Concurrent Negative Impact of Undernutrition and Heart Failure on Functional and Cognitive Recovery in Hip Fracture Patients
Abstract
:1. Introduction
2. Methods
2.1. Participants and Setting
2.2. Data Collection
2.3. Nutrition Assessment
2.4. Cardiac Function Assessment
2.5. Outcomes
2.6. Convalescent Rehabilitation
2.7. Sample Size Calculation
2.8. Statistical Analysis
2.9. Ethics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Norman, K.; Haß, U.; Pirlich, M. Malnutrition in Older Adults-Recent Advances and Remaining Challenges. Nutrients 2021, 13, 2764. [Google Scholar] [CrossRef]
- Donini, L.M.; Stephan, B.C.M.; Rosano, A.; Molfino, A.; Poggiogalle, E.; Lenzi, A.; Siervo, M.; Muscaritoli, M. What Are the Risk Factors for Malnutrition in Older-Aged Institutionalized Adults? Nutrients 2020, 12, 2857. [Google Scholar] [CrossRef]
- Deutz, N.E.P.; Ashurst, I.; Ballesteros, M.D.; Bear, D.E.; Cruz-Jentoft, A.J.; Genton, L.; Landi, F.; Laviano, A.; Norman, K.; Prado, C.M. The Underappreciated Role of Low Muscle Mass in the Management of Malnutrition. J. Am. Med. Dir. Assoc. 2019, 20, 22–27. [Google Scholar] [CrossRef]
- Junius-Walker, U.; Onder, G.; Soleymani, D.; Wiese, B.; Albaina, O.; Bernabei, R.; Marzetti, E. The essence of frailty: A systematic review and qualitative synthesis on frailty concepts and definitions. Eur. J. Intern. Med. 2018, 56, 3–10. [Google Scholar] [CrossRef]
- Dent, E.; Morley, J.E.; Cruz-Jentoft, A.J.; Woodhouse, L.; Rodríguez-Mañas, L.; Fried, L.P.; Woo, J.; Aprahamian, I.; Sanford, A.; Lundy, J.; et al. Physical Frailty: ICFSR International Clinical Practice Guidelines for Identification and Management. J. Nutr. Health Aging 2019, 23, 771–787. [Google Scholar] [CrossRef] [PubMed]
- Yao, A.; Zhou, S.; Cheng, J.; Kim, D.H. Self-Reported Frailty and Health Care Utilization in Community-Dwelling Middle-Aged and Older Adults in the United States. J. Am. Med. Dir. Assoc. 2023, 24, 517–518. [Google Scholar] [CrossRef]
- Yan, B.; Sun, W.; Wang, W.; Wu, J.; Wang, G.; Dou, Q. Prognostic significance of frailty in older patients with hip fracture: A systematic review and meta-analysis. Int. Orthop. 2022, 46, 2939–2952. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.Y.; Yan, S.; Low, L.L.; Vasanwala, F.F.; Low, S.G. Predictors of poor functional outcomes and mortality in patients with hip fracture: A systematic review. BMC Musculoskelet. Disord. 2019, 20, 568. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, A.; Lou, Y.; Peng, D.; Jiang, Z.; Xia, T. Effects of Frailty on Outcomes Following Surgery Among Patients with Hip Fractures: A Systematic Review and Meta-Analysis. Front. Med. 2022, 9, 829762. [Google Scholar] [CrossRef]
- Pizzonia, M.; Giannotti, C.; Carmisciano, L.; Signori, A.; Rosa, G.; Santolini, F.; Caffa, I.; Montecucco, F.; Nencioni, A.; Monacelli, F. Frailty assessment, hip fracture and long-term clinical outcomes in older adults. Eur. J. Clin. Investig. 2021, 51, e13445. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wu, Z.; Huo, H.; Zhao, P. The Impact of Frailty on Adverse Outcomes in Geriatric Hip Fracture Patients: A Systematic Review and Meta-Analysis. Front. Public Health 2022, 10, 890652. [Google Scholar] [CrossRef]
- Daly, R.M.; Iuliano, S.; Fyfe, J.J.; Scott, D.; Kirk, B.; Thompson, M.Q.; Dent, E.; Fetterplace, K.; Wright, O.R.L.; Lynch, G.S.; et al. Screening, Diagnosis and Management of Sarcopenia and Frailty in Hospitalized Older Adults: Recommendations from the Australian and New Zealand Society for Sarcopenia and Frailty Research (ANZSSFR) Expert Working Group. J. Nutr. Health Aging 2022, 26, 637–651. [Google Scholar] [CrossRef]
- Zheng, L.; Li, G.; Qiu, Y.; Wang, C.; Wang, C.; Chen, L. Clinical practice guidelines for the prevention and management of frailty: A systematic review. J. Adv. Nurs. 2022, 78, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Savarese, G.; Lund, L.H. Global Public Health Burden of Heart Failure. Card. Fail. Rev. 2017, 3, 7–11. [Google Scholar] [CrossRef]
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc. Res. 2023, 118, 3272–3287. [Google Scholar] [CrossRef]
- Ziaeian, B.; Fonarow, G.C. Epidemiology and aetiology of heart failure. Nat. Rev. Cardiol. 2016, 13, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Rubio, R.; Palacios, B.; Varela, L.; Fernández, R.; Correa, S.C.; Estupiñan, M.F.; Calvo, E.; José, N.; Muñoz, M.R.; Yun, S.; et al. Quality of life and disease experience in patients with heart failure with reduced ejection fraction in Spain: A mixed-methods study. BMJ Open 2021, 11, e053216. [Google Scholar] [CrossRef] [PubMed]
- Schocken, D.D.; Benjamin, E.J.; Fonarow, G.C.; Krumholz, H.M.; Levy, D.; Mensah, G.A.; Narula, J.; Shor, E.S.; Young, J.B.; Hong, Y. Prevention of Heart Failure. Circulation 2008, 117, 2544–2565. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.S.P.; Docherty, K.F.; Ho, J.E.; McMurray, J.J.V.; Myhre, P.L.; Omland, T. Recent successes in heart failure treatment. Nat. Med. 2023, 29, 2424–2437. [Google Scholar] [CrossRef]
- Liu, X.-P.; Jian, X.-Y.; Liang, D.-L.; Wen, J.-X.; Wei, Y.-H.; Wu, J.-D.; Li, Y.-Q. The Association between Heart Failure and Risk of Fractures: Pool Analysis Comprising 260,410 Participants. Front. Cardiovasc. Med. 2022, 9, 977082. Available online: https://www.frontiersin.org/articles/10.3389/fcvm.2022.977082 (accessed on 1 November 2023). [CrossRef]
- Amarilla-Donoso, F.J.; López-Espuela, F.; Roncero-Martín, R.; Leal-Hernandez, O.; Puerto-Parejo, L.M.; Aliaga-Vera, I.; Toribio-Felipe, R.; Lavado-García, J.M. Quality of life in elderly people after a hip fracture: A prospective study. Health Qual. Life Outcomes 2020, 18, 71. [Google Scholar] [CrossRef] [PubMed]
- Ilic, I.; Ristic, B.; Stojadinovic, I.; Ilic, M. Epidemiology of Hip Fractures Due to Falls. Medicina 2023, 59, 1528. [Google Scholar] [CrossRef] [PubMed]
- Tay, E. Hip fractures in the elderly: Operative versus nonoperative management. Singap. Med. J. 2016, 57, 178–181. [Google Scholar]
- Yoshimura, Y.; Wakabayashi, H.; Nagano, F.; Matsumoto, A.; Shimazu, S.; Shiraishi, A.; Kido, Y.; Bise, T.; Hori, K.; Yoneda, K. Phase angle is associated with sarcopenic obesity in post-stroke patients. Clin. Nutr. 2023, 42, 2051–2057. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Arai, H. Long-Term Care System in Japan. Ann. Geriatr. Med. Res. 2020, 24, 174–180. [Google Scholar] [CrossRef]
- Samad, M.; Malempati, S.; Restini, C.B.A. Natriuretic Peptides as Biomarkers: Narrative Review and Considerations in Cardiovascular and Respiratory Dysfunctions. Yale J. Biol. Med. 2023, 96, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M146–M157. [Google Scholar] [CrossRef]
- Rockwood, K.; Mitnitski, A. Frailty in relation to the accumulation of deficits. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2007, 62, 722–727. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.J.S.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 207–217. [Google Scholar] [CrossRef]
- Dwyer, J.T.; Gahche, J.J.; Weiler, M.; Arensberg, M.B. Screening Community-Living Older Adults for Protein Energy Malnutrition and Frailty: Update and Next Steps. J. Community Health 2020, 45, 640–660. [Google Scholar] [CrossRef]
- Bozkurt, B.; Coats, A.J.; Tsutsui, H.; Abdelhamid, M.; Adamopoulos, S.; Albert, N.; Anker, S.D.; Atherton, J.; Böhm, M.; Butler, J.; et al. Universal Definition and Classification of Heart Failure: A Report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. J. Card. Fail. 2021, 27, 387–413. [Google Scholar]
- Ottenbacher, K.J.; Hsu, Y.; Granger, C.V.; Fiedler, R.C. The reliability of the functional independence measure: A quantitative review. Arch. Phys. Med. Rehabil. 1996, 77, 1226–1232. [Google Scholar] [CrossRef] [PubMed]
- Shimazu, S.; Yoshimura, Y.; Kudo, M.; Nagano, F.; Bise, T.; Shiraishi, A.; Sunahara, T. Frequent and personalized nutritional support leads to improved nutritional status, activities of daily living, and dysphagia after stroke. Nutrition 2021, 83, 111091. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Shiraishi, A.; Tsuji, Y.; Momosaki, R. Oral Management and the Role of Dental Hygienists in Convalescent Rehabilitation. Prog. Rehabil. Med. 2022, 7, 20220019. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, A.; Yoshimura, Y.; Nagano, F.; Bise, T.; Kido, Y.; Shimazu, S.; Shiraishi, A. Polypharmacy and Its Association with Dysphagia and Malnutrition among Stroke Patients with Sarcopenia. Nutrients 2022, 14, 4251. [Google Scholar] [CrossRef]
- Nagano, F.; Yoshimura, Y.; Matsumoto, A.; Bise, T.; Kido, Y.; Shimazu, S.; Shiraishi, A. Muscle Strength Gain is Positively Associated with Functional Recovery in Patients with Sarcopenic Obesity after Stroke. J. Stroke Cerebrovasc. Dis. 2022, 31, 106429. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y.; Wakabayashi, H.; Bise, T.; Tanoue, M. Prevalence of sarcopenia and its association with activities of daily living and dysphagia in convalescent rehabilitation ward inpatients. Clin. Nutr. 2018, 37 Pt A, 2022–2028. [Google Scholar] [CrossRef]
- Beninato, M.; Gill-Body, K.M.; Salles, S.; Stark, P.C.; Black-Schaffer, R.M.; Stein, J. Determination of the minimal clinically important difference in the FIM instrument in patients with stroke. Arch. Phys. Med. Rehabil. 2006, 87, 32–39. [Google Scholar] [CrossRef]
- Wells, J.C.; Sawaya, A.L.; Wibaek, R.; Mwangome, M.; Poullas, M.S.; Yajnik, C.S.; Demaio, A. The double burden of malnutrition: Aetiological pathways and consequences for health. Lancet 2020, 395, 75–88. [Google Scholar] [CrossRef]
- Rahman, A.; Jafry, S.; Jeejeebhoy, K.; Nagpal, A.D.; Pisani, B.; Agarwala, R. Malnutrition and Cachexia in Heart Failure. J. Parenter. Enter. Nutr. 2016, 40, 475–486. [Google Scholar] [CrossRef]
- von Haehling, S. Muscle wasting and sarcopenia in heart failure: A brief overview of the current literature. ESC Heart Fail. 2018, 5, 1074–1082. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.S.; VanBuren, P.; LeWinter, M.M.; Lecker, S.H.; Selby, D.E.; Palmer, B.M.; Maughan, D.W.; Ades, P.A.; Toth, M.J. Mechanisms Underlying Skeletal Muscle Weakness in Human Heart Failure. Circ. Heart Fail. 2009, 2, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Talha, K.M.; Pandey, A.; Fudim, M.; Butler, J.; Anker, S.D.; Khan, M.S. Frailty and heart failure: State-of-the-art review. J. Cachexia Sarcopenia Muscle 2023, 14, 1959–1972. [Google Scholar] [CrossRef] [PubMed]
- Mizrachi, E.M.; Sitammagari, K.K. Cardiac Syncope. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: http://www.ncbi.nlm.nih.gov/books/NBK526027/ (accessed on 23 October 2023).
- Driggin, E.; Cohen, L.P.; Gallagher, D.; Karmally, W.; Maddox, T.; Hummel, S.L.; Carbone, S.; Maurer, M.S. Nutrition Assessment and Dietary Interventions in Heart Failure. J. Am. Coll. Cardiol. 2022, 79, 1623–1635. [Google Scholar] [CrossRef]
- Hartupee, J.; Mann, D.L. Neurohormonal activation in heart failure with reduced ejection fraction. Nat. Rev. Cardiol. 2017, 14, 30–38. [Google Scholar] [CrossRef]
- Itagaki, A.; Kakizaki, A.; Funahashi, M.; Sato, K.; Yasuhara, K.; Ishikawa, A. Impact of heart failure on functional recovery after hip fracture. J. Phys. Ther. Sci. 2019, 31, 277–281. [Google Scholar] [CrossRef]
- Inoue, T.; Maeda, K.; Nagano, A.; Shimizu, A.; Ueshima, J.; Murotani, K.; Sato, K.; Tsubaki, A. Undernutrition, Sarcopenia, and Frailty in Fragility Hip Fracture: Advanced Strategies for Improving Clinical Outcomes. Nutrients 2020, 12, 3743. [Google Scholar] [CrossRef]
- Ruan, G.-T.; Xie, H.-L.; Yuan, K.-T.; Lin, S.-Q.; Zhang, H.-Y.; Liu, C.-A.; Shi, J.-Y.; Ge, Y.-Z.; Song, M.-M.; Hu, C.-L.; et al. Prognostic value of systemic inflammation and for patients with colorectal cancer cachexia. J. Cachexia Sarcopenia Muscle 2023, 145, e895–e1032. [Google Scholar] [CrossRef]
- Arai, H.; Maeda, K.; Wakabayashi, H.; Naito, T.; Konishi, M.; Assantachai, P.; Auyeung, W.T.; Chalermsri, C.; Chen, W.; Chew, J.; et al. Diagnosis and outcomes of cachexia in Asia: Working Consensus Report from the Asian Working Group for Cachexia. J. Cachexia Sarcopenia Muscle 2023, 14, 1949–1958. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Bise, T.; Nagano, F.; Shimazu, S.; Shiraishi, A.; Yamaga, M.; Koga, H. Systemic Inflammation in the Recovery Stage of Stroke: Its Association with Sarcopenia and Poor Functional Rehabilitation Outcomes. Prog. Rehabil. Med. 2018, 3, 20180011. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 79, e263–e421. [Google Scholar] [CrossRef]
- Tamamura, Y.; Matsuura, M.; Shiba, S.; Nishikimi, T. Effect of heart failure and malnutrition, alone and in combination, on rehabilitation effectiveness in patients with hip fracture. Clin. Nutr. ESPEN 2021, 44, 356–366. [Google Scholar] [CrossRef]
- Wong, A.M.; Xu, B.Y.; Low, L.L.; Allen, J.C.; Low, S.G. Impact of malnutrition in surgically repaired hip fracture patients admitted for rehabilitation in a community hospital: A cohort prospective study. Clin. Nutr. ESPEN 2021, 44, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, V.A.; Hilsenbeck, S.G.; Noveck, H.; Poses, R.M.; Carson, J.L. Medical complications and outcomes after hip fracture repair. Arch. Intern. Med. 2002, 162, 2053–2057. [Google Scholar] [CrossRef] [PubMed]
- McDonough, C.M.; Harris-Hayes, M.; Kristensen, M.T.; Overgaard, J.A.; Herring, T.B.; Kenny, A.M.; Mangione, K.K. Physical Therapy Management of Older Adults with Hip Fracture. J. Orthop. Sports Phys. Ther. 2021, 51, CPG1–CPG81. [Google Scholar] [CrossRef]
- Avenell, A.; Smith, T.O.; Curtain, J.P.; Mak, J.C.; Myint, P.K. Nutritional Supplementation for Hip Fracture Aftercare in Older People. Cochrane Database Syst. Rev. 2016, 11, CD001880. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Momosaki, R.; Yasufuku, Y.; Nakamura, N.; Maeda, K. Nutritional Therapy in Older Patients with Hip Fractures Undergoing Rehabilitation: A Systematic Review and Meta-Analysis. J. Am. Med. Dir. Assoc. 2020, 21, 1364–1364.e6. [Google Scholar] [CrossRef]
- Yoshimura, Y. Prevention and Treatment of Sarcopenia: Multidisciplinary Approaches in Clinical Practice. Nutrients 2023, 15, 2163. [Google Scholar] [CrossRef]
- Wakabayashi, H. Triad of rehabilitation, nutrition, and oral management for sarcopenic dysphagia in older people. Geriatr. Gerontol. Int. 2023. epub ahead of print. [Google Scholar] [CrossRef]
- Nishioka, S.; Aragane, H.; Suzuki, N.; Yoshimura, Y.; Fujiwara, D.; Mori, T.; Kanehisa, Y.; Iida, Y.; Higashi, K.; Yoshimura-Yokoi, Y.; et al. Clinical practice guidelines for rehabilitation nutrition in cerebrovascular disease, hip fracture, cancer, and acute illness: 2020 update. Clin. Nutr. ESPEN 2021, 43, 90–103. [Google Scholar] [CrossRef]
Total (n = 110) | |
---|---|
Age, years | 87.4 (7.1) |
Sex, male, n (%) | 27 (24.8) |
Fracture type, n (%) | |
Neck fracture | 42 (38.5) |
Trochanteric fracture | 64 (58.7) |
Subtrochanteric fracture | 2 (1.8) |
Shaft fracture | 1 (0.9) |
Current smoking, n (%) | 6 (5.5) |
Fragility fracture history, n (%) | 36 (33.3) |
Living at home, n (%) | 69 (65.1) |
Disease/History | |
Hypertension | 74 (67.9) |
Hyperlipidemia | 17 (15.6) |
Type 2 diabetes | 21 (19.3) |
Osteoporosis | 44 (69.8) |
Stroke | 18 (16.4) |
Orthostatic hypotension | 11 (10.1) |
Ischemic heart disease | 12 (11.0) |
Arrhythmia | 27 (24.8) |
BMI, kg/m2 | 21.4 (18.9, 23.6) |
FIM-total | 43 (32, 55) |
FIM-motor | 22 (17, 28) |
FIM-cognition | 20 (13, 30) |
Premorbid care burden level | |
None/Support 1/Support 2/Care 1/Care 2/Care 3/Care 4/Care 5 | 37 (33.9)/5 (4.6)/5 (4.6)/10 (9.2)/21 (19.3)/18 (16.5)/10 (9.2)/3 (2.8) |
BNP | 89.9 (50.4, 177.0) |
LVEF, % | 67.0 (63.7, 70.0) |
E/e′ ratio | 13.8 (11.5, 16.4) |
eGFR | 59.2 (50.0, 71.8) |
Length of stay, days | 80 (61, 94) |
Total (n = 110) | BMI | BNP | BMI & BNP | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Normal (n = 67) | Low (n = 43) | p-Value | Normal (n = 74) | High (n = 36) | p-Value | Normal (n = 95) | Abnormal # (n = 15) | p-Value | ||
FIM-motor at discharge | 61 (32, 81) | 67 (36, 83) | 41 (25, 66) | 0.004 | 63 (37, 82) | 41 (24, 67) | 0.024 | 62 (34, 81) | 29 (14, 41) | 0.001 |
FIM-cognition at discharge | 21 (14, 32) | 25 (16, 33) | 17 (13, 22) | 0.003 | 23 (15, 33) | 17 (13, 24) | 0.032 | 21 (15, 32) | 16 (6, 21) | 0.013 |
Low BMI | High BNP | Low BMI and High BNP | ||||
---|---|---|---|---|---|---|
β | p-Value | β | p-Value | β | p-Value | |
Age | −0.027 | 0.652 | −0.014 | 0.823 | 0.015 | 0.807 |
Sex, male | −0.072 | 0.221 | −0.070 | 0.237 | −0.047 | 0.420 |
Premorbid care burden # | −0.232 | 0.001 | −0.241 | 0.001 | −0.236 | 0.001 |
Fragility fracture history | −0.070 | 0.221 | −0.077 | 0.182 | −0.069 | 0.217 |
Length of stay | 0.280 | 0.000 | 0.275 | 0.005 | 0.264 | 0.011 |
FIM motor | 0.240 | 0.001 | 0.220 | 0.002 | 0.206 | 0.002 |
FIM cognition | 0.428 | <0.001 | 0.454 | <0.001 | 0.462 | <0.001 |
Low BMI | −0.088 | 0.027 | - | - | - | - |
High BNP | - | - | −0.053 | 0.015 | - | |
Low BMI and High BNP | - | - | - | - | −0.192 | 0.010 |
Low BMI | High BNP | Low BMI and High BNP | ||||
---|---|---|---|---|---|---|
β | p-Value | β | p-Value | β | p-Value | |
Age | −0.043 | 0.328 | −0.022 | 0.638 | −0.014 | 0.762 |
Sex, male | −0.033 | 0.448 | −0.031 | 0.472 | −0.015 | 0.727 |
Premorbid care burden # | −0.103 | 0.051 | −0.110 | 0.035 | −0.106 | 0.040 |
Fragility fracture history | −0.051 | 0.235 | −0.053 | 0.208 | −0.051 | 0.221 |
Length of stay | 0.116 | 0.007 | 0.110 | 0.011 | 0.104 | 0.014 |
FIM motor | 0.113 | 0.026 | 0.090 | 0.077 | 0.088 | 0.079 |
FIM cognition | 0.743 | <0.001 | 0.766 | <0.001 | 0.771 | <0.001 |
Low BMI | −0.073 | 0.092 | - | - | - | - |
High BNP | - | - | −0.083 | 0.061 | - | - |
Low BMI and High BNP | - | - | - | - | −0.109 | 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamijikkoku, S.; Yoshimura, Y. Concurrent Negative Impact of Undernutrition and Heart Failure on Functional and Cognitive Recovery in Hip Fracture Patients. Nutrients 2023, 15, 4800. https://doi.org/10.3390/nu15224800
Kamijikkoku S, Yoshimura Y. Concurrent Negative Impact of Undernutrition and Heart Failure on Functional and Cognitive Recovery in Hip Fracture Patients. Nutrients. 2023; 15(22):4800. https://doi.org/10.3390/nu15224800
Chicago/Turabian StyleKamijikkoku, Shuichi, and Yoshihiro Yoshimura. 2023. "Concurrent Negative Impact of Undernutrition and Heart Failure on Functional and Cognitive Recovery in Hip Fracture Patients" Nutrients 15, no. 22: 4800. https://doi.org/10.3390/nu15224800
APA StyleKamijikkoku, S., & Yoshimura, Y. (2023). Concurrent Negative Impact of Undernutrition and Heart Failure on Functional and Cognitive Recovery in Hip Fracture Patients. Nutrients, 15(22), 4800. https://doi.org/10.3390/nu15224800