Assessing the Nutrient Status of Low Carbohydrate, High-Fat (LCHF) Meal Plans in Children: A Hypothetical Case Study Design
Abstract
:1. Introduction
2. Materials and Methods
3. Results
LCHF Meal Plan 1 (Female; 11 Years) | LCHF Meal Plan 2 (Male; 11 Years) | LCHF Meal Plan 3 (Female; 16 Years) | LCHF Meal Plan 3 (Male; 16 Years) |
---|---|---|---|
Breakfast Low-carb granola 5 raspberries, 50 g Purely Elizabeth granola, 200 g Greek yoghurt | Breakfast Eggs on toast 1 slice Helga’s lower carb five seed bread, 2 tsp salted butter, 2 regular boiled eggs, and ½ tsp iodised table salt | Breakfast Smoothie 80 g strawberries, 1 tb peanut butter, 5 brazil nuts, ½ cup Greek yoghurt, and ½ cup tap water | Breakfast Eggs on toast 1 slice Helga’s lower carb five seed bread, 2 tsp salted butter, 2 regular boiled eggs, ¼ cup baked beans, and ½ cup cheddar cheese. |
Morning tea Vegetable sticks and cream cheese 6 snow peas, 40 g red capsicum, and ¼ cup cream cheese | Morning tea Vegetable sticks and cheese 40 g cherry tomatoes, 40 g telegraph cucumber, 6 snow peas, 49 g cheddar cheese | Morning tea Vegetable sticks and cream cheese 50 g telegraph cucumber, 10 snow peas, ½ tsp iodised table salt, and ½ cup cream cheese | Morning tea Fruit and cheese ½ medium apple and 63 g cheese |
Lunch Frittata 2 regular eggs, 50 g bacon, 40 g red capsicum, ½ cup baby spinach, 20 g red onion, ¼ cup cheddar cheese, 2 tsp salted butter, and ½ tsp iodised table salt | Lunch Low-carb wrap 1 Mountain bread natural wrap, 20 g telegraph cucumber, ½ cup spinach, 45 g avocado, 100 g chicken, ¼ cup grated cheddar cheese, and 2 tsp mayonnaise | Lunch Frittata 2 regular eggs, 50 g grilled chicken breast, 45 g zucchini, ½ cup baby spinach, ¼ cup red capsicum, 1 mushroom, ¼ cup brown onion, 20 g cheddar cheese, and 1 tsp olive oil | Lunch Low-carb sandwich 5 slices salami, 2 slices Helga’s lower carb five seed bread, 2 tsp salted butter, 1 tb mayonnaise, 40 g avocado, ½ cup baby spinach, 20 g telegraph cucumber, 21 g cheddar cheese, and 30 g tomato |
Afternoon tea Seed crackers with peanut butter 2 tsp peanut butter and 2 Olina’s seeded crackers | Afternoon tea Fruit, crackers, and peanut butter ½ small apple, 2 Olina’s seeded crackers, and 1 and ¼ tb peanut butter | Afternoon tea Mashed avocado and vegetable sticks 80 g avocado, 1 cup carrots, | Afternoon tea Olina’s seeded crackers with peanut butter 2 Olina’s seeded crackers and 2 tsp peanut butter |
Dinner Chicken stir fry 2 medium zucchinis, ½ cup broccoli, ¼ cup brown onion, 150 g chicken breast, 1 tb olive oil | Dinner Steak, cauliflower mash, and vegetables 150 g steak fillet, 100 g cauliflower, 2 tb cream, 100 g carrots, 50 g green beans, ½ cup peas, 1 tsp mustard, ½ tsp iodised table salt, and 2 tsp olive oil | Dinner Beef stir fry 175 g beef strips, 1 cup red cabbage, ½ cup carrots, ½ cup green beans, ¼ cup corn kernels, 1 tb olive oil | Dinner Pork chops, cauliflower mash, and vegetables 2 small pork chops, 200 g cauliflower, 2 tsp cream, ½ cup carrots, and 1 cup green beans |
Supper Yoghurt and berries 150 g Greek yoghurt, ½ cup blueberries, 50 g strawberries | Supper Yoghurt and berries 150 g Greek yoghurt and 80 g strawberries | Supper Yoghurt with nuts and seeds 150 g Greek yoghurt, 2 tb sunflower seeds, 1.5 tb chia seeds, 1.5 tb cashews | Supper Yoghurt with nuts 150 g Greek yoghurt with 15 g almonds and 15 g brazil nuts |
Female Meal Plans | Male Meal Plans | |||||||
---|---|---|---|---|---|---|---|---|
Nutrient | 11 Year Old | NRV/Goal | 16 Year Old | NRV/Goal | 11 Year Old | NRV/Goal | 16 Year Old | NRV/Goal |
Energy (calories) | 2077 | 2031.55 | 2351 | 2425.9 | 2129.8 | 2234.7 | 3062 | 2987.6 |
Carbohydrate (g) % TE | 78.6 12 | 229–330 45–65 | 73.3 12 | 273–394 45–65 | 69.7 12 | 251–363 45–65 | 76 10 | 336–485 45–65 |
Total Sugar ‡ (g) | 61.8 | - | 58.3 | - | 38.9 | - | 40.6 | - |
Free sugar (g) % TE | 0.9 0.2 | - <5% | 1.2 0.2 | - <5% | 1.9 0.4 | - <5% | 2.9 0.4 | - <5% |
Starch (g) | 16.8 | - | 15 | - | 30.8 | - | 35.4 | - |
Protein (g) % TE | 139.2 27 | 15–25 | 140 24 | 15–25 | 151.7 28 | 15–25 | 175.6 23 | 15–25 |
Fat (g) % TE | 128.2 55 | 20–35 | 157.1 59 | 20–35 | 142.7 57 | 20–35 | 220.7 64 | 20–35 |
Saturated fat (g) % TE | 43.6 19 | 22.6 ≤10 | 57.9 22 | 27 ≤10 | 55.1 22 | 25 ≤10 | 85.5 25 | 33 ≤10 |
Trans fats (g) % TE | 1.9 0.8 | 2.5 <1 * | 2.7 1 | 3 <1 * | 3.0 1.2 | 2.5 <1 * | 3.2 0.9 | 3.3 <1 * |
MUFA (g) % total fat | 34.9 27 | - - | 64.4 42 | - - | 50 38 | - - | 78.5 36 | - - |
PUFA (g) % total fat | 5.5 4.4 | - - | 22.4 15 | - - | 13.7 10 | - - | 30.0 14 | - - |
Linoleic acid (O6 PUFA) (g) | 4.5 | 8 † | 16.97 | 8 † | 10.28 | 10 † | 23.82 | 12 † |
Alpha-linoleic acid (O3 PUFA) (g) | 0.5 | 0.8 † | 4.74 | 0.8 † | 1.5 | 1.0 † | 2.74 | 1.2 † |
Omega-6: omega-3 ratio | 9 | 10 | 3.6 | 10 | 6.9 | 10 | 8.7 | 10 |
Fibre (g) | 28.2 | 20 † | 41.5 | 22 † | 30.5 | 24 † | 35.2 | 28 † |
Thiamine (mg) | 0.99 | 0.9 | 1.87 | 1.1 | 1.02 | 0.9 | 2.66 | 1.2 |
Riboflavin (mg) | 2.66 | 0.9 | 2.49 | 1.1 | 1.66 | 0.9 | 2.32 | 1.3 |
Niacin (mg) | 33.4 | 12 | 24.01 | 14 | 19.47 | 12 | 30.67 | 16 |
Vitamin C (mg) | 373.8 | 40 | 229.56 | 40 | 109.81 | 40 | 66.25 | 40 |
Vitamin A (µg) | 1206.9 | 600 | 4490.03 | 700 | 2320.54 | 600 | 2084.79 | 900 |
Vitamin E (mg) | 14.66 | 8 † | 19.54 | 8 † | 20.07 | 9 † | 24.73 | 10 † |
Vitamin B12 (µg) | 3.16 | 1.8 | 6.72 | 2.4 | 8 | 1.8 | 7.05 | 2.4 |
Folate, total (µg) | 533.67 | 300 | 694.36 | 400 | 637.23 | 300 | 684.07 | 400 |
Calcium (mg) | 1198 | 1000 | 1318.83 | 1300 | 1165.10 | 1000 | 1824.58 | 1300 |
Iron (mg) | 8.05 | 8 | 15.59 | 15 | 11.04 | 8 | 11.68 | 11 |
Magnesium (mg) | 330.06 | 240 | 546.84 | 360 | 359.82 | 240 | 503.09 | 410 |
Zinc (mg) | 9.95 | 6 | 23.62 | 7 | 20.40 | 6 | 19.45 | 13 |
Sodium (mg) | 3245.94 | 400–800 † | 2524.44 | 460–920 † | 4029.34 | 400–800 † | 4242.04 | 460–920 † |
Potassium (mg) | 3861.57 | 2500 † | 5158.43 | 2600 † | 3372.33 | 3000 † | 3654.74 | 3600 † |
Phosphorus (mg) | 1879.67 | 1250 | 2300.29 | 1250 | 1866.57 | 1250 | 2413.19 | 1250 |
Selenium (µg) | 80.76 | 50 | 222.98 | 60 | 108.25 | 50 | 320.42 | 70 |
Iodine (µg) | 254.9 | 120 | 252.23 | 150 | 399.94 | 120 | 177.65 | 150 |
Sample Meal Plan | ||
---|---|---|
Breakfast | 1 wheat biscuit, ½ cup reduced fat milk, 100 g yoghurt | |
Morning snack | 1 medium banana; 3 crispbreads, 1 tb of peanut butter spread | |
Lunch | Sandwich: 2 × slices of wholemeal bread, 1 boiled egg, 1 slice reduced fat cheese (20 g), 1 cup mixed salad | |
Afternoon snack | 1 crumpet with 1 tsp margarine; 250 mL reduced fat milk | |
Dinner | Lamb kebab with vegetables (65 g cooked lamb kebab, 1 small, boiled potato, ½ cup cooked carrot, ½ cup cooked beans) | |
Evening snack | 1 cup mixed fruit plus 100 g natural yoghurt. | |
Nutrients | Nutrient analysis | NRV/goal |
∆ DEER (Daily estimated energy requirement) (calories) | 1403 | 2283 |
Carbohydrate (g) % TE | 180 51 | 256–370 45–65 |
Total Sugar ‡ (g) | 86 | - |
Free sugar (g) % TE | 7.7 2.2 | - <5% |
Starch (g) | 93.6 | - |
Protein (g) % TE | 78.6 22 | 15–25 |
Fat (g) % TE | 33.6 22 | 20–35 |
Saturated fat (g) % TE | 11.3 7.2 | ≤10 |
Trans fats (g) % TE | 0.5 0.3 | 2.5 <1 * |
MUFA (g) % total fat | 14 47 | - - |
PUFA (g) % total fat | 4.2 14 | - - |
Linoleic acid (O6 PUFA) (g) | 3.3 | 8 † |
Alpha-linoleic acid (O3 PUFA) (g) | 0.4 | 0.8 † |
Omega-6:omega-3 ratio | 8.3 | 10 |
Fibre (g) | 23.2 | 20 † |
Thiamine (mg) | 1.2 | 0.9 |
Riboflavin (mg) | 2.1 | 0.9 |
Niacin (mg) | 15.6 | 12 |
Vitamin C (mg) | 31 | 40 |
Vitamin A (µg) | 1696.5 | 600 |
Vitamin E (mg) | 8.9 | 8 † |
Vitamin B12 (µg) | 4.3 | 1.8 |
Folate, total (µg) | 507.5 | 300 |
Calcium (mg) | 1296 | 1000 |
Iron (mg) | 8.06 | 8 |
Magnesium (mg) | 321.8 | 240 |
Zinc (mg) | 11.2 | 6 |
Sodium (mg) | 1636 | 400–800 † |
Potassium (mg) | 3322 | 2500 † |
Phosphorus (mg) | 1601 | 1250 |
Selenium (µg) | 48.3 | 50 |
Iodine (µg) | 221.3 | 120 |
4. Discussion
4.1. Protein
4.2. Saturated Fat
4.3. Thiamine and Fibre
4.4. A Family-Friendly Approach
4.5. Comparison with the Australian Dietary Guidelines Sample Meal Plan
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Churuangsuk, C.; Kherouf, M.; Combet, E.; Lean, M. Low-carbohydrate diets for overweight and obesity: A systematic review of the systematic reviews. Obes. Rev. 2018, 19, 1700–1718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Athinarayanan, S.J.; Adams, R.N.; Hallberg, S.J.; McKenzie, A.L.; Bhanpuri, N.H.; Campbell, W.W.; Volek, J.S.; Phinney, S.D.; McCarter, J.P. Long-Term Effects of a Novel Continuous Remote Care Intervention Including Nutritional Ketosis for the Management of Type 2 Diabetes: A 2-Year Non-Randomized Clinical Trial. Front. Endocrinol. 2019, 10, 348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turton, J.; Raab, R.; Rooney, K.B. Low-carbohydrate diets for type 1 diabetes mellitus: A systematic review. PLoS ONE 2018, 13, e0194987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demol, S.; Yackobovitch-Gavan, M.; Shalitin, S.; Nagelberg, N.; Gillon-Keren, M.; Phillip, M. Low-carbohydrate (low & high-fat) versus high-carbohydrate low-fat diets in the treatment of obesity in adolescents. Acta Paediatr. 2008, 98, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Kirk, S.; Brehm, B.; Saelens, B.E.; Woo, J.G.; Kissel, E.; D’Alessio, D.; Bolling, C.; Daniels, S.R. Role of Carbohydrate Modification in Weight Management among Obese Children: A Randomized Clinical Trial. J. Pediatr. 2012, 161, 320–327.e1. [Google Scholar] [CrossRef] [Green Version]
- Sondike, S.B.; Copperman, N.; Jacobson, M.S. Effects of a low-carbohydrate diet on weight loss and cardiovascular risk factor in overweight adolescents. J. Pediatr. 2003, 142, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Zinn, C.; Schmiedel, O.; McPhee, J.; Harris, N.; Williden, M.; Wheldon, M.; Stride, D.; Schofield, G. A 12-week, whole-food carbohydrate-restricted feasibility study in overweight children. J. Insul. Resist. 2018, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Christodoulides, S.S.; Neal, E.G.; Fitzsimmons, G.; Chaffe, H.M.; Jeanes, Y.M.; Aitkenhead, H.; Cross, J.H. The effect of the classical and medium chain triglyceride ketogenic diet on vitamin and mineral levels. J. Hum. Nutr. Diet. 2012, 25, 16–26. [Google Scholar] [CrossRef]
- Ferraris, C.; Guglielmetti, M.; Pasca, L.; De Giorgis, V.; Ferraro, O.E.; Brambilla, I.; Leone, A.; De Amicis, R.; Bertoli, S.; Veggiotti, P.; et al. Impact of the Ketogenic Diet on Linear Growth in Children: A Single-Center Retrospective Analysis of 34 Cases. Nutrients 2019, 11, 1442. [Google Scholar] [CrossRef] [Green Version]
- Groleau, V.; Schall, J.I.; Stallings, V.A.; Bergqvist, C.A. Long-term impact of the ketogenic diet on growth and resting energy expenditure in children with intractable epilepsy. Dev. Med. Child Neurol. 2014, 56, 898–904. [Google Scholar] [CrossRef] [Green Version]
- Hallböök, T.; Sjölander, A.; Åmark, P.; Miranda, M.; Bjurulf, B.; Dahlin, M. Effectiveness of the ketogenic diet used to treat resistant childhood epilepsy in Scandinavia. Eur. J. Paediatr. Neurol. 2015, 19, 29–36. [Google Scholar] [CrossRef]
- Svedlund, A.; Hallböök, T.; Magnusson, P.; Dahlgren, J.; Swolin-Eide, D. Prospective study of growth and bone mass in Swedish children treated with the modified Atkins diet. Eur. J. Paediatr. Neurol. 2019, 23, 629–638. [Google Scholar] [CrossRef]
- Weber, D.D.; Aminzadeh-Gohari, S.; Tulipan, J.; Catalano, L.; Feichtinger, R.G.; Kofler, B. Ketogenic diet in the treatment of cancer—Where do we stand? Mol. Metab. 2020, 33, 102–121. [Google Scholar] [CrossRef]
- Jebeile, H.; Grunseit, A.M.; Thomas, M.; Kelly, T.; Garnett, S.P.; Gow, M.L. Low-carbohydrate interventions for adolescent obesity: Nutritional adequacy and guidance for clinical practice. Clin. Obes. 2020, 10, e12370. [Google Scholar] [CrossRef]
- Lennerz, B.S.; Barton, A.; Bernstein, R.K.; Dikeman, R.D.; Diulus, C.; Hallberg, S.; Rhodes, E.T.; Ebbeling, C.B.; Westman, E.C.; Yancy, W.S.; et al. Management of Type 1 Diabetes with a Very Low-Carbohydrate Diet. Pediatrics 2018, 141, e20173349. [Google Scholar] [CrossRef] [Green Version]
- Zinn, C.; Rush, A.; Johnson, R. Assessing the nutrient intake of a low-carbohydrate, high-fat (LCHF) diet: A hypothetical case study design. BMJ Open 2018, 8, e018846. [Google Scholar] [CrossRef] [Green Version]
- Australian Government; National Health and Medical Research Council; Department of Health and Ageing. Eatforhealth. Sample Meal Plan Childen Aged 9–11 Years. Available online: https://www.eatforhealth.gov.au/sites/default/files/content/TheGuidelines/adg_sample_meal_plan_child.pdf (accessed on 1 July 2020).
- National Health and Medical Research Council. Nutrient Reference Values for Australia and New Zealand. Available online: https://www.nhmrc.gov.au/about-us/publications/nutrient-reference-values-australia-and-new-zealand-including-recommended-dietary-intakes (accessed on 1 July 2020).
- World Health Organisation. Growth Reference Data for 5–19 Years. Available online: https://www.who.int/growthref/en/ (accessed on 29 January 2020).
- Schofield, W.N. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39, 5–41. [Google Scholar]
- Feinman, R.D.; Pogozelski, W.K.; Astrup, A.; Bernstein, R.K.; Fine, E.J.; Westman, E.C.; Accurso, A.; Frassetto, L.; Gower, B.A.; McFarlane, S.I.; et al. Dietary carbohydrate restriction as the first approach in diabetes management: Critical review and evidence base. Nutrition 2015, 31, 1–13. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Guideline: Sugars Intake for Adults and Children. Available online: https://www.who.int/publications/i/item/9789241549028 (accessed on 7 June 2020).
- Wu, G. Dietary protein intake and human health. Food Funct. 2016, 7, 1251–1265. [Google Scholar] [CrossRef] [Green Version]
- Harcombe, Z.; Baker, J.S.; DiNicolantonio, J.J.; Grace, F.; Davies, B. Evidence from randomised controlled trials does not support current dietary fat guidelines: A systematic review and meta-analysis. Open Heart 2016, 3, e000409. [Google Scholar] [CrossRef] [Green Version]
- Thornley, S.; Schofield, G.; Zinn, C.; Henderson, G. How reliable is the statistical evidence for limiting saturated fat intake? A fresh look at the influential Hooper meta-analysis. Intern. Med. J. 2019, 49, 1418–1424. [Google Scholar] [CrossRef]
- Astrup, A.; Magkos, F.; Bier, D.M.; Brenna, J.T.; De Oliveira Otto, M.C.; Hill, J.O.; King, J.C.; Mente, A.; Ordovas, J.M.; Volek, J.S.; et al. Saturated Fats and Health: A Reassessment and Proposal for Food-Based Recommendations: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 76, 844–857. [Google Scholar] [CrossRef]
- Dror, D.K.; Allen, L.H. Dairy product intake in children and adolescents in developed countries: Trends, nutritional contribution, and a review of association with health outcomes. Nutr. Rev. 2013, 72, 68–81. [Google Scholar] [CrossRef]
- O’Sullivan, T.A.; Bremner, A.P.; Mori, T.A.; Beilin, L.J.; Wilson, C.; Hafekost, K.; Ambrosini, G.L.; Huang, R.C.; Oddy, W.H. Regular Fat and Reduced Fat Dairy Products Show Similar Associations with Markers of Adolescent Cardiometabolic Health. Nutrients 2016, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Givens, D.I.; Astrup, A.; Bakker, S.J.L.; Goossens, G.H.; Kratz, M.; Marette, A.; Pijl, H.; Soedamah-Muthu, S.S. The Impact of Dairy Products in the Development of Type 2 Diabetes: Where Does the Evidence Stand in 2019? Adv. Nutr. Int. Rev. J. 2019, 10, 1066–1075. [Google Scholar] [CrossRef] [Green Version]
- Chankanka, O.; Marshall, T.A.; Levy, S.M.; Cavanaugh, J.E.; Warren, J.J.; Broffitt, B.; Kolker, J.L. Mixed dentition cavitated caries incidence and dietary intake frequencies. Int. J. Clin. Pediatr. Dent. 2011, 33, 233–240. [Google Scholar]
- Beck, A.L.; Heyman, M.; Chao, C.; Wojcicki, J. Full fat milk consumption protects against severe childhood obesity in Latinos. Prev. Med. Rep. 2017, 8, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Dougkas, A.; Barr, S.; Reddy, S.; Summerbell, C.D. A critical review of the role of milk and other dairy products in the development of obesity in children and adolescents. Nutr. Res. Rev. 2018, 32, 106–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Sullivan, T.A.; Schmidt, K.A.; Kratz, M. Whole-Fat or Reduced-Fat Dairy Product Intake, Adiposity, and Cardiometabolic Health in Children: A Systematic Review. Adv. Nutr. Int. Rev. J. 2020, 11, 928–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babio, N.; Becerra-Tomás, N.; Nishi, S.K.; López-González, L.; Paz-Graniel, I.; García-Gavilán, J.; Schröder, H.; Martín-Calvo, N.; Salas-Salvadó, J. Total dairy consumption in relation to overweight and obesity in children and adolescents: A systematic review and meta-analysis. Obes. Rev. 2021, 23 (Suppl. S1), e13400. [Google Scholar] [CrossRef] [PubMed]
- Seckold, R.; Fisher, E.; De Bock, M.; King, B.R.; Smart, C.E. The ups and downs of low-carbohydrate diets in the management of Type 1 diabetes: A review of clinical outcomes. Diabet. Med. 2018, 36, 326–334. [Google Scholar] [CrossRef]
- Ludwig, D.S.; Aronne, L.J.; Astrup, A.; de Cabo, R.; Cantley, L.C.; Friedman, M.I.; Heymsfield, S.B.; Johnson, J.D.; King, J.C.; Krauss, R.M.; et al. The carbohydrate-insulin model: A physiological perspective on the obesity pandemic. Am. J. Clin. Nutr. 2021, 114, 1873–1885. [Google Scholar] [CrossRef]
- Ludwig, D.S.; Hu, F.B.; Tappy, L.; Brand-Miller, J. Dietary carbohydrates: Role of quality and quantity in chronic disease. BMJ 2018, 361, k2340. [Google Scholar] [CrossRef] [Green Version]
Age Range (Years) | Reference Height (cm) | Reference Weight (kg) | BMI | † PAL | Energy (kcal) | |
---|---|---|---|---|---|---|
Male | 11 y | 142 cm | 34.3 kg | 17 | 1.7 | 2175 |
Female | 11 y | 145 cm | 35.7 kg | 17 | 1.7 | 2016 |
Male | 16 y | 172 cm | 60.7 kg | 20.5 | 1.7 | 2968 |
Female | 16 y | 162 cm | 54.5 kg | 21 | 1.7 | 2442 |
* Female | 10 y | 138 cm | 32.9 kg | 16.7 | 1.6 | 2283 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zinn, C.; Lenferna De La Motte, K.-A.; Rush, A.; Johnson, R. Assessing the Nutrient Status of Low Carbohydrate, High-Fat (LCHF) Meal Plans in Children: A Hypothetical Case Study Design. Nutrients 2022, 14, 1598. https://doi.org/10.3390/nu14081598
Zinn C, Lenferna De La Motte K-A, Rush A, Johnson R. Assessing the Nutrient Status of Low Carbohydrate, High-Fat (LCHF) Meal Plans in Children: A Hypothetical Case Study Design. Nutrients. 2022; 14(8):1598. https://doi.org/10.3390/nu14081598
Chicago/Turabian StyleZinn, Caryn, Kayla-Anne Lenferna De La Motte, Amy Rush, and Rebecca Johnson. 2022. "Assessing the Nutrient Status of Low Carbohydrate, High-Fat (LCHF) Meal Plans in Children: A Hypothetical Case Study Design" Nutrients 14, no. 8: 1598. https://doi.org/10.3390/nu14081598
APA StyleZinn, C., Lenferna De La Motte, K. -A., Rush, A., & Johnson, R. (2022). Assessing the Nutrient Status of Low Carbohydrate, High-Fat (LCHF) Meal Plans in Children: A Hypothetical Case Study Design. Nutrients, 14(8), 1598. https://doi.org/10.3390/nu14081598