Valorization of Chicken Slaughterhouse Byproducts to Obtain Antihypertensive Peptides
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Poultry Meat Industry and Chicken Byproducts
3.2. ACEi and Antihypertensive Effects of Hydrolysates from Chicken Slaughterhouse Byproducts
3.2.1. Blood
3.2.2. Bones
By-Product | Hydrolisis Conditions | In Vitro ACEi Activity | In Vivo | References | ||||||
---|---|---|---|---|---|---|---|---|---|---|
General | Component | % * | Ic50 (µg/mL) | Animal Model | Oral Doses | Period | Effect on BP | Mechanism | ||
Blood | Corpuscle | Alcalase® 4%, 6 h, 51.1 °C, pH 8.0 | 37.7 (0.2 mg/mL) | 341 | SHR | 600 mg/kg BW | Single | ↓ SBP (57.7 mmHg, 6 h pa) | [84] | |
SHR | 600 mg/kg BW | Daily for 4 weeks | ↓ SBP (~60 mmHg) ↓ DBP (~30 mmHg) | |||||||
Fraction < 1 KDa of hydrolysate (Alcalase® 4%, 6 h, 51.1 °C, pH 8.0) | 138 | SHR | 100 mg/kg BW | Single | ↓ SBP (70.9 mmHg, 6 h pa) ↓ DBP (47 mmHg, 6 h pa) | - | ||||
SHR | 100 mg/kg BW | Daily for 4 weeks | ↓ SBP (~60 mmHg) ↓ DBP (~30 mmHg) | - | ||||||
Meal | Alcalase® 10%, 5 h, 50 °C, pH 8.0 | 340 | [66] | |||||||
Isolated red blood cells | 0.03 N HCl, 32 h, 50 °C | 44 (ne) | [87] | |||||||
Alcalase® 2.5%, 2 h, 60 °C | 45 (ne) | |||||||||
Plasma | Trypsin, 6000 U/g (E/S ratio), 5 h, 37 °C, pH 7.5 | 54 (1 mg/mL) | [86] | |||||||
Bones | Pepsin 1:100 (w/w), 6 h, 36 °C, pH 2.0 | 220 | [97] | |||||||
Leg | Alcalase® 1:50 (E/S ratio) 8 h, 50 °C, pH 8.0 | 86 (ne) | 612 and 945 | [60,92] | ||||||
Alcalase® 1:50 (E/S ratio), 4 h, 50 °C, pH 8.0 | 84 (ne) | 545 and 1960 | SHR | 50 mg/kg BW | Single | ↓ SBP (26 mmHg, 4 h pa) | ||||
Alcalase® 2% (E/S ratio), 4 h, 50 °C, pH 8.0 | 545 | 50 mg/kg BW | Daily, 8 weeks | Avoid increase of SBP (33 mmHg) | ↑ Heart weight ↓ Heart/BW ratio ↓ Wall thickness in intramyocardial coronary vessels | [92,93] | ||||
Combs and Wattles | Alcalase® 5% (E/S ratio), 4 h, 50 °C, pH 8.0 | 134 | [98] | |||||||
Feet | Protamex® 0.4 AU/g prot, 2 h, 50 °C, pH 7.0 | 27 | SHR | 55 mg/kg BW | Single | ↓ SBP (26.3 mmHg, 6 h pa) | ↓ Plasma ACE activity | [99] | ||
Protamex® 0.4 AU/g prot, 2 h, 50 °C, pH 7.0 | 9 | Diet-induced hypertensive rats | 55 mg/kg BW | Daily for 3 weeks | ↓ SBP (~20 mmHg) | ↑ GSH levels, ↓ Et-1, ↑ Nox4 ↑ Sirt1 | [100] | |||
Protamex® 0.4 AU/g prot, 2 h, 50 °C, pH 7.0 | 27 | SHR | 85 mg/kg BW | Single | ↓ SBP (30.5 mmHg, 6 h pa) | [99] | ||||
Fraction <6000 Da: Aspergillus oryzae protease 0.1% | 260 | [101] | ||||||||
Fraction <3000 Da: Aspergillus oryzae protease (0.1%) + Protease FP, 24 h, 50 °C, pH 7.0 | 130 | SHR | 3 g/kg wt | Single | ↓ SBP (~50 mmHg, 6 h pa) | [101] | ||||
Fraction <3000 Da: Aspergillus oryzae protease (0.1%) + Protease FP, 24 h, 50 °C, pH 7.0 | 130 | SHR | 3 g/kg wt | Daily for 4 weeks | ↓ SBP (~33 mmHg) | |||||
Fraction <3000 Da: Aspergillus oryzae protease (0.1%) + Protease FP, 24 h, 50 °C, pH 7.0 | Hypertensive rats (Wistar Kyoto rats + L-NAME) | 2.0 g/kg | Single | ↑ Serum NO levels (1 h pa) | [102] | |||||
Fraction <3000 Da: Aspergillus oryzae protease (0.1%) + Protease FP, 24 h, 50 °C, pH 7.0 | Hypertensive rats (Wistar Kyoto rats + L-NAME) | 2.0 g/kg | Daily for 8 weeks | ↓ SBP (~20 mmHg, 4 week pa) | ↓ Hypertrophy of the arterial intima and the myofibrils in thoracic aorta ↑ Vasorelaxation of thoracic aorta ↓Plasma iCAM-1 levels | |||||
Fraction <3000 Da: Aspergillus oryzae protease (0.1%) + Protease FP, 24 h, 50 °C, pH 7.0 | Mildly hypertensive subjects | 5.2 g | Daily for 4 weeks | ↓ SBP (11.8 mmHg, 2 weeks pa) ↓ DBP (4.1 mmHg, 2 weeks pa) | ↓ Plasma renin activity (30%) ↑ EPC colonies | [103] | ||||
Fraction <3000 Da: Aspergillus oryzae protease (0.1 %) + Protease FP, 24 h, 50 °C, pH 7.0 | Mildly and pre-hypertensive subjects | 2.9 g | Daily for 12 weeks | ↓ SBP (5.3 mmHg) | ↓ Brachial–ankle pulse wave velocity (righ arm and average of both arms) | [104] | ||||
Feathers | Chryseobacterium sp. kr6, 24 and 48 h, 30 °C, pH 8.0 | 53 and 65 (for 24 and 48 h, respectively) (ne) | [105] | |||||||
Skins | Thigh | Alcalase® 3% (w/w, protein basis), 4 h, 55 °C, pH 8.0. | 80 (ne) | 550 | SHR | 100 mg/kg BW | ↓ SBP (~28–34 mmHg, 4–6 h pa) | [52,106] | ||
Breast | Pepsin 1% (w/w, protein basis), 2 h, 37 °C, pH 2.0 + Pancreatin 1% (w/w, protein basis), 4 h, 37 °C, pH 7.5 | ~78 (ne) | 640 | SHR | ↓ SBP (31 mmHg, 6 h pa) | |||||
Thigh and breast | Mixture of two hydrolysates (1:1) Thigh + Alcalase® 3% (w/w, protein basis), 4 h, 55 °C, pH 8.0; Breast + pepsin 1% (w/w, protein basis), 2 h, 37 °C, pH 2.0 + Pancreatin 1% (w/w, protein basis), 4 h, 37 °C, pH 7.5 | 0.5% | Daily for 6 weeks | ↓ SBP (31 mmHg) | ↓ Plasma ACE activity | [107] | ||||
Thigh and breast | Mixture of two hydrolysates (1:1) Thigh + Alcalase® 3% (w/w, protein basis), 4 h, 55 °C, pH 8.0; Breast + pepsin 1% (w/w, protein basis), 2 h, 37 °C, pH 2.0 + Pancreatin 1% (w/w, protein basis), 4 h, 37 °C, pH 7.5 | SHR | 1% | Daily for 6 weeks | ↓ SBP (36 mmHg) | ↓ Plasma ACE activity ↑ Urine creatinine ↑ Urine L-isoleucine ↓ Urine uric acid ↓ Urine N2-acetyl-ornithine ↑ Urine N1-acetylspermidine ↓ Urine symmetric dimethylarginine ↑ Urine pentahomomethionine ↓ Urine buthionine sulfoximine ↓ Plasma tranexamic acid ↑ Plasma 13-docosenamide ↓ Plasma Vitamin E succinate ↑ Plasma PS(O-16:0/15:0) ↑ Plasma PS(O-18:0/15:0) | ||||
Trachea | Alcalase® 1% (w/w protein), 1 h, 50 °C, pH 8.0 | 422 | [49] | |||||||
Residues | Mixture | Alcalase® 1%, (w/w residue), 2.5 h, 60 °C | 273 | SHR | 3% | Daily for 16 weeks | ↓ SBP (26 mmHg) | ↓ Aorta ACE activity | [108] | |
Viscera | Intestine, spleen, gall bladder, and connective tissues | Autolytic degradation of tissue protein (6 h, 55 °C, pH 2.8) | 350–2650 | [54,55] | ||||||
Liver | Pediococcus acidilacticiN-CIM5368 24 h, 37 °C pH 4.0 or Alcalase® 2.5 L, 1.5% (v/w), 1.5 h, 45 °C | Cyclophosphamide-induced anemic mice (Swiss-albino female mice) | Diet deficient in iron + 1.5%, 3%, and 4.5% | Daily for 4 weeks | Restore BW Restore hemoglobin levels ↑ Plasma antioxidant activity | [109] | ||||
Alcalase® 2.4 L and Flavourzyme® 500 L (1:1), 2 h, 50 °C | 81 (ne) | [53] |
3.2.3. Chicken Feet/Legs/Claws
3.2.4. Skins
3.2.5. Other Chicken Byproducts
3.3. ACEi and Antihypertensive Effects of Chicken Byproduct-Derived Peptides
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Hypertension. Available online: https://www.who.int/news-room/fact-sheets/detail/hypertension (accessed on 11 September 2022).
- Hajat, C.; Stein, E. The global burden of multiple chronic conditions: A narrative review. Prev. Med. Rep. 2018, 12, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Mora, L.; Gallego, M.; Toldrá, F. ACEI-inhibitory peptides naturally generated in meat and meat products and their health relevance. Nutrients 2018, 10, 1259. [Google Scholar] [CrossRef]
- Rezvankhah, A.; Yarmand, M.S.; Ghanbarzadeh, B.; Mirzaee, H. Generation of bioactive peptides from lentil protein: Degree of hydrolysis, antioxidant activity, phenol content, ACE-inhibitory activity, molecular weight, sensory, and functional properties. J. Food Meas. Charact. 2021, 15, 5021–5035. [Google Scholar] [CrossRef]
- Margalef, M.; Bravo, F.I.; Arola-Arnal, A.; Muguerza, B. Natural angiotensin converting enzyme (ACE) inhibitors with antihypetensive properties. In Natural Products Targeting Clinically Relevant Enzymes; Andrade, P., Valentao, P., Pereira, D.M., Eds.; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2017; pp. 45–67. [Google Scholar]
- Ajeigbe, O.F.; Ademosun, A.O.; Oboh, G. Relieving the tension in hypertension: Food–drug interactions and anti-hypertensive mechanisms of food bioactive compounds. J. Food Biochem. 2021, 45, e13317. [Google Scholar] [CrossRef] [PubMed]
- López-Fernández-Sobrino, R.; Torres-Fuentes, C.; Bravo, F.I.; Muguerza, B. Winery by-products as a valuable source for natural antihypertensive agents. Crit. Rev. Food Sci. Nutr. 2022, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Bechaux, J.; Gatellier, P.; Le Page, J.-F.; Drillet, Y.; Sante-Lhoutellier, V. A comprehensive review of bioactive peptides obtained from animal byproducts and their applications. Food Funct. 2019, 10, 6244–6266. [Google Scholar] [CrossRef]
- Le Gouic, A.V.; Harnedy, P.A.; FitzGerald, R.J. Bioactive peptides from fish protein by-products. In Bioactive Molecules in Food; Reference Series in Phytochemistry; Mérillon, J., Ramawat, K., Eds.; Springer: Cham, Switzerland, 2018; pp. 1–35. [Google Scholar]
- Mora, L.; Reig, M.; Toldrá, F. Bioactive peptides generated from meat industry by-products. Food Res. Int. 2014, 65, 344–349. [Google Scholar] [CrossRef]
- Lafarga, T.; Hayes, M. Bioactive protein hydrolysates in the functional food ingredient industry: Overcoming current challenges. Food Rev. Int. 2017, 33, 217–246. [Google Scholar] [CrossRef]
- Kanani, F.; Heidari, M.D.; Gilroyed, B.H.; Pelletier, N. Waste valorization technology options for the egg and broiler industries: A review and recommendations. J. Clean. Prod. 2020, 262, 121129. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Gateway to poultry production and products. In Animal Welfare; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022. [Google Scholar]
- Valta, K.; Damala, P.; Orli, E.; Papadaskalopoulou, C.; Moustakas, K.; Malamis, D.; Loizidou, M. Valorisation opportunities related to wastewater and animal by-products exploitation by the Greek slaughtering industry: Current status and future potentials. Waste Biomass Valorization 2015, 6, 927–945. [Google Scholar] [CrossRef]
- Adler, S.A.; Slizyte, R.; Honkapää, K.; Løes, A.K. In vitro pepsin digestibility and amino acid composition in soluble and residual fractions of hydrolyzed chicken feathers. Poult. Sci. 2018, 97, 3343–3357. [Google Scholar] [CrossRef] [PubMed]
- Araújo, Í.B.S.; Lima, D.A.S.; Pereira, S.F.; Madruga, M.S. Quality of low-fat chicken sausages with added chicken feet collagen. Poult. Sci. 2019, 98, 1064–1074. [Google Scholar] [CrossRef]
- Fu, Y.; Therkildsen, M.; Aluko, R.E.; Lametsch, R. Exploration of collagen recovered from animal by-products as a precursor of bioactive peptides: Successes and challenges. Crit. Rev. Food Sci. Nutr. 2019, 59, 2011–2027. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Wang, Y.; Hao, Y.; Zhang, W.; Zhou, G. Antihypertensive effects in vitro and in vivo of novel angiotensin-converting enzyme inhibitory peptides from bovine bone gelatin hydrolysate. J. Agric. Food Chem. 2020, 68, 759–768. [Google Scholar] [CrossRef]
- Cao, C.; Xiao, Z.; Tong, H.; Liu, Y.; Wu, Y.; Ge, C. Oral intake of chicken bone collagen peptides anti-skin aging in mice by regulating collagen degradation and synthesis, inhibiting inflammation and activating lysosomes. Nutrients 2022, 14, 1622. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Sun, L.; Zhang, Y.; Liu, G. Antihypertensive effect of long-term oral administration of Jellyfish (Rhopilema esculentum) collagen peptides on renovascular hypertension. Mar. Drugs 2012, 10, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Pan, N.; Xu, M.; Su, Y.; Qiao, K.; Chen, B.; Zheng, B.; Xiao, M.; Liu, Z. ACE inhibitory peptide from skin collagen hydrolysate of Takifugu bimaculatus as potential for protecting HUVECs injury. Mar. Drugs 2021, 19, 655. [Google Scholar] [CrossRef] [PubMed]
- Bravo, F.I.; Mas-Capdevila, A.; Margalef, M.; Arola-Arnal, A.; Muguerza, B. Novel antihypertensive peptides derived from chicken foot proteins. Mol. Nutr. Food Res. 2019, 63, 1801176. [Google Scholar] [CrossRef]
- Bravo, F.I.; Mas-Capdevila, A.; López-Fernández-Sobrino, R.; Torres-Fuentes, C.; Mulero, M.; Alcaide-Hidalgo, J.M.; Muguerza, B. Identification of novel antihypertensive peptides from wine lees hydrolysate. Food Chem. 2022, 366, 130690. [Google Scholar] [CrossRef]
- Torres-Fuentes, C.; Suárez, M.; Aragonès, G.; Mulero, M.; Ávila-Román, J.; Arola-Arnal, A.; Salvadó, M.J.; Arola, L.; Bravo, F.I.; Muguerza, B. Cardioprotective properties of phenolic compounds: A role for biological rhythms. Mol. Nutr. Food Res. 2022, 66, 2100990. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Suchard, M.A.; Krumholz, H.M.; Schuemie, M.J.; Shea, S.; Duke, J.; Pratt, N.; Reich, C.G.; Madigan, D.; You, S.C.; et al. Comparative first-line effectiveness and safety of ACE (angiotensin-converting enzyme) inhibitors and angiotensin receptor blockers: A multinational cohort study. Hypertension 2021, 78, 591–603. [Google Scholar] [CrossRef] [PubMed]
- Laca, A.; Laca, A.; Diaz, M. Environmental impact of poultry farming and egg production. In Environmental Impact of Agro-Food Industry and Food Consumption; Charis, M.G., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 81–100. [Google Scholar]
- Li, Y.; Arulnathan, V.; Heidari, M.D.; Pelletier, N. Design considerations for net zero energy buildings for intensive, confined poultry production: A review of current insights, knowledge gaps, and future directions. Renew. Sustain. Energy Rev. 2022, 154, 111874. [Google Scholar] [CrossRef]
- Shahbandeh, M. Global Chicken Meat Production 2021 & 2022, by Selected Country. Available online: https://www.statista.com/statistics/237597/leading-10-countries-worldwide-in-poultry-meat-production-in-2007/ (accessed on 10 December 2022).
- Food and Agriculture Organization of the United Nations. Poultry Development Review; FAO: Rome, Italy, 2013. [Google Scholar]
- Izydorczyk, G.; Mikula, K.; Skrzypczak, D.; Witek-Krowiak, A.; Mironiuk, M.; Furman, K.; Gramza, M.; Moustakas, K.; Chojnacka, K. Valorization of poultry slaughterhouse waste for fertilizer purposes as an alternative for thermal utilization methods. J. Hazard. Mater. 2022, 424, 127328. [Google Scholar] [CrossRef] [PubMed]
- Chiarelotto, M.; Restrepo, J.C.P.S.; Lorin, H.E.F.; Damaceno, F.M. Composting organic waste from the broiler production chain: A perspective for the circular economy. J. Clean. Prod. 2021, 329, 129717. [Google Scholar] [CrossRef]
- Arshad, M.; Bano, I.; Khan, N.; Shahzad, M.I.; Younus, M.; Abbas, M.; Iqbal, M. Electricity generation from biogas of poultry waste: An assessment of potential and feasibility in Pakistan. Renew. Sustain. Energy Rev. 2018, 81, 1241–1246. [Google Scholar] [CrossRef]
- Siddiki, S.Y.A.; Uddin, M.N.; Mofijur, M.; Fattah, I.M.R.; Ong, H.C.; Lam, S.S.; Kumar, P.S.; Ahmed, S.F. Theoretical calculation of biogas production and greenhouse gas emission reduction potential of livestock, poultry and slaughterhouse waste in Bangladesh. J. Environ. Chem. Eng. 2021, 9, 105204. [Google Scholar] [CrossRef]
- Mi, X.; Li, W.; Xu, H.; Mu, B.; Chang, Y.; Yang, Y. Transferring feather wastes to ductile keratin filaments towards a sustainable poultry industry. Waste Manag. 2020, 115, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Casanova-Martí, À.; Bravo, F.I.; Serrano, J.; Ardévol, A.; Pinent, M.; Muguerza, B. Antihyperglycemic effect of a chicken feet hydrolysate: Via the incretin system: DPP-IV-inhibitory activity and GLP-1 release stimulation. Food Funct. 2019, 10, 4062–4070. [Google Scholar] [CrossRef]
- Romero-Garay, M.G.; Montalvo-González, E.; Hernández-González, C.; Soto-Domínguez, A.; Becerra-Verdín, E.M.; De Lourdes García-Magaña, M. Bioactivity of peptides obtained from poultry by-products: A review. Food Chem. 2022, 13, 100181. [Google Scholar] [CrossRef]
- Nagal, S.; Jain, P.C. Feather degradation by strains of Bacillus isolated from decomposing feathers. Brazilian J. Microbiol. 2010, 41, 196–200. [Google Scholar]
- Fakhfakh, N.; Ktari, N.; Haddar, A.; Mnif, I.H.; Dahmen, I.; Nasri, M. Total solubilisation of the chicken feathers by fermentation with a keratinolytic bacterium, Bacillus pumilus A1, and the production of protein hydrolysate with high antioxidative activity. Proc. Biochem. 2011, 46, 1731–1737. [Google Scholar] [CrossRef]
- Sinkiewicz, I.; Śliwińska, A.; Staroszczyk, H.; Kołodziejska, I. Alternative methods of preparation of soluble keratin from chicken feathers. Waste Biomass Valorization 2017, 8, 1043–1048. [Google Scholar] [CrossRef]
- Callegaro, K.; Brandelli, A.; Daroit, D.J. Beyond plucking: Feathers bioprocessing into valuable protein hydrolysates. Waste Manag. 2019, 95, 399–415. [Google Scholar] [CrossRef] [PubMed]
- Alahyaribeik, S.; Nazarpour, M.; Tabandeh, F.; Honarbakhsh, S.; Sharifi, S.D. Effects of bioactive peptides derived from feather keratin on plasma cholesterol level, lipid oxidation of meat, and performance of broiler chicks. Trop. Anim. Health Prod. 2022, 54, 271. [Google Scholar] [CrossRef]
- Kelly, L.M.; Alworth, L.C. Techniques for collecting blood from the domestic chicken. Lab Anim. 2013, 42, 359–361. [Google Scholar] [CrossRef] [PubMed]
- Sorapukdee, S.; Narunatsopanon, S. Comparative study on compositions and functional properties of porcine, chicken and duck blood. Korean J. Food Sci. Anim. Resour. 2017, 37, 228–241. [Google Scholar] [CrossRef]
- Cheng, F.Y.; Lai, I.C.; Lin, L.C.; Sakata, R. The in vitro antioxidant properties of alcalase hydrolysate prepared from silkie fowl (Gallus gallus) blood protein. Anim. Sci. J. 2016, 87, 921–928. [Google Scholar] [CrossRef]
- Zheng, Z.; Si, D.; Ahmad, B.; Li, Z.; Zhang, R. A novel antioxidative peptide derived from chicken blood corpuscle hydrolysate. Food Res. Int. 2018, 106, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Cansu, Ü.; Boran, G. Optimization of a multi-step procedure for isolation of chicken bone collagen. Korean J. Food Sci. Anim. Resour. 2015, 35, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Polyanskikh, S.V.; Danyliv, M.M.; Dubrovina, U.R.; Ozherelyeva, O.N.; Vasilenko, O.A. The technology of dehydrated soup base from poultry meat and bone residue. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Barnaul, Russia, 26–27 June 2020; IOP Publishing Ltd.: Bristol, UK, 2020; Volume 941. [Google Scholar]
- Stiborova, H.; Kronusova, O.; Kastanek, P.; Brazdova, L.; Lovecka, P.; Jiru, M.; Belkova, B.; Poustka, J.; Stranska, M.; Hajslova, J.; et al. Waste products from the poultry industry: A source of high-value dietary supplements. J. Chem. Technol. Biotechnol. 2020, 95, 985–992. [Google Scholar] [CrossRef]
- Pramualkijja, T.; Pirak, T.; Euston, S.R. Valorization of chicken slaughterhouse by-products: Production and properties of chicken trachea hydrolysates using commercial proteases. Int. J. Food Prop. 2021, 24, 1642–1657. [Google Scholar] [CrossRef]
- Heydarpour, F.; Amini, B.; Kalantari, S.; Sadraddin; Akbari, A.; Heydarpour, P. Mean percentage of skin and visible fat in 10 chicken carcass weight. Int. J. Poult. Sci. 2006, 6, 43–47. [Google Scholar] [CrossRef]
- Nadalian, M.; Kamaruzaman, N.; Yusop, M.S.M.; Babji, A.S.; Yusop, S.M. Isolation, purification and characterization of antioxidative bioactive elastin peptides from poultry skin. Food Sci. Anim. Resour. 2019, 39, 966–979. [Google Scholar] [CrossRef]
- Onuh, J.O.; Girgih, A.T.; Aluko, R.E.; Aliani, M. Inhibitions of renin and angiotensin converting enzyme activities by enzymatic chicken skin protein hydrolysates. Food Res. Int. 2013, 53, 260–267. [Google Scholar] [CrossRef]
- Gonçalves dos Santos Aguilar, J.; Santos de Souza, A.K.; Soares de Castro, R.J. Enzymatic hydrolysis of chicken viscera to obtain added-value protein hydrolysates with antioxidant and antihypertensive properties. Int. J. Pept. Res. Ther. 2020, 26, 717–725. [Google Scholar] [CrossRef]
- Jamdar, S.N.; Rajalakshmi, V.; Sharma, A. Antioxidant and ace inhibitory properties of poultry viscera protein hydrolysate and its peptide fractions. J. Food Biochem. 2012, 36, 494–501. [Google Scholar] [CrossRef]
- Mane, S.; Jamdar, S.N. Purification and identification of Ace-inhibitory peptides from poultry viscera protein hydrolysate. J. Food Biochem. 2017, 41, e12275. [Google Scholar] [CrossRef]
- Santana, J.C.C.; Gardim, R.B.; Almeida, P.F.; Borini, G.B.; Quispe, A.P.B.; Llanos, S.A.V.; Heredia, J.A.; Zamuner, S.; Gamarra, F.M.C.; Farias, T.M.B.; et al. Valorization of chicken feet by-product of the poultry industry: High qualities of gelatin and biofilm from extraction of collagen. Polymers 2020, 12, 529. [Google Scholar] [CrossRef]
- Araújo, Í.B.D.S.; Bezerra, T.K.A.; Nascimento, E.S.D.; Gadelha, C.A.D.A.; Santi-Gadelha, T.; Madruga, M.S. Optimal conditions for obtaining collagen from chicken feet and its characterization. Food Sci. Technol. 2018, 38, 167–173. [Google Scholar] [CrossRef]
- Severo da Rosa, C.; Hoelzel, S.C.; Viera, V.B.; Barreto, P.M.; Beirão, L.H. Atividade antioxidante do ácido hialurônico extraído da crista de frango. Ciência Rural 2008, 38, 2593–2698. [Google Scholar] [CrossRef]
- Londoño-Zapata, L.; Franco-Cardona, S.; Restrepo-Manotas, S.; Gomez-Narvaez, F.; Suarez-Restrepo, L.; Nuñez-Andrade, H.; Valencia-Araya, P.; Simpson, R.; Vega-Castro, O. Valorization of the by-products of poultry industry (bones) by enzymatic hydrolysis and glycation to obtain antioxidants compounds. Waste Biomass Valorization 2022, 13, 4469–4480. [Google Scholar] [CrossRef]
- Cheng, F.-Y.; Liu, Y.-T.; Wan, T.-C.; Lin, L.-C.; Sakata, R. The development of angiotensin I-converting enzyme inhibitor derived from chicken bone protein. Anim. Sci. J. 2008, 79, 122–128. [Google Scholar] [CrossRef]
- Kettawan, A.; Sungpuag, P.; Sirichakwal, P.; Chavasit, V. Chicken bone calcium extraction and its application as a food fortificant. Mater. Sci. 2002, 34, 163–180. [Google Scholar]
- Tesfaye, T.; Sithole, B.; Ramjugernath, D.; Chunilall, V. Valorisation of chicken feathers: Characterisation of chemical properties. Waste Manag. 2017, 68, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Ben Hamad Bouhamed, S.; Krichen, F.; Kechaou, N. Feather protein hydrolysates: A study of physicochemical, functional properties and antioxidant activity. Waste Biomass Valorization 2020, 11, 51–62. [Google Scholar] [CrossRef]
- Prajapati, S.; Koirala, S.; Anal, A.K. Bioutilization of chicken feather waste by newly isolated keratinolytic bacteria and conversion into protein hydrolysates with improved functionalities. Appl. Biochem. Biotechnol. 2021, 193, 2497–2515. [Google Scholar] [CrossRef]
- da Silva Bambirra Alves, F.E.; Carpiné, D.; Teixeira, G.L.; Goedert, A.C.; de Paula Scheer, A.; Ribani, R.H. Valorization of an abundant slaughterhouse by-product as a source of highly technofunctional and antioxidant protein hydrolysates. Waste Biomass Valorization 2021, 12, 263–279. [Google Scholar] [CrossRef]
- Huang, S.-C.; Liu, P.-J. Inhibition of angiotensin I-Converting enzymes by enzymatic hydrolysates from chicken blood. J. Food Drug Anal. 2010, 18, 459–463. [Google Scholar] [CrossRef]
- González-Noriega, J.A.; Valenzuela-Melendres, M.; Hernández–Mendoza, A.; Astiazarán-García, H.; Mazorra-Manzano, M.Á.; Peña-Ramos, E.A. Hydrolysates and peptide fractions from pork and chicken skin collagen as pancreatic lipase inhibitors. Food Chem. 2022, 13, 100247. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.S.; Han, D.J.; Choi, J.H.; Hwang, K.E.; Song, D.H.; Kim, H.W.; Kim, Y.B.; Kim, C.J. Effect of chicken skin on the quality characteristics of semi-dried restructured jerky. Poult. Sci. 2016, 95, 1198–1204. [Google Scholar] [CrossRef] [PubMed]
- Safar Razavizadeh, R.; Farmani, J.; Motamedzadegan, A. Enzyme-assisted extraction of chicken skin protein hydrolysates and fat: Degree of hydrolysis affects the physicochemical and functional properties. J. Am. Oil Chem. Soc. 2022, 99, 621–632. [Google Scholar] [CrossRef]
- Potti, R.; Fahad, M. Extraction and Characterization of Collagen from Broiler Chicken Feet (Gallus gallus domesticus)—Biomolecules from Poultry Waste. J. Pure Appl. Microbiol. 2017, 11, 315–322. [Google Scholar] [CrossRef]
- Yuliatmo, R.; Fitriyanto, N.A.; Bachruddin, Z.; Erwanto, Y. Increasing of angiotensin converting enzyme inhibitory derived from Indonesian native chicken leg protein using Bacillus cereus protease enzyme. Int. Food Res. J. 2017, 24, 1799–1804. [Google Scholar]
- Hashim, P.; Ridzwan, M.S.M.; Bakar, J. Isolation and characterization of collagen from chicken feet. World Acad. Sci. Eng. Technol. Int. J. Bioeng. Life Sci. 2014, 8, 250–254. [Google Scholar]
- Jamdar, S.N.; Harikumar, P. A rapid autolytic method for the preparation of protein hydrolysate from poultry viscera. Bioresour. Technol. 2008, 99, 6934–6940. [Google Scholar] [CrossRef] [PubMed]
- Rivera, J.A.; Sebranek, J.G.; Rust, R.E.; Tabatabai, L.B. Composition and protein fractions of different meat by-products used for petfood compared with mechanically separated chicken (MSC). Meat Sci. 2000, 55, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; You, S.J.; An, B.K.; Kang, C.W. Study on extraction of mucopolysaccharide-protein containing chondroitin sulfate from chicken keel cartilage. Asian-Australas. J. Anim. Sci. 2006, 19, 601–604. [Google Scholar] [CrossRef]
- Ibarz-Blanch, N.; Morales, D.; Calvo, E.; Ros-Medina, L.; Muguerza, B.; Bravo, F.I.; Suárez, M. Role of chrononutrition in the antihypertensive effects of natural bioactive compounds. Nutrients 2022, 14, 1920. [Google Scholar] [CrossRef]
- Pueyo, M.E.; Michel, J.-B. Angiotensin II receptors in endothelial cells. Gen. Pharmacol. Vasc. Syst. 1997, 29, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Touyz, R.M.; Chen, X.; Tabet, F.; Yao, G.; He, G.; Quinn, M.T.; Pagano, P.J.; Schiffrin, E.L. Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries. Circ. Res. 2002, 90, 1205–1213. [Google Scholar] [CrossRef]
- Rubanyi, G.M.; Vanhoutte, P.M. Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am. J. Physiol. Circ. Physiol. 1986, 250, H822–H827. [Google Scholar] [CrossRef]
- Łuczak, A.; Madej, M.; Kasprzyk, A.; Doroszko, A. Role of the eNOS uncoupling and the nitric oxide metabolic pathway in the pathogenesis of autoimmune rheumatic diseases. Oxid. Med. Cell. Longev. 2020, 2020, 1417981. [Google Scholar] [CrossRef]
- Patel, S.; Rauf, A.; Khan, H.; Abu-Izneid, T. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed. Pharmacother. 2017, 94, 317–325. [Google Scholar] [CrossRef]
- Osborn, J.W.; Foss, J.D. Renal nerves and long-term control of arterial pressure. Compr. Physiol. 2017, 7, 263–320. [Google Scholar] [CrossRef]
- Watanabe, T.; Barker, T.A.; Berk, B.C. Angiotensin II and the endothelium. Hypertension 2005, 45, 163–169. [Google Scholar] [CrossRef]
- Wongngam, W.; Mitani, T.; Katayama, S.; Nakamura, S.; Yongsawatdigul, J. Production and characterization of chicken blood hydrolysate with antihypertensive properties. Poult. Sci. 2020, 99, 5163–5174. [Google Scholar] [CrossRef]
- Wongngam, W.; Roytrakul, S.; Mitani, T.; Katayama, S.; Nakamura, S.; Yongsawatdigul, J. Isolation, identification, and in vivo evaluation of the novel antihypertensive peptide, VSKRLNGDA, derived from chicken blood cells. Proc. Biochem. 2022, 115, 169–177. [Google Scholar] [CrossRef]
- Gao, D.; Guo, P.; Cao, X.; Ge, L.; Ma, H.; Cheng, H.; Ke, Y.; Chen, S.; Ding, G.; Feng, R.; et al. Improvement of chicken plasma protein hydrolysate angiotensin I-converting enzyme inhibitory activity by optimizing plastein reaction. Food Sci. Nutr. 2020, 8, 2798–2808. [Google Scholar] [CrossRef]
- Nikhita, R.; Sachindra, N.M. Optimization of chemical and enzymatic hydrolysis for production of chicken blood protein hydrolysate rich in angiotensin-I converting enzyme inhibitory and antioxidant activity. Poult. Sci. 2021, 100, 101047. [Google Scholar] [CrossRef]
- Gao, B.; Zhao, X.-H. Modification of soybean protein hydrolysates by Alcalase-catalyzed plastein reaction and the ACE-inhibitory activity of the modified product In Vitro. Int. J. Food Prop. 2012, 15, 982–996. [Google Scholar] [CrossRef]
- Wei, X.; Li, T.-J.; Zhao, X.-H. Coupled neutrase–catalyzed plastein reaction mediated the ACE-inhibitory activity In Vitro of casein hydrolysates prepared by Alcalase. Int. J. Food Prop. 2013, 16, 429–443. [Google Scholar] [CrossRef]
- Yamashita, M.; Arai, S.; Tsai, S.-J.; Fujimaki, M. Plastein reaction as a method for enhancing the sulfur-containing amino acid level of soybean protein. J. Agric. Food Chem. 1971, 19, 1151–1154. [Google Scholar] [CrossRef] [PubMed]
- Riffel, A.; Daroit, D.J.; Brandelli, A. Nutritional regulation of protease production by the feather-degrading bacterium Chryseobacterium sp. kr6. New Biotechnol. 2011, 28, 153–157. [Google Scholar] [CrossRef]
- Cheng, F.Y.; Wan, T.C.; Liu, Y.T.; Lai, K.M.; Lin, L.C.; Sakata, R. A study of in vivo antihypertensive properties of enzymatic hydrolysate from chicken leg bone protein. Anim. Sci. J. 2008, 79, 614–619. [Google Scholar] [CrossRef]
- Cheng, F.Y.; Wan, T.C.; Liu, Y.T.; Lai, K.M.; Lin, L.C.; Sakata, R. Attenuating development of cardiovascular hypertrophy with hydrolysate of chicken leg bone protein in spontaneously hypertensive rats. Asian-Australas. J. Anim. Sci. 2008, 21, 732–737. [Google Scholar] [CrossRef]
- Kuneš, J.; Vaněčková, I.; Kadlecová, M.; Behuliak, M.; Dobešová, Z.; Zicha, J. Cardiac hypertrophy in hypertension. In Cardiac Adaptations; Springer: New York, NY, USA, 2013; pp. 251–267. [Google Scholar]
- Burke, G.L.; Evans, G.W.; Riley, W.A.; Sharrett, A.R.; Howard, G.; Barnes, R.W.; Rosamond, W.; Crow, R.S.; Rautaharju, P.M.; Heiss, G. Arterial wall thickness is associated with prevalent cardiovascular disease in middle-aged adults. Stroke 1995, 26, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Corinaldesi, G.; Corinaldesi, C. Arterial Wall Thickness: Marker of Atherosclerosis or Risk Factor for Thrombosis. Blood 2008, 112, 5470. [Google Scholar] [CrossRef]
- Nakade, K.; Kamishima, R.; Inoue, Y.; Ahhmed, A.; Kawahara, S.; Nakayama, T.; Maruyama, M.; Numata, M.; Ohta, K.; Aoki, T.; et al. Identification of an antihypertensive peptide derived from chicken bone extract. Anim. Sci. J. 2008, 79, 710–715. [Google Scholar] [CrossRef]
- Alencar-Bezerra, T.K.; Gomes de Lacerda, J.T.J.; Ramos-Salu, B.; Vilela-Oliva, M.L.; Juliano, M.A.; Bertoldo-Pacheco, M.T.; Suely-Madruga, M. Identification of angiotensin I-converting enzyme-inhibitory and anticoagulant peptides from enzymatic hydrolysates of chicken combs and wattles. J. Med. Food 2019, 22, 1294–1300. [Google Scholar] [CrossRef]
- Mas-Capdevila, A.; Pons, Z.; Aleixandre, A.; Bravo, F.I.; Muguerza, B. Dose-related antihypertensive properties and the corresponding mechanisms of a chicken foot hydrolysate in hypertensive rats. Nutrients 2018, 10, 1295. [Google Scholar] [CrossRef]
- Mas-Capdevila, A.; Iglesias-Carres, L.; Arola-Arnal, A.; Suarez, M.; Muguerza, B.; Bravo, F.I. Long-term administration of protein hydrolysate from chicken feet induces antihypertensive effect and confers vasoprotective pattern in diet-induced hypertensive rats. J. Funct. Foods 2019, 55, 28–35. [Google Scholar] [CrossRef]
- Saiga, A.; Iwai, K.; Hayakawa, T.; Takahata, Y.; Kitamura, S.; Nishimura, T.; Morimatsu, F. Angiotensin I-converting enzyme-inhibitory peptides obtained from chicken collagen hydrolysate. J. Agric. Food Chem. 2008, 56, 9586–9591. [Google Scholar] [CrossRef]
- Zhang, Y.; Kouguchi, T.; Shimizu, M.; Ohmori, T.; Takahata, Y.; Morimatsu, F. Chicken collagen hydrolysate protects rats from hypertension and cardiovascular damage. J. Med. Food 2010, 13, 399–405. [Google Scholar] [CrossRef]
- Saiga-Egusa, A.; Koji, I.; Hayakawa, T.; Takahata, Y.; Morimatsu, F. Antihypertensive effects and endothelial progenitor cell activation by intake of chicken collagen hydrolysate in pre- and mild-hypertension. Biosci. Biotechnol. Biochem. 2009, 73, 422–424. [Google Scholar] [CrossRef]
- Kouguchi, T.; Ohmori, T.; Shimizu, M.; Takahata, Y.; Maeyama, Y.; Suzuki, T.; Morimatsu, F.; Tanabe, S. Effects of a chicken collagen hydrolysate on the circulation system in subjects with mild hypertension or high-normal blood pressure. Biosci. Biotechnol. Biochem. 2013, 77, 691–696. [Google Scholar] [CrossRef]
- Fontoura, R.; Daroit, D.J.; Correa, A.P.F.; Meira, S.M.M.; Mosquera, M.; Brandelli, A. Production of feather hydrolysates with antioxidant, angiotensin-I converting enzyme- and dipeptidyl peptidase-IV-inhibitory activities. New Biotechnol. 2014, 31, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Onuh, J.O.; Girgih, A.T.; Malomo, S.A.; Aluko, R.E.; Aliani, M. Kinetics of in vitro renin and angiotensin converting enzyme inhibition by chicken skin protein hydrolysates and their blood pressure lowering effects in spontaneously hypertensive rats. J. Funct. Foods 2015, 14, 133–143. [Google Scholar] [CrossRef]
- Onuh, J.O.; Girgih, A.T.; Nwachukwu, I.; Ievari-Shariati, S.; Raj, P.; Netticadan, T.; Aluko, R.E.; Aliani, M. A metabolomics approach for investigating urinary and plasma changes in spontaneously hypertensive rats (SHR) fed with chicken skin protein hydrolysates diets. J. Funct. Foods 2016, 22, 20–33. [Google Scholar] [CrossRef]
- Chen, Y.H.; Liu, Y.H.; Yang, Y.H.; Feng, H.H.; Chang, C.T.; Chen, C.C. Antihypertensive effect of an enzymatic hydrolysate of chicken essence residues. Food Sci. Technol. Res. 2002, 8, 144–147. [Google Scholar] [CrossRef]
- Chakka, A.K.; Ramanatikara, J.; Zituji, S.P.; Pedda, M.S.; Narayan, B. In-vivo anti-anaemic effects of bioactive compounds prepared from chicken liver using biotechnological tools. Waste Biomass Valorization 2021, 12, 6699–6708. [Google Scholar] [CrossRef]
- Grassi, D.; Desideri, G.; Ferri, C. Cardiovascular risk and endothelial dysfunction: The preferential route for atherosclerosis. Curr. Pharm. Biotechnol. 2011, 12, 1343–1353. [Google Scholar] [CrossRef] [PubMed]
- Incalza, M.A.; D’Oria, R.; Natalicchio, A.; Perrini, S.; Laviola, L.; Giorgino, F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul. Pharmacol. 2018, 100, 1–19. [Google Scholar] [CrossRef]
- Sun, H.-J.; Wu, Z.-Y.; Nie, X.-W.; Bian, J.-S. Role of endothelial dysfunction in cardiovascular diseases: The link between inflammation and hydrogen sulfide. Front. Pharmacol. 2020, 10, 1568. [Google Scholar] [CrossRef] [PubMed]
- Hadi, H.A.R.; Carr, C.S.; Al Suwaidi, J. Endothelial dysfunction: Cardiovascular risk factors, therapy, and outcome. Vasc. Health Risk Manag. 2005, 1, 183–198. [Google Scholar] [PubMed]
- Yanai, H.; Tomono, Y.; Ito, K.; Furutani, N.; Yoshida, H.; Tada, N. The underlying mechanisms for development of hypertension in the metabolic syndrome. Nutr. J. 2008, 7, 10. [Google Scholar] [CrossRef]
- Lawson, C.; Wolf, S. ICAM-1 signaling in endothelial cells. Pharmacol. Rep. 2009, 61, 22–32. [Google Scholar] [CrossRef]
- Hwang, S.-J.; Ballantyne, C.M.; Sharrett, A.R.; Smith, L.C.; Davis, C.E.; Gotto, A.M.; Boerwinkle, E. Circulating Adhesion Molecules VCAM-1, ICAM-1, and E-selectin in Carotid Atherosclerosis and Incident Coronary Heart Disease Cases. Circulation 1997, 96, 4219–4225. [Google Scholar] [CrossRef]
- Luc, G.; Arveiler, D.; Evans, A.; Amouyel, P.; Ferrieres, J.; Bard, J.-M.; Elkhalil, L.; Fruchart, J.-C.; Ducimetiere, P. Circulating soluble adhesion molecules ICAM-1 and VCAM-1 and incident coronary heart disease: The PRIME Study. Atherosclerosis 2003, 170, 169–176. [Google Scholar] [CrossRef]
- Gross, M.D.; Bielinski, S.J.; Suarez-Lopez, J.R.; Reiner, A.P.; Bailey, K.; Thyagarajan, B.; Carr, J.J.; Duprez, D.A.; Jacobs, D.R. Circulating soluble intercellular adhesion molecule 1 and subclinical atherosclerosis: The coronarya artery risk development in young adults study. Clin. Chem. 2012, 58, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Springer, T.A. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol. 1995, 57, 827–872. [Google Scholar] [CrossRef]
- Zhang, M.; Malik, A.B.; Rehman, J. Endothelial progenitor cells and vascular repair. Curr. Opin. Hematol. 2014, 21, 224–228. [Google Scholar] [CrossRef]
- Tomiyama, H.; Ohkuma, T.; Ninomiya, T.; Nakano, H.; Matsumoto, C.; Avolio, A.; Kohro, T.; Higashi, Y.; Maruhashi, T.; Takase, B.; et al. Brachial-ankle pulse wave velocity versus its stiffness index β-transformed value as risk marker for cardiovascular disease. J. Am. Heart Assoc. 2019, 8, e013004. [Google Scholar] [CrossRef]
- Zarzuelo, M.J.; López-Sepúlveda, R.; Sánchez, M.; Romero, M.; Gómez-Guzmán, M.; Ungvary, Z.; Pérez-Vizcaíno, F.; Jiménez, R.; Duarte, J. SIRT1 inhibits NADPH oxidase activation and protects endothelial function in the rat aorta: Implications for vascular aging. Biochem. Pharmacol. 2013, 85, 1288–1296. [Google Scholar] [CrossRef] [PubMed]
- Mattagajasingh, I.; Kim, C.-S.; Naqvi, A.; Yamamori, T.; Hoffman, T.A.; Jung, S.-B.; DeRicco, J.; Kasuno, K.; Irani, K. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. USA 2007, 104, 14855–14860. [Google Scholar] [CrossRef] [PubMed]
- Martín-González, M.Z.; Palacios-Jordan, H.; Ibars, M.; Ardid-Ruiz, A.; Gibert-Ramos, A.; Rodríguez, M.A.; Suárez, M.; Muguerza, B.; Aragonès, G. A novel dietary multifunctional ingredient reduces body weight and improves leptin sensitivity in cafeteria diet-fed rats. J. Funct. Foods 2020, 73, 104141. [Google Scholar] [CrossRef]
- Martín-González, M.Z.; Palacios-Jordan, H.; Mas-Capdevila, A.; Rodríguez, M.A.; Bravo, F.I.; Muguerza, B.; Aragonès, G. A multifunctional ingredient for the management of metabolic syndrome in cafeteria diet-fed rats. Food Funct. 2021, 12, 815–824. [Google Scholar] [CrossRef]
- Gibert-Ramos, A.; Martín-González, M.Z.; Crescenti, A.; Salvadó, M.J. A mix of natural bioactive compounds reduces fat accumulation and modulates gene expression in the adipose tissue of obese rats fed a cafeteria diet. Nutrients 2020, 12, 3251. [Google Scholar] [CrossRef]
- Sanchez-Lozada, L.G.; Rodriguez-Iturbe, B.; Kelley, E.E.; Nakagawa, T.; Madero, M.; Feig, D.I.; Borghi, C.; Piani, F.; Cara-Fuentes, G.; Bjornstad, P.; et al. Uric Acid and Hypertension: An Update With Recommendations. Am. J. Hypertens. 2020, 33, 583–594. [Google Scholar] [CrossRef]
- Tucker, J.M.; Townsend, D.M. Alpha-tocopherol: Roles in prevention and therapy of human disease. Biomed. Pharmacother. 2005, 59, 380–387. [Google Scholar] [CrossRef]
- Sarbon, N.; Howell, N.; Wan Ahmad, W.A.N. Angiotensin-I converting enzyme (ACE) inhibitory peptides from chicken skin gelatin hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Int. Food Res. J. 2019, 26, 903–911. [Google Scholar]
- Kapel, R.; Rahhou, E.; Lecouturier, D.; Guillochon, D.; Dhulster, P. Characterization of an antihypertensive peptide from an Alfalfa white protein hydrolysate produced by a continuous enzymatic membrane reactor. Proc. Biochem. 2006, 41, 1961–1966. [Google Scholar] [CrossRef]
- Murray, B.; FitzGerald, R. Angiotensin converting enzyme inhibitory peptides derived from food proteins: Biochemistry, bioactivity and production. Curr. Pharm. Des. 2007, 13, 773–791. [Google Scholar] [CrossRef] [PubMed]
- Li, G.-H.; Le, G.-W.; Shi, Y.-H.; Shrestha, S. Angiotensin I–converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutr. Res. 2004, 24, 469–486. [Google Scholar] [CrossRef]
- Iwai, K.; Saiga-Egusa, A.; Hayakawa, T.; Shimizu, M.; Takahata, Y.; Morimatsu, F. An angiotensin I-converting enzyme (ACE)-inhibitory peptide derived from chicken collagen hydrolysate lowers blood pressure in spontaneously hypertensive rats. J. Jpn. Soc. Food Sci. Technol. 2008, 55, 602–605. [Google Scholar] [CrossRef]
- Iwai, K.; Zhang, Y.; Kouguchi, T.; Saiga-Egusa, A.; Shimizu, M.; Ohmori, T.; Takahata, Y.; Morimatsu, F. Blood concentration of food-derived peptides following oral intake of chicken collagen hydrolysate and its angiotensin-converting enzyme inhibitory activity in healthy volunteers. J. Jpn. Soc. Food Sci. Technol. 2009, 56, 326–330. [Google Scholar] [CrossRef]
- Mas-Capdevila, A.; Iglesias-Carres, L.; Arola-Arnal, A.; Aragonès, G.; Muguerza, B.; Bravo, F.I. Implication of opioid receptors in the antihypertensive effect of a novel chicken foot-derived peptide. Biomolecules 2020, 10, 992. [Google Scholar] [CrossRef] [PubMed]
- Mas-Capdevila, A.; Iglesias-Carres, L.; Arola-Arnal, A.; Aragonès, G.; Aleixandre, A.; Bravo, F.I.; Muguerza, B. Evidence that nitric oxide is involved in the blood pressure lowering effect of the peptide AVFQHNCQE in spontaneously hypertensive rats. Nutrients 2019, 11, 225. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Sato, M.; Zhang, Y.; Kouguchi, T.; Takahata, Y.; Morimatsu, F.; Shimizu, M. The bioavailable octapeptide Gly-Ala-Hyp-Gly-Leu-Hyp-Gly-Pro stimulates nitric oxide synthesis in vascular endothelial cells. J. Agric. Food Chem. 2010, 58, 6960–6965. [Google Scholar] [CrossRef]
- Galougahi, K.K.; Liu, C.; Garcia, A.; Gentile, C.; Fry, N.A.; Hamilton, E.J.; Hawkins, C.L.; Figtree, G.A. β3 adrenergic stimulation restores nitric oxide/redox balance and enhances endothelial function in hyperglycemia. J. Am. Heart Assoc. 2016, 5, e002824. [Google Scholar] [CrossRef] [PubMed]
- Zarzuelo, M.J.; Jiménez, R.; Galindo, P.; Sánchez, M.; Nieto, A.; Romero, M.; Quintela, A.M.; López-Sepúlveda, R.; Gómez-Guzmán, M.; Bailón, E.; et al. Antihypertensive Effects of Peroxisome Proliferator-Activated Receptor-β Activation in Spontaneously Hypertensive Rats. Hypertension 2011, 58, 733–743. [Google Scholar] [CrossRef]
Chicken By-Products | Protein (%) | Ash (%) | Moisture (%) | Fat (%) | Carbohydrate (%) | Mineral (%) | Fiber (%) | References |
---|---|---|---|---|---|---|---|---|
Bones | 15.6–23.58 | 11.80–12.35 | 53.2–57.51 | 8.4–9.52 | 1 | 14.7–15.9 | - | [46,59,60,61] |
Feathers | 80–85.31 | 0.69–0.83 | 2.03–10.06 | 2–3.92 | - | 1.2 | <1 | [38,62,63,64] |
Blood | 14.46–20.55 | 0.81–3.74 | 75–82 | 0.033–1.69 | 0.363 | - | - | [43,65,66] |
Skin | 8.5–15.21 | 0.64–0.9 | 43.70–54.22 | 31.44–41.4 | - | - | - | [67,68,69] |
Feet/legs | 18.10–22.91 | 7.94–8.16 | 58.02–65.08 | 3.90–6.2 | - | - | - | [70,71,72] |
Viscera | 11.2–12.8 | 1.1–1.76 | 69.64–76.5 | 6.9–16.93 | - | - | - | [73,74] |
Trachea * | 69.71 | - | - | 16.53 | - | - | - | [49] |
Crest | - | - | 84 | - | - | - | - | [58] |
Cartilages | 11.78 | 1.21 | 82.85 | 0.29 | 3.87 | - | - | [75] |
By-Product | Hydrolisis Conditions | Amino Acid Sequence | Native Protein | ACEi Activity (µM) | Model | Dose (mg/kg BW) | Period | Effect on BP | Mechanism | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Feet | Protamex® 0.4 AU/g prot, 2 h, 50 °C, pH 7.0 | LGIHPDWQFV | ne | >137.6 | [22] | |||||
LSETVV | ne | >515.4 | ||||||||
LSGPVKF | ne | 80.9 | ||||||||
AVKILP | ne | 7.1 | ||||||||
VRWEPAPGPV | ne | >150.0 | ||||||||
VGKPGARAPmY | ne | 29.7 | ||||||||
QVGPLIGRYCG | ne | 11.0 | SHR | 10 | Single | ↓ SBP (10.9 mmHg, 6 h pa) | ||||
AVFQHNCQE | ne | 44.8 | SHR | 10 | Single | ↓ SBP (25.1 mmHg, 6 h pa) ↓ DBP (17.7 mmHg, 2 h pa) | Implication of NO ↓ Nox4 ↓ Et-1 ↑ GSH levelsActivation opiod receptors | [22,135,136] | ||
Blood corpuscle | Alcalase® 4% enzyme, 6 h, 51.1 °C, pH 8.0 | VNEDSGPFEDSTGATS | Chain I, cytochrome Bc1 complex from chicken with designed inhibitor bound | 35.56 | [85] | |||||
VSKRLNGDA | Chain B, R-state form of chicken hemoglobin D | 34.48 | SHR | 12.5, 25 and 50 | Single | ↓ SBP ↓ DBP | ||||
SHR | 50 | Daily for 4 weeks | ↓ SBP (83.1 mmHg) ↓ DBP | ↓ Ren1 ↓ Agtr1b ↑ Adrb3 ↑ Ppard | ||||||
MMTCLAGMPNLF | Chain C, cytochrome Bc1 complex from chicken | 40.64 | ||||||||
ELNNLLNPALFFSA | Chain D, chicken cytochrome Bc1 complex inhibited by an iodinated analog of the polyketide crocacin-d | 34.48 | ||||||||
ARCGSHCDYIKHWP | Chain B, chicken cytochrome Bc1 complex inhibited by an iodinated analog of the polyketide crocacin-d | 29.17 | ||||||||
NVSTVLTMKKF | Chain A, R-state form of chicken hemoglobin D | 40.64 | ||||||||
CSFDVPTGWASWTPL | Chain A, two fibronectin type iii domain segment from chicken tenascin | 39.24 | ||||||||
FPLCTPAFMTV | Chain I, cytochrome Bc1 complex from chicken | 29.17 | ||||||||
NCVWSGSTFGNPRYSIG | Chain A, crystal structure of native chicken fibrinogen | 31.60 | ||||||||
VMKKSSRCTGFERLAGFNRNFEFA | Chain G, chicken cytochrome Bc1 complex inhibited by an iodinated analog of the polyketide crocacin-d | 51.73 | ||||||||
Leg with claws | Aspergillus oryzae protease (0.1%) + Protease FP, 24 h, 50 °C, pH 7.0 | GAOGLOGP | Collagen α1 | 29.4 | SHR | 4.5 mg/kg BW | Single | ↓SBP (~38 mmHg, 6 h pa) | [101,133] | |
Bovine aortic endothelial cells (BAECs) | 10 µM | ↑ NO levels ↑ Phosphorylation of eNOS at Ser1179 | [137] | |||||||
GAOGPAGPGGIOGERG | Collagen α2 | 45.6 | [101] | |||||||
GLOGSRGERGLOG | Collagen α2 | 60.8 | ||||||||
GIOGERGPVGPSG | Collagen α2 | 43.4 | ||||||||
Bone | Pepsin 1:100 (w/w), 6 h, 36 °C, pH 2.0 | YYRA | g heavy chain V region | 33.9 | SHR | 10 mg/kg | Single | ↓ SBP (~18 mmH, 3–6 h pa) | [97] | |
Combs and Wattles | Alcalase 5% (E/S ratio), 4 h, 50 °C, pH 8.0 | APGLPGPR | 53 | [98] | ||||||
Piro-GPPGPT | 88 | |||||||||
FPGPPGP | 38 | |||||||||
Viscera | Autolytic degradation of tissue protein (6 h, 58 °C, pH 2.8) | ARIYH | Peripheral myelin protein 22a | 13.6 | [55] | |||||
LRKGNLE | Basic leucine zipper and W2 domain-containing protein 2 | 10.8 ± 0.5 | ||||||||
RVWCP | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 4 isoform X2 | 7.5 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bravo, F.I.; Calvo, E.; López-Villalba, R.A.; Torres-Fuentes, C.; Muguerza, B.; García-Ruiz, A.; Morales, D. Valorization of Chicken Slaughterhouse Byproducts to Obtain Antihypertensive Peptides. Nutrients 2023, 15, 457. https://doi.org/10.3390/nu15020457
Bravo FI, Calvo E, López-Villalba RA, Torres-Fuentes C, Muguerza B, García-Ruiz A, Morales D. Valorization of Chicken Slaughterhouse Byproducts to Obtain Antihypertensive Peptides. Nutrients. 2023; 15(2):457. https://doi.org/10.3390/nu15020457
Chicago/Turabian StyleBravo, Francisca Isabel, Enrique Calvo, Rafael A. López-Villalba, Cristina Torres-Fuentes, Begoña Muguerza, Almudena García-Ruiz, and Diego Morales. 2023. "Valorization of Chicken Slaughterhouse Byproducts to Obtain Antihypertensive Peptides" Nutrients 15, no. 2: 457. https://doi.org/10.3390/nu15020457
APA StyleBravo, F. I., Calvo, E., López-Villalba, R. A., Torres-Fuentes, C., Muguerza, B., García-Ruiz, A., & Morales, D. (2023). Valorization of Chicken Slaughterhouse Byproducts to Obtain Antihypertensive Peptides. Nutrients, 15(2), 457. https://doi.org/10.3390/nu15020457