | 5 (12%) | ||
Histoprognostic Grade ** | <0.001 | <0.001 | ||||
Grade I | 0 | 0 | 21 (41.2%) | 0 | ||
Grade II | 17 (89%) | 3 (10.3%) | 26 (51%) | 6 (14.6%) | ||
Grade III | 2 (11%) | 26 (89.7%) | 4 (7.8%) | 35 (85.4%) | ||
HER2+ | 3 (15.8%) | 7 (24%) | 0.48 | 5 (9.8%) | 14 (34.1%) | 0.12 |
HR− | HR+ | |||||
---|---|---|---|---|---|---|
Ki-67 ≤ 20% (Prolif−) (n = 19) | Ki-67 ≥ 30% (Prolif+) (n = 29) | p | Ki-67 ≤ 20% (Prolif−) (n = 51) | Ki-67 ≥ 30% (Prolif+) (n = 41) | p | |
Plasma Cholesterol | 5.30 [4.53–5.93] | 5.25 [4.07–5.75] | 0.77 | 5.03 [4.17–5.83] | 5.36 [4.44–5.91] | 0.30 |
Plasma Triglycerides | 1.23 [0.91–1.74] | 1.11 [0.79–1.37] | 0.38 | 0.90 [0.71–125] | 0.92 [0.74–1.12] | 0.83 |
HDL Cholesterol | 1.48 [1.10–1.66] | 1.39 [1.07–1.51] | 0.14 | 1.30 [1.09–1.62] | 1.38 [1.14–1.57] | 0.30 |
Non-HDL Cholesterol | 3.90 [3.19–4.65] | 3.79 [2.82–4.46] | 0.77 | 3.57 [2.94–4.39] | 3.84 [3.17–4.50] | 0.53 |
HR− | HR+ | |||||
---|---|---|---|---|---|---|
Ki-67 ≤ 20% (n = 19) | Ki-67 ≥ 30% (n = 29) | p | Ki-67 ≤ 20% (n = 51) | Ki-67 ≥ 30% (n = 41) | p | |
Plasma EPA | 1.09 [0.85–1.83] | 1.01 [0.77–1.44] | 0.77 | 1.10 [0.84–1.44] | 1.27 [0.78–1.52] | 0.30 |
HDL EPA | 0.92 [0.67–1.35] | 0.98 [0.75–1.42] | 0.38 | 0.85 [0.72–1.42] | 1.00 [0.69–1.33] | 0.53 |
HDL EPA/Apo AI | 0.019 [0.015–0.023] | 0.018 [0.013–0.024] | 0.77 | 0.018 [0.013–0.022] | 0.019 [0.014–0.024] | 0.53 |
Non-HDL EPA | 0.18 [0.13–0.40] | 0.05 [0.02–0.07] | 0.0001 | 0.09 [0.06–0.17] | 0.1 [0.06–0.31] | 0.53 |
Non-HDL EPA/Apo B | 0.12 [0.09–0.18] | 0.02 [0.01–0.05] | 0.0001 | 0.05 [0.02–0.10] | 0.075 [0.031–0.161] | 0.53 |
Non-HDL EPA/HDL EPA | 0.20 [0.15–0.36] | 0.04 [0.02–0.08] | 0.0001 | 0.10 [0.05–0.20] | 0.13 [0.05–0.27] | 0.53 |
Plasma DHA | 29.45 [18.98–36.45] | 26.90 [19.00–35.90] | 0.77 | 27.76 [21.64–34.04] | 27.15 [20.58–35.56] | 0.83 |
HDL DHA | 27.07 [17.72–34.03] | 26.70 [17.30–35.10] | 0.77 | 26.13 [20.29–32.35] | 23.53 [19.42–33.82] | 0.83 |
HDL DHA/Apo AI | 0.50 [0.35–0.73] | 0.45 [0.34–0.61] | 0.38 | 0.46 [0.38–0.64] | 0.54 [0.37–0.63] | 0.30 |
Non-HDL DHA | 1.74 [1.09–2.43] | 1.08 [0.30–2.04] | 0.14 | 0.88 [0.45–1.50] | 1.31 [0.52–2.46] | 0.14 |
Non-HDL DHA/Apo B | 1.00 [0.73–1.69] | 0.52 [0.14–1.08] | 0.04 | 0.52 [0.22–0.82] | 0.70 [0.37–1.21] | 0.06 |
Non-HDL DHA/HDL DHA | 0.08 [0.04–0.10] | 0.04 [0.01–0.07] | 0.04 | 0.04 [0.02–0.06] | 0.05 [0.02–0.08] | 0.30 |
MDA-MB-231 Cells | MCF-7 Cells | |||
---|---|---|---|---|
β ± s.d. | p | β ± s.d. | p | |
HDL Cholesterol | 2.16 ± 8.10 | 0.80 | −3.07 ± 12.22 | 0.81 |
HDL EPA | −10.14 ± 9.18 | 0.32 | 9.46 ± 15.30 | 0.56 |
HDL EPA/HDL Apo AI | −523.92 ± 550.22 | 0.38 | 555.41 ± 889.04 | 0.56 |
HDL DHA | −0.24 ± 0.49 | 0.65 | 0.80 ± 0.70 | 0.30 |
HDL DHA/HDL Apo AI | 6.80 ± 27.21 | 0.81 | 39.27 ± 38.90 | 0.35 |
LDL Cholesterol | 2.78 ± 3.53 | 0.47 | −8.21 ± 4.36 | 0.11 |
Non-HDL EPA | −147.47 ± 65.56 | 0.07 | 121.88 ± 130.59 | 0.39 |
Non-HDL DHA | −7.62 ± 2.80 | 0.04 | 1.20 ± 6.15 | 0.85 |
Type of Studies | Type of ω-3 Fatty Acid Intake | Number of Cases | Relative Risk 50% CI | p Value |
---|---|---|---|---|
Nest CC, CC, cohort | Highest marine n-3 PUFA intake | 16,178 | 0.86 (0.78, 0.94) | 0.002 |
CC, cohort | Marine n-3 PUFA (Diet) | 11,519 | 0.86 (0.76, 0.96) | 0.007 |
Cohort | Per 0.1 g/d increment of dietary marine n-3 PUFA | 3114 | 0.93 (0.90, 0.97) | 3.89 × 10−4 |
CC, cohort | Total n-3 PUFA | NR | 0.96 (0.86, 1.07) | 0.43 |
Cohort | Per 0.1% energy increment of daily dietary marine n-3 PUFA | 6344/288,626 | 0.97 (0.92, 1.02) | 0.22 |
CC, cohort | Highest dietary fish intake | 13,323/687,770 | 1.03 (0.93, 1.14) | 0.61 |
CC, cohort | Per 15 g/d increment of fish intake | 13,323/666,400 | 1.00 (0.97, 1.03) | 0.98 |
CC, cohort | Marine n-3 fatty (EPA) | NR | 0.86 (0.75–1.01) | 0.098 |
CC, cohort | Marine n-3 fatty (DHA) | NR | 0.89 (0.75, 1.05) | 0.16 |
CC, cohort | Marine n-3 fatty (DPA) | 4746/284,724 | 0.91 (0.68, 1.22) | 0.54 |
Cohort | ALA (diet) | 8274/281,756 | 0.98 (0.90–1.06) | 0.56 |
Cohort | Per 0.1 g/d increment of dietary ALA intake | 6310/190,451 | 1.00 (0.99–1.01) | 0.54 |
Cohort | Per 0.1% energy increment of daily dietary ALA intake | 5510/171,680 | 1.00 (0.99, 1.01) | 0.96 |
CC, cohort | ALA (tissue biomarker and diet) | 9296/284,724 | 0.97 (0.90, 1.04) | 0.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bobin-Dubigeon, C.; Nazih, H.; Croyal, M.; Bard, J.-M. Link between Omega 3 Fatty Acids Carried by Lipoproteins and Breast Cancer Severity. Nutrients 2022, 14, 2461. https://doi.org/10.3390/nu14122461
Bobin-Dubigeon C, Nazih H, Croyal M, Bard J-M. Link between Omega 3 Fatty Acids Carried by Lipoproteins and Breast Cancer Severity. Nutrients. 2022; 14(12):2461. https://doi.org/10.3390/nu14122461
Chicago/Turabian StyleBobin-Dubigeon, Christine, Hassan Nazih, Mikael Croyal, and Jean-Marie Bard. 2022. "Link between Omega 3 Fatty Acids Carried by Lipoproteins and Breast Cancer Severity" Nutrients 14, no. 12: 2461. https://doi.org/10.3390/nu14122461
APA StyleBobin-Dubigeon, C., Nazih, H., Croyal, M., & Bard, J.-M. (2022). Link between Omega 3 Fatty Acids Carried by Lipoproteins and Breast Cancer Severity. Nutrients, 14(12), 2461. https://doi.org/10.3390/nu14122461