Self-Reported Sedentary Behavior and Metabolic Syndrome among Children Aged 6–14 Years in Beijing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Questionnaires Data Collection
2.3. Anthropometric Measurements
2.4. Blood Pressure Measurement
2.5. Laboratory Biochemical Examination
2.6. Calculation or Diagnostic Criteria
2.6.1. Sedentary Behavior
time on weekends × 2)/7
2.6.2. Metabolic Syndrome
2.7. Statistical Analysis
3. Results
3.1. The Status Quo of MetS
3.2. The Status Quo of Sedentary Behavior
3.3. Relationship between Sedentary Behavior and MetS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zimmet, P.; Alberti, G.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S. The metabolic syndrome in children and adolescents. Lancet 2007, 369, 2059–2061. [Google Scholar] [CrossRef]
- Mi, J. Childhood obesity and metabolic syndrome. Chin. J. Child Health Care 2007, 3, 221–223. [Google Scholar]
- Ford, E.S.; Li, C.; Zhao, G.; Pearson, W.S.; Mokdad, A.H. Prevalence of the metabolic syndrome among U.S. adolescents using the definition from the international diabetes federation. Diabetes Care 2008, 31, 587–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Yang, X.; Zhai, F.; Kok, F.J.; Zhao, W.; Piao, J.; Zhang, J.; Cui, Z.; Ma, G. Prevalence of the metabolic syndrome in chinese adolescents. Br. J. Nutr. 2008, 99, 565–570. [Google Scholar] [CrossRef] [Green Version]
- Cook, S.; Weitzman, M.; Auinger, P.; Nguyen, M.; Dietz, W.H. Prevalence of a metabolic syndrome phenotype in adolescents: Findings from the third national health and nutrition examination survey, 1988–1994. Arch. Pediatrics Adolesc. Med. 2003, 157, 821–827. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Demyen, M.F.; Mathew, J.; Kothari, N.; Feurdean, M.; Ahlawat, S.K. Obesity, metabolic syndrome, and cardiovascular risk in gluten-free followers without celiac disease in the united states: Results from the national health and nutrition examination survey 2009–2014. Dig. Dis. Sci. 2017, 62, 2440–2448. [Google Scholar] [CrossRef]
- Sina, E.; Buck, C.; Veidebaum, T.; Siani, A.; Reisch, L.; Pohlabeln, H.; Pala, V.; Moreno, L.A.; Molnar, D.; Lissner, L.; et al. Media use trajectories and risk of metabolic syndrome in European children and adolescents: The IDEFICS/I.Family cohort. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 134. [Google Scholar] [CrossRef]
- DeBoer, M.D.; Filipp, S.L.; Gurka, M.J. Geographical variation in the prevalence of obesity and metabolic syndrome among us adolescents. Pediatric Obes. 2019, 14, e12483. [Google Scholar] [CrossRef]
- Ye, P.; Yan, Y.; Ding, W.; Dong, H.; Liu, Q.; Huang, G.; Mi, J. Prevalence of metabolic syndrome in Chinese children and adolescents: A meta-analysis. Zhonghua Liuxingbingxue Zazhi 2015, 36, 884–888. [Google Scholar]
- Cornier, M.A.; Dabelea, D.; Hernandez, T.L.; Lindstrom, R.C.; Steig, A.J.; Stob, N.R.; van Pelt, R.E.; Wang, H.; Eckel, R.H. The metabolic syndrome. Endocr. Rev. 2008, 29, 777–822. [Google Scholar] [CrossRef]
- De Boer, M.D. Assessing and managing the metabolic syndrome in children and adolescents. Nutrients 2019, 11, 1788. [Google Scholar] [CrossRef] [Green Version]
- Kassi, E.; Pervanidou, P.; Kaltsas, G.; Chrousos, G. Metabolic syndrome: Definitions and controversies. BMC Med. 2011, 9, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sedentary Behaviour Research Network. Letter to the editor: Standardized use of the terms “sedentary” and “sedentary behaviours”. Appl. Physiol. Nutr. Metab. 2012, 37, 540–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Who Guidelines on Physical Activity and Sedentary Behaviour. Available online: https://www.who.int/publications/i/item/9789240015128 (accessed on 19 April 2022).
- Tremblay, M.S.; Aubert, S.; Barnes, J.D.; Saunders, T.J.; Carson, V.; Latimer-Cheung, A.E.; Chastin, S.F.M.; Altenburg, T.M.; Chinapaw, M.J.M. Sedentary behavior research network (sbrn)—Terminology consensus project process and outcome. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 75. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Guo, H.; Gong, W.; Zhang, Y.; Ding, C.; Feng, G.; Liu, A. Status of sedentary activities in the leisure time in chinese pupils in 2010–2012. J. Hyg. Res. 2017, 46, 705–708+721. [Google Scholar]
- Wu, X.; Tao, S.; Zhang, S.; Zhang, Y.; Huang, K.; Tao, F. Analysis on risk factors of screen time among chinese primary and middle school students in 12 provinces. Chin. J. Prev. Med. 2016, 50, 508–513. [Google Scholar]
- Mainous, A.G., 3rd; Tanner, R.J.; Rahmanian, K.P.; Jo, A.; Carek, P.J. Effect of sedentary lifestyle on cardiovascular disease risk among healthy adults with body mass indexes 18.5 to 29.9 kg/m2. Am. J. Cardiol. 2019, 123, 764–768. [Google Scholar] [CrossRef]
- Carson, V.; Hunter, S.; Kuzik, N.; Gray, C.E.; Poitras, V.J.; Chaput, J.P.; Saunders, T.J.; Katzmarzyk, P.T.; Okely, A.D.; Connor Gorber, S.; et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: An update. Appl. Physiol. Nutr. Metab. 2016, 41, S240–S265. [Google Scholar] [CrossRef]
- Tremblay, M.S.; le Blanc, A.G.; Kho, M.E.; Saunders, T.J.; Larouche, R.; Colley, R.C.; Goldfield, G.; Connor Gorber, S. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 98. [Google Scholar] [CrossRef] [Green Version]
- Subspecialty Group of Endocrinologic, Hereditary and Metabolic Diseases, The Society of Pediatrics; Subspecialty Group of Cardiology, The Society of Pediatrics; Subspecialty Groups of Child Health Care, The Society of Pediatrics. Definition of metabolic syndrome in chinese children and adolescents and recommendations for prevention and treatment. Chin. J. Pediatrics 2012, 50, 420–422. [Google Scholar]
- Liang, L.; Fu, J.; Du, J. The exploration and significance of the definition of metabolic syndrome in chinese children and adolescents. Chin. J. Pediatrics 2012, 2012, 401–404. [Google Scholar]
- Lee, C.M.; Huxley, R.R.; Wildman, R.P.; Woodward, M. Indices of abdominal obesity are better discriminators of cardiovascular risk factors than bmi: A meta-analysis. J. Clin. Epidemiol. 2008, 61, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Guidelines for Prevention and Control of Childhood Obesity Research Committee. Guidelines for Prevention and Control of Childhood Obesity; People’s Medical Publishing House Co., Ltd.: Beijing, China, 2021. [Google Scholar]
- Wang, H.; Gui, Z.; Zhang, J.; Cai, L.; Tan, W.; Chen, Y. Association between screen time and metabolic syndrome among 6–13 years old children in guangzhou. Chin. J. Sch. Health 2019, 40, 1780–1783. [Google Scholar]
- Chinese Work Group of Pediatric Metabolic Syndrome. Prevalence of metabolic syndrome of children and adolescent students in chinese six cities. Chin. J. Pediatrics 2013, 6, 409–413. [Google Scholar]
- Bai, P.; Shen, H.; Yang, C.; Fu, L.; Wang, H.; Shi, Y. Prevalence of metabolic syndrome among schoolchildren in pudong new area of shanghai. J. Environ. Occup. Med. 2015, 32, 852–855. [Google Scholar]
- Wittcopp, C.; Conroy, R. Metabolic syndrome in children and adolescents. Pediatrics Rev. 2016, 37, 193–202. [Google Scholar] [CrossRef]
- Liang, J.; Chen, Y.; Yang, W.; Cao, M.; Dai, M.; Mai, J.; Ma, J.; Jing, J. Relationship between overweight and obesity and metabolic syndrome among children and adolescents in guangzhou. Chin. J. Sch. Health 2015, 36, 1851–1854. [Google Scholar]
- Chen, T.; Ji, C. Relationship between waist circumference and body mass index and metabolic syndrome related traits among middle school students in beijing. J. Peking Univ. 2012, 44, 355–358. [Google Scholar]
- Beijing Municipal Government. Beijing 2018 Annual Health and Population Health Status Report; People’s Medical Publishing House Co., Ltd.: Beijing, China, 2019; p. 9. [Google Scholar]
- Wang, J.; Zhu, Y.; Cai, L.; Jing, J.; Chen, Y.; Mai, J.; Ma, L.; Ma, Y.; Ma, J. Metabolic syndrome and its associated early-life factors in children and adolescents: A cross-sectional study in guangzhou, china. Public Health Nutr. 2016, 19, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Chen, Y.; Gui, Z.; Bao, W.; Zhang, J.; Tan, K.; Zhang, S.; Cha, L. Association of sedentary behaviors with visual acuity among primary school students: A cohort study. Chin. J. Sch. Health 2021, 42, 1144–1147. [Google Scholar]
- An, M.; Chen, T.; Ma, J. Association between screen time and overweight and obesity among middle and primary school students in fangshan district of beijing city. Chin. J. Sch. Health 2018, 39, 506–508. [Google Scholar]
- Brambilla, P.; Bedogni, G.; Heo, M.; Pietrobelli, A. Waist circumference-to-height ratio predicts adiposity better than body mass index in children and adolescents. Int. J. Obes. 2013, 37, 943–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navti, L.K.; Samani-Radia, D.; David McCarthy, H. Children’s body fatness and prevalence of obesity in relation to height for age. Ann. Hum. Biol. 2014, 41, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Mota, J.; Silva Dos Santos, S.; Santos, A.; Seabra, A.; Vale, S. Association between sedentary behavior time and waist-to-height ratio in preschool children. Am. J. Hum. Biol. Off. J. Hum. Biol. Counc. 2016, 28, 746–748. [Google Scholar] [CrossRef]
- Lahjibi, E.; Heude, B.; Dekker, J.M.; Højlund, K.; Laville, M.; Nolan, J.; Oppert, J.M.; Balkau, B. Impact of objectively measured sedentary behaviour on changes in insulin resistance and secretion over 3 years in the risc study: Interaction with weight gain. Diabetes Metab. 2013, 39, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Ford, E.S.; Li, C.; Zhao, G.; Pearson, W.S.; Tsai, J.; Churilla, J.R. Sedentary behavior, physical activity, and concentrations of insulin among us adults. Metab. Clin. Exp. 2010, 59, 1268–1275. [Google Scholar] [CrossRef]
- Helmerhorst, H.J.; Wijndaele, K.; Brage, S.; Wareham, N.J.; Ekelund, U. Objectively measured sedentary time may predict insulin resistance independent of moderate- and vigorous-intensity physical activity. Diabetes 2009, 58, 1776–1779. [Google Scholar] [CrossRef] [Green Version]
- Hjorth, M.F.; Chaput, J.P.; Damsgaard, C.T.; Dalskov, S.M.; Andersen, R.; Astrup, A.; Michaelsen, K.F.; Tetens, I.; Ritz, C.; Sjödin, A. Low physical activity level and short sleep duration are associated with an increased cardio-metabolic risk profile: A longitudinal study in 8–11 year old danish children. PLoS ONE 2014, 9, e104677. [Google Scholar] [CrossRef]
- Greer, A.E.; Sui, X.; Maslow, A.L.; Greer, B.K.; Blair, S.N. The effects of sedentary behavior on metabolic syndrome independent of physical activity and cardiorespiratory fitness. J. Phys. Act. Health 2015, 12, 68–73. [Google Scholar] [CrossRef]
- van der Berg, J.D.; Stehouwer, C.D.; Bosma, H.; van der Velde, J.H.; Willems, P.J.; Savelberg, H.H.; Schram, M.T.; Sep, S.J.; van der Kallen, C.J.; Henry, R.M.; et al. Associations of total amount and patterns of sedentary behaviour with type 2 diabetes and the metabolic syndrome: The maastricht study. Diabetologia 2016, 59, 709–718. [Google Scholar] [CrossRef] [Green Version]
- Edwardson, C.L.; Gorely, T.; Davies, M.J.; Gray, L.J.; Khunti, K.; Wilmot, E.G.; Yates, T.; Biddle, S.J. Association of sedentary behaviour with metabolic syndrome: A meta-analysis. PLoS ONE 2012, 7, e34916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, J.; Ma, H.; Wang, Y. Sedentary behavior and cardiovascular health risk. Chin. Heart J. 2021, 33, 330–334. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, J. Advance and enlightenment of foreign studies on sedentary behavior. J. Environ. Occup. Med. 2017, 34, 740–744, 748. [Google Scholar]
Group | Total (n = 3392) | Non-MetS (n = 3311) | MetS (n = 81) | p-Value |
---|---|---|---|---|
Gender | 0.047 * | |||
Boy | 1724(50.8) | 1674(50.6) | 50(61.7) | |
Girl | 1668(49.2) | 1637(49.4) | 31(38.3) | |
Age (years) | <0.001 *** | |||
6~8 | 895(26.4) | 886(26.8) | 9(11.1) | |
8~10 | 805(23.7) | 796(24.0) | 9(11.1) | |
10~12 | 859(25.3) | 831(25.1) | 28(34.6) | |
12~14 | 833(24.6) | 798(24.1) | 35(43.2) | |
Residence | 0.002 ** | |||
Urban | 1328(39.2) | 1310(39.6) | 18(22.2) | |
Suburbs | 2064(60.8) | 2001(60.4) | 63(77.8) | |
Height (cm) | 140.95 ± 15.21 | 140.67 ± 15.13 | 152.33 ± 14.53 | <0.001 *** |
Weight (kg) | 37.52 ± 14.12 | 36.96 ± 13.59 | 60.84 ± 15.86 | <0.001 *** |
Average sedentary time (min/day) | 175.7(128.6228.6) | 175.1(127.1227.9) | 208.9(154.6251.8) | 0.001 ** |
Sedentary behavior time group | 0.009 ** | |||
Low level | 1069(33.3) | 1055(33.6) | 14(18.4) | |
Medium level | 1091(33.9) | 1064(33.9) | 27(35.5) | |
High level | 1055(32.8) | 1020(32.5) | 35(46.1) | |
Caregiver’s education | 0.125 | |||
Junior high school or below | 477(14.1) | 462(14.0) | 15(18.5) | |
High school/Technical school | 640(18.9) | 621(18.8) | 19(23.5) | |
College/Vocational college | 703(20.7) | 683(20.6) | 20(24.7) | |
Undergraduate or above | 1571(46.3) | 1544(46.6) | 27(33.3) | |
Per capita household income (CNY/year) | 0.257 | |||
<20,000 | 307(9.1) | 297(9.0) | 10(12.3) | |
20,000~39,999 | 489(14.4) | 473(14.3) | 16(19.8) | |
40,000~69,999 | 721(21.3) | 702(21.2) | 19(23.5) | |
≥70,000 | 1427(42.1) | 1402(42.3) | 25(30.9) | |
Not clear | 448(13.2) | 437(13.2) | 11(13.6) | |
Leisure time MVPA (min/week) | 0.826 | |||
≤60 | 1151(40.3) | 1126(40.4) | 25(39.7) | |
61~120 | 710(24.9) | 693(24.8) | 17(27.0) | |
121~240 | 611(21.4) | 600(21.5) | 11(17.5) | |
>240 | 381(13.4) | 371(13.3) | 10(15.9) | |
WC (cm) | 62.40 ± 11.37 | 61.71 ± 10.45 | 82.60 ± 8.61 | <0.001 *** |
WHtR | 0.44 ± 0.06 | 0.44 ± 0.06 | 0.54 ± 0.05 | <0.001 *** |
SBP (mmHg) | 109.03 ± 10.14 | 108.62 ± 9.73 | 121.26 ± 11.16 | <0.001 *** |
DBP (mmHg) | 64.32 ± 7.08 | 64.18 ± 7.01 | 68.12 ± 7.31 | <0.001 *** |
Fasting glucose (mmol/L) | 5.03 ± 0.43 | 5.03 ± 0.42 | 5.36 ± 0.51 | <0.001 *** |
Serum TG (mmol/L) | 0.78 ± 0.47 | 0.75 ± 0.41 | 1.83 ± 0.92 | <0.001 *** |
Serum HDL-C (mmol/L) | 1.46 ± 0.29 | 1.47 ± 0.29 | 1.01 ± 0.18 | <0.001 *** |
Boys | Girls | |||||||
---|---|---|---|---|---|---|---|---|
Low Level | Medium Level | High Level | p Value | Low Level | Medium Level | High Level | p Value | |
Abdominal obesity | 140(25.2) | 168(30.3) | 172(33.0) | 0.018 * | 68(13.2) | 91(17.0) | 90(16.9) | 0.161 |
Hypertension | 22(3.9) | 25(4.4) | 35(6.5) | 0.101 | 13(2.5) | 21(3.8) | 17(3.2) | 0.460 |
Hyperglycemia | 38(6.7) | 50(8.8) | 61(11.4) | 0.024 * | 25(4.8) | 33(6.0) | 42(7.8) | 0.123 |
High TG | 30(5.3) | 43(7.6) | 50(9.3) | 0.036 * | 29(5.5) | 50(9.1) | 54(10.0) | 0.020 * |
Low HDL-C | 16(2.8) | 29(5.1) | 38(7.1) | 0.005 ** | 19(3.6) | 37(6.7) | 41(7.6) | 0.017 * |
MetS | 10(1.8) | 17(3.1) | 19(3.6) | 0.174 | 4(0.8) | 10(1.9) | 16(3.0) | 0.031 * |
Model | Sedentary Time | Abdominal Obesity | Hypertension | Hyperglycemia | High TG | Low HDL-C | MetS |
---|---|---|---|---|---|---|---|
Crude | Low level | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) |
Medium level | 1.29(1.05,1.59) * | 1.30(0.83,2.03) | 1.31(0.94,1.84) | 1.59(1.14,2.23) ** | 1.90(1.25,2.89) ** | 1.91(1.00,3.67) | |
High level | 1.37(1.11,1.68) ** | 1.53(0.99,2.37) | 1.73(1.25,2.39)** | 1.87(1.34,2.61) *** | 2.39(1.59,3.59) *** | 2.59(1.38,4.83) ** | |
Model 1 | Low level | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) |
Medium level | 1.25(0.98,1.59) | 1.05(0.61,1.82) | 1.01(0.67,1.51) | 1.44(0.98,2.14) | 1.57(0.95,2.58) | 1.39(0.65,2.96) | |
High level | 1.49(1.16,1.92) ** | 1.23(0.71,2.14) | 1.26(0.84,1.89) | 1.57(1.05,2.35) * | 2.02(1.22,3.32) ** | 1.63(0.76,3.47) |
Sedentary Time | Abdominal Obesity | Hypertension | Hyperglycemia | High TG | Low HDL-C | MetS |
---|---|---|---|---|---|---|
Boys | ||||||
Low level | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) |
Medium level | 1.15(0.85,1.56) | 0.67(0.32,1.41) | 1.06(0.62,1.81) | 1.35(0.77,2.36) | 1.53(0.71,3.30) | 1.18(0.45,3.06) |
High level | 1.51(1.10,2.07) * | 0.91(0.44,1.86) | 1.41(0.83,2.40) | 1.53(0.87,2.70) | 2.25(1.06,4.76) * | 1.43(0.56,3.68) |
Girls | ||||||
Low level | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) |
Medium level | 1.52(1.01,2.27) * | 1.87(0.80,4.37) | 0.89(0.47,1.68) | 1.56(0.89,2.71) | 1.61(0.83,3.12) | 2.08(0.58,7.42) |
High level | 1.59(1.04,2.43) * | 1.89(0.77,4.64) | 1.03(0.54,1.96) | 1.61(0.91,2.86) | 1.83(0.93,3.59) | 2.25(0.61,8.26) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, N.; Yu, X.; Wang, F.; Yu, Y.; Wen, J.; Guo, D.; Jian, Y.; Li, H.; Huang, L.; Wang, J.; et al. Self-Reported Sedentary Behavior and Metabolic Syndrome among Children Aged 6–14 Years in Beijing, China. Nutrients 2022, 14, 1869. https://doi.org/10.3390/nu14091869
Yin N, Yu X, Wang F, Yu Y, Wen J, Guo D, Jian Y, Li H, Huang L, Wang J, et al. Self-Reported Sedentary Behavior and Metabolic Syndrome among Children Aged 6–14 Years in Beijing, China. Nutrients. 2022; 14(9):1869. https://doi.org/10.3390/nu14091869
Chicago/Turabian StyleYin, Ning, Xiaohui Yu, Fei Wang, Yingjie Yu, Jing Wen, Dandan Guo, Yuanzhi Jian, Hong Li, Liyu Huang, Junbo Wang, and et al. 2022. "Self-Reported Sedentary Behavior and Metabolic Syndrome among Children Aged 6–14 Years in Beijing, China" Nutrients 14, no. 9: 1869. https://doi.org/10.3390/nu14091869
APA StyleYin, N., Yu, X., Wang, F., Yu, Y., Wen, J., Guo, D., Jian, Y., Li, H., Huang, L., Wang, J., & Zhao, Y. (2022). Self-Reported Sedentary Behavior and Metabolic Syndrome among Children Aged 6–14 Years in Beijing, China. Nutrients, 14(9), 1869. https://doi.org/10.3390/nu14091869