Cross-Sectional Study on the Association between Dietary Patterns and Sarcopenia in Elderly Patients with Chronic Kidney Disease Receiving Conservative Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. General Assessment
2.3. Laboratory Parameters
2.4. Definition of Sarcopenia
2.5. Nutritional Evaluation
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clark, B.C.; Manini, T.M. Functional consequences of sarcopenia and dynapenia in the elderly. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Hawkins, M.; Abramowitz, M.K. Association of sarcopenia with eGFR and misclassification of obesity in adults with CKD in the United States. Clin. J. Am. Soc. Nephrol. 2014, 9, 2079–2088. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, S.; Naito, S.; Iimori, S.; Takahashi, D.; Zeniya, M.; Sato, H.; Nomura, N.; Sohara, E.; Okado, T.; Uchida, S.; et al. Loop diuretics are associated with greater risk of sarcopenia in patients with non-dialysis-dependent chronic kidney disease. PLoS ONE 2018, 13, e0192990. [Google Scholar] [CrossRef]
- Kato, A.; Ishida, J.; Endo, Y.; Takita, T.; Furuhashi, M.; Maruyama, Y.; Odamaki, M. Association of abdominal visceral adiposity and thigh sarcopenia with changes of arteriosclerosis in haemodialysis patients. Nephrol. Dial. Transplant. 2011, 26, 1967–1976. [Google Scholar] [CrossRef]
- Cohen, S.; Nathan, J.A.; Goldberg, A.L. Muscle wasting in disease: Molecular mechanisms and promising therapies. Nat. Rev. Drug Discov. 2015, 14, 58–74. [Google Scholar] [CrossRef]
- Sabatino, A.; Cuppari, L.; Stenvinkel, P.; Lindholm, B.; Avesani, C.M. Sarcopenia in chronic kidney disease: What have we learned so far? J. Nephrol. 2021, 34, 1347–1372. [Google Scholar] [CrossRef]
- Cianciaruso, B.; Pota, A.; Pisani, A.; Torraca, S.; Annecchini, R.; Lombardi, P.; Capuano, A.; Nazzaro, P.; Bellizzi, V.; Sabbatini, M. Metabolic effects of two low protein diets in chronic kidney disease stage 4-5--a randomized controlled trial. Nephrol. Dial. Transplant. 2008, 23, 636–644. [Google Scholar] [CrossRef]
- Yan, B.; Su, X.; Xu, B.; Qiao, X.; Wang, L. Effect of diet protein restriction on progression of chronic kidney disease: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0206134. [Google Scholar] [CrossRef]
- Watanabe, D.; Machida, S.; Matsumoto, N.; Shibagaki, Y.; Sakurada, T. Age Modifies the Association of Dietary Protein Intake with All-Cause Mortality in Patients with Chronic Kidney Disease. Nutrients 2018, 10, 1744. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, Y. Frequency of dairy consumption and functional disability in older persons. J. Nutr. Health Aging 2011, 15, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, Y.; Kye, S.; Chung, Y.S.; Kim, K.M. Association of vegetables and fruits consumption with sarcopenia in older adults: The Fourth Korea National Health and Nutrition Examination Survey. Age Ageing 2015, 44, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Kojima, N.; Kim, M.; Saito, K.; Yoshida, H.; Yoshida, Y.; Hirano, H.; Obuchi, S.; Shimada, H.; Suzuki, T.; Kim, H. Lifestyle-related factors contributing to decline in knee extension strength among elderly women: A cross-sectional and longitudinal cohort study. PLoS ONE 2015, 10, e0132523. [Google Scholar] [CrossRef] [PubMed]
- Zbeida, M.; Goldsmith, R.; Shimony, T.; Vardi, H.; Naggan, L.; Shahar, D.R. Mediterranean diet and functional indicators among older adults in non-Mediterranean and Mediterranean countries. J. Nutr. Health Aging 2014, 18, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, S.; Watanabe, S.; Shibata, H.; Amano, H.; Fujiwara, Y.; Shinkai, S.; Yoshida, H.; Suzuki, T.; Yukawa, H.; Yasumura, S.; et al. Effects of dietary variety on declines in high-level functional capacity in elderly people living in a community. Nihon Koshu Eisei Zasshi 2003, 50, 1117–1124. [Google Scholar]
- Kwon, J.; Suzuki, T.; Kumagai, S.; Shinkai, S.; Yukawa, H. Risk factors for dietary variety decline among Japanese elderly in a rural community: A 8-year follow-up study from TMIG-LISA. Eur. J. Clin. Nutr. 2006, 60, 305–311. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Nishi, M.; Murayama, H.; Amano, H.; Taniguchi, Y.; Nofuji, Y.; Narita, M.; Matsuo, E.; Seino, S.; Kawano, Y.; et al. Dietary Variety and Decline in Lean Mass and Physical Performance in Community-Dwelling Older Japanese: A 4-year Follow-Up Study. J. Nutr. Health Aging 2017, 21, 11–16. [Google Scholar] [CrossRef]
- Kouzuki, M.; Tanaka, N.; Miyamoto, M.; Urakami, K. Suggestions on the ideal method of conducting community screenings for older adults. BMC Geriatr. 2023, 23, 397. [Google Scholar] [CrossRef]
- Kojima, N.; Kim, M.; Saito, K.; Yoshida, Y.; Hirano, H.; Obuchi, S.; Shimada, H.; Suzuki, T.; Iwasa, H.; Kim, H. Effects of Daily Consumption of Soy Products on Basic/Instrumental Activities of Daily Living in Community-Dwelling Japanese Women Aged 75 Years and Older: A 4-Year Cohort Study. Womens Health Rep. 2023, 4, 232–240. [Google Scholar] [CrossRef]
- Zeller, K.; Whittaker, E.; Sullivan, L.; Raskin, P.; Jacobson, H.R. Effect of restricting dietary protein on the progression of renal failure in patients with insulin-dependent diabetes mellitus. N. Engl. J. Med. 1991, 324, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Klahr, S.; Breyer, J.A.; Beck, G.J.; Dennis, V.W.; Hartman, J.A.; Roth, D.; Steinman, T.I.; Wang, S.R.; Yamamoto, M.E. Dietary protein restriction, blood pressure control, and the progression of polycystic kidney disease. Modification of diet in Renal Disease Study Group. J. Am. Soc. Nephrol. 1995, 5, 2037–2047. [Google Scholar] [CrossRef] [PubMed]
- Isaka, Y. Optimal protein intake in pre-dialysis chronic kidney disease patients with sarcopenia: An overview. Nutrients 2021, 13, 1205. [Google Scholar] [CrossRef] [PubMed]
- Ramarao, P.B.; Norton, H.W.; Johnson, B.C. The amino acids composition and nutritive value of proteins. V. Amino acid requirements as pattern for protein evaluation. J. Nutr. 1964, 82, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Rosell, M.; Appleby, P.; Key, T. Height, age at menarche, body weight and body mass index in life-long vegetarians. Public Health Nutr. 2005, 8, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Tharrey, M.; Mariotti, F.; Mashchak, A.; Barbillon, P.; Delattre, M.; Fraser, G.E. Patterns of plant and animal protein intake are strongly associated with cardiovascular mortality: The Adventist Health Study-2 cohort. Int. J. Epidemiol. 2018, 47, 1603–1612. [Google Scholar] [CrossRef] [PubMed]
- Barsotti, G.; Morelli, E.; Cupisti, A.; Meola, M.; Dani, L.; Giovannetti, S. A low-nitrogen low-phosphorus Vegan diet for patients with chronic renal failure. Nephron 1996, 74, 390–394. [Google Scholar] [CrossRef]
- Cases, A.; Cigarrán-Guldrís, S.; Mas, S.; Gonzalez-Parra, E. Vegetable-Based Diets for Chronic Kidney Disease? It Is Time to Reconsider. Nutrients 2019, 11, 1263. [Google Scholar] [CrossRef]
- Dawson-Hughes, B.; Castaneda-Sceppa, C.; Harris, S.S.; Palermo, N.J.; Cloutier, G.; Ceglia, L.; Dallal, G.E. Impact of supplementation with bicarbonate on lower-extremity muscle performance in older men and women. Osteoporos. Int. 2010, 21, 1171–1179. [Google Scholar] [CrossRef]
- Dawson-Hughes, B.; Harris, S.S.; Ceglia, L. Alkaline diets favor lean tissue mass in older adults. Am. J. Clin. Nutr. 2008, 87, 662–665. [Google Scholar] [CrossRef]
- Kataya, Y.; Murakami, K.; Kobayashi, S.; Suga, H.; Sasaki, S.; Three-generation Study of Women on Diets and Health Study Group. Higher dietary acid load is associated with a higher prevalence of frailty, particularly slowness/weakness and low physical activity, in elderly Japanese women. Eur. J. Nutr. 2018, 57, 1639–1650. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Br. J. Sports Med. 2018, 52, 439–455. [Google Scholar] [CrossRef] [PubMed]
Overall (n = 441) | Sarcopenia (n = 100) | Non-Sarcopenia (n = 341) | p-Value * | ||
---|---|---|---|---|---|
Age, mean ± SD, years | 79.7 ± 5.9 | 81.6 ± 5.7 | 79.2 ± 5.8 | <0.001 | |
Female, n (%) | 242 (54.9) | 34 (34.0) | 208 (61) | <0.001 | |
CKD G3, n (%) | 411 (93.2) | 86 (86.0) | 325 (95.3) | 0.001 | |
CKD G4-5, n (%) | 30 (6.8) | 14 (14.0) | 16 (4.7) | 0.001 | |
BMI, mean ± SD, kg/m2 | 23.2 ± 3.7 | 20.8 ± 3.6 | 23.9 ± 3.4 | <0.001 | |
SBP, mean ± SD, mmHg | 137.9 ± 19.3 | 136.0 ± 18.8 | 138.5 ± 19.5 | 0.246 | |
DBP, mean ± SD, mmHg | 77.4 ± 12.2 | 75.0 ± 12.7 | 78.0 ± 12.0 | 0.027 | |
eGFR, mean ± SD, mL/min/1.73m2 | 48.1 ± 11.0 | 46.5 ± 13.1 | 48.6 ± 10.3 | 0.145 | |
Na, mean ± SD, mmol/L | 141.4 ± 2.5 | 141.1 ± 2.8 | 141.5 ± 2.4 | 0.125 | |
K, mean ± SD, mmol/L | 4.3 ± 0.4 | 4.3 ± 0.5 | 4.3 ± 0.4 | 0.983 | |
Cl, mean ± SD, mmol/L | 104.3 ± 3.0 | 104.1 ± 3.8 | 104.3 ± 2.7 | 0.559 | |
Albumin, mean ± SD, g/dL | 4.1 ± 0.4 | 4.0 ± 0.4 | 4.1 ± 0.3 | 0.034 | |
HbA1c, mean ± SD, % | 6.1 ± 0.8 | 6.2 ± 0.9 | 6.1 ± 0.8 | 0.326 | |
Smoking (BI > 400), n (%) | 147 (33.3) | 45 (45.0) | 102 (29.9) | 0.005 | |
Drinking, n (%) | 124 (28.1) | 28 (28.0) | 96 (28.2) | 0.976 | |
MI, n (%) | 23 (5.2) | 6 (6.0) | 17 (5.0) | 0.688 | |
Stroke, n (%) | 36 (8.2) | 13 (13.0) | 23 (6.7) | 0.044 | |
SMI, mean ± SD, kg/m2 | female | 5.91 ± 0.71 | 5.02 ± 0.34 | 6.05 ± 0.65 | <0.001 |
male | 6.86 ± 0.82 | 6.17 ± 0.63 | 7.20 ± 0.67 | <0.001 | |
Grip Strength, mean ± SD, kg | female | 20.1 ± 4.7 | 16.4 ± 3.1 | 20.7 ± 4.7 | <0.001 |
male | 32.1 ± 7.1 | 26.7 ± 5.9 | 34.8 ± 6.0 | <0.001 | |
Walking Speed, mean ± SD, m/s | 1.2 ± 0.4 | 0.9 ± 0.3 | 1.2 ± 0.4 | <0.001 | |
DVS, mean ± SD | 3.7 ± 2.2 | 3.4 ± 2.4 | 3.8 ± 2.2 | 0.121 |
Sarcopenia (n = 100) | Non-Sarcopenia (n = 341) | p-Value | |
---|---|---|---|
Fish intake: almost daily, n (%) | 31 (31.0) | 110 (32.3) | 0.813 |
Meat intake: almost daily, n (%) | 20 (20.0) | 83 (24.3) | 0.367 |
Eggs intake: almost daily, n (%) | 37 (37.0) | 129 (37.8) | 0.88 |
Milk intake: almost daily, n (%) | 42 (42.0) | 174 (51.0) | 0.112 |
Soy products intake: almost daily, n (%) | 34 (34.0) | 150 (44.0) | 0.075 |
GYV intake: almost daily, n (%) | 54 (54.0) | 240 (70.4) | 0.002 |
Seaweed intake: almost daily, n (%) | 21 (21.0) | 76 (22.3) | 0.785 |
Potatoes intake: almost daily, n (%) | 12 (12.0) | 35 (10.3) | 0.621 |
Fruits intake: almost daily, n (%) | 53 (53.0) | 182 (53.4) | 0.948 |
Fats/Oils intake: almost daily, n (%) | 40 (40.0) | 128 (37.5) | 0.656 |
Variables | OR | 95% CI | p-Value |
---|---|---|---|
Age | 1.093 | 1.036–1.152 | 0.001 |
Female | 0.210 | 0.103–0.428 | <0.001 |
BMI | 0.652 | 0.584–0.728 | <0.001 |
DBP | 0.990 | 0.966–1.014 | 0.401 |
eGFR | 0.988 | 0.964–1.013 | 0.345 |
Albumin | 0.777 | 0.364–1.658 | 0.513 |
HbA1c | 1.728 | 1.160–2.574 | 0.007 |
Smoking | 1.136 | 0.570–2.264 | 0.717 |
Stroke | 1.650 | 0.646–4.217 | 0.295 |
Fish intake: almost daily | 0.734 | 0.366–1.473 | 0.384 |
Meat intake: almost daily | 0.763 | 0.365–1.598 | 0.474 |
Eggs intake: almost daily | 1.319 | 0.709–2.455 | 0.381 |
Milk intake: almost daily | 0.611 | 0.342–1.093 | 0.097 |
Soy products intake: almost daily | 0.549 | 0.296–1.019 | 0.057 |
GYV intake: almost daily | 0.414 | 0.212–0.806 | 0.009 |
Seaweed intake: almost daily | 1.604 | 0.733–3.511 | 0.237 |
Potatoes intake: almost daily | 0.921 | 0.344–2.467 | 0.871 |
Fruits intake: almost daily | 1.362 | 0.752–2.464 | 0.308 |
Fats/Oils intake: almost daily | 1.203 | 0.662–2.187 | 0.544 |
CKD G3 (n = 411) | CKD G4-5 (n = 30) | ||||||
---|---|---|---|---|---|---|---|
Sarcopenia (n = 86) | Non-Sarcopenia (n = 325) | p-Value | Sarcopenia (n = 14) | Non-Sarcopenia (n = 16) | p-Value | ||
Age, mean ± SD, years | 81.7 ± 5.3 | 79.1 ± 5.8 | <0.001 | 80.6 ± 7.5 | 80.1 ± 5.9 | 0.837 | |
Female, n (%) | 28 (32.6) | 198 (60.9) | <0.001 | 6 (42.9) | 10 (62.5) | 0.282 | |
BMI, mean ± SD, kg/m2 | 20.9 ± 3.0 | 23.8 ± 3.4 | <0.001 | 20.3 ± 6.2 | 25.4 ± 3.7 | 0.010 | |
SBP, mean ± SD, mmHg | 135.6 ± 18.3 | 138.6 ± 19.1 | 0.188 | 138.1 ± 22.6 | 136.1 ± 26.5 | 0.825 | |
DBP, mean ± SD, mmHg | 75.5 ± 13.1 | 78.1 ± 12.1 | 0.082 | 71.5 ± 8.7 | 76.1 ± 10.3 | 0.198 | |
eGFR, mean ± SD, mL/min/1.73 m2 | 50.9 ± 7.0 | 50.1 ± 7.6 | 0.428 | 19.7 ± 9.1 | 17.0 ± 7.5 | 0.380 | |
Na, mean ± SD, mmol/L | 141.2 ± 2.6 | 141.6 ± 2.3 | 0.244 | 140.1 ± 3.4 | 140.1 ± 2.5 | 0.986 | |
K, mean ± SD, mmol/L | 4.3 ± 0.4 | 4.3 ± 0.4 | 0.592 | 4.6 ± 0.8 | 4.6 ± 0.4 | 0.744 | |
Cl, mean ± SD, mmol/L | 104.1 ± 3.2 | 104.3 ± 2.6 | 0.502 | 103.8 ± 6.4 | 103.7 ± 4.0 | 0.958 | |
Albumin, mean ± SD, g/dL | 4.0 ± 0.4 | 4.1 ± 0.3 | 0.044 | 4.0 ± 0.4 | 3.8 ± 0.5 | 0.238 | |
HbA1c, mean ± SD, % | 6.2 ± 0.9 | 6.1 ± 0.8 | 0.291 | 6.2 ± 0.9 | 6.3 ± 1.0 | 0.673 | |
Smoking (BI > 400), n (%) | 39 (45.3) | 95 (29.2) | 0.005 | 6 (42.9) | 7 (43.8) | 0.961 | |
Drinking, n (%) | 24 (27.9) | 92 (28.3) | 0.941 | 4 (28.6) | 4 (25.0) | 0.825 | |
MI, n (%) | 3 (3.5) | 15 (4.6) | 0.650 | 3 (21.4) | 2 (12.5) | 0.513 | |
Stroke, n (%) | 9 (10.5) | 21 (6.5) | 0.204 | 4 (28.6) | 2 (12.5) | 0.272 | |
SMI, mean ± SD, kg/m2 | female | 4.97 ± 0.33 | 6.04 ± 0.65 | <0.001 | 5.26 ± 0.26 | 6.32 ± 0.53 | <0.001 |
male | 6.16 ± 0.62 | 7.21 ± 0.68 | <0.001 | 6.28 ± 0.70 | 7.01 ± 0.44 | 0.044 | |
Grip Strength, mean ± SD, kg | female | 16.2 ± 2.8 | 20.9 ± 4.7 | <0.001 | 17.3 ± 4.7 | 17.3 ± 2.6 | 0.986 |
male | 26.5 ± 6.0 | 35.0 ± 5.9 | <0.001 | 28.4 ± 5.4 | 31.2 ± 8.3 | 0.461 | |
Walking Speed, mean ± SD, m/s | 1.0 ± 0.3 | 1.2 ± 0.4 | <0.001 | 0.9 ± 0.3 | 1.0 ± 0.3 | 0.458 | |
DVS, mean ± SD | 3.4 ± 2.4 | 3.8 ± 2.2 | 0.115 | 3.6 ± 2.6 | 3.8 ± 1.8 | 0.837 |
CKD G3 (n = 411) | CKD G4-5 (n = 30) | |||||
---|---|---|---|---|---|---|
Sarcopenia (n = 86) | Non-Sarcopenia (n = 325) | p-Value | Sarcopenia (n = 14) | Non-Sarcopenia (n = 16) | p-Value | |
Fish intake: almost daily, n (%) | 27 (31.4) | 104 (32.0) | 0.915 | 4 (28.6) | 6 (37.5) | 0.605 |
Meat intake: almost daily, n (%) | 15 (17.4) | 78 (24.0) | 0.196 | 5 (35.7) | 5 (31.3) | 0.796 |
Eggs intake: almost daily, n (%) | 33 (38.4) | 119 (36.6) | 0.764 | 4 (28.6) | 10 (62.5) | 0.630 |
Milk intake: almost daily, n (%) | 36 (41.9) | 168 (51.7) | 0.105 | 6 (42.9) | 6 (37.5) | 0.765 |
Soy products intake: almost daily, n (%) | 29 (33.7) | 145 (44.6) | 0.069 | 5 (35.7) | 5 (31.3) | 0.796 |
GYV intake: almost daily, n (%) | 47 (54.7) | 230 (70.8) | 0.005 | 7 (50.0) | 10 (62.4) | 0.491 |
Seaweed intake: almost daily, n (%) | 18 (21.0) | 72 (22.1) | 0.807 | 3 (21.4) | 4 (25.0) | 0.818 |
Potatoes intake: almost daily, n (%) | 10 (11.6) | 33 (10.2) | 0.691 | 2 (14.3) | 2 (12.5) | 0.886 |
Fruits intake: almost daily, n (%) | 46 (53.5) | 175 (53.8) | 0.953 | 7 (50.0) | 7 (43.8) | 0.732 |
Fats/Oils intake: almost daily, n (%) | 32 (37.2) | 122 (37.5) | 0.985 | 8 (57.1) | 6 (37.5) | 0.282 |
Variables | OR | 95% CI | p-Value |
---|---|---|---|
Age | 1.103 | 1.042–1.167 | 0.001 |
Female | 0.166 | 0.086–0.320 | <0.001 |
BMI | 0.663 | 0.590–0.745 | <0.001 |
Albumin | 0.628 | 0.255–1.543 | 0.310 |
Smoking | 2.201 | 1.196–4.050 | 0.011 |
Fish intake: almost daily | 1.176 | 0.572–2.420 | 0.659 |
Meat intake: almost daily | 0.548 | 0.244–1.233 | 0.146 |
Eggs intake: almost daily | 1.198 | 0.618–2.323 | 0.594 |
Milk intake: almost daily | 0.764 | 0.419–1.390 | 0.594 |
Soy products intake: almost daily | 0.623 | 0.327–1.187 | 0.150 |
GYV intake: almost daily | 0.350 | 0.176–0.695 | 0.003 |
Seaweed intake: almost daily | 1.414 | 0.642–3.114 | 0.389 |
Potatoes intake: almost daily | 1.604 | 0.580–4.437 | 0.363 |
Fruits intake: almost daily | 1.417 | 0.744–2.698 | 0.289 |
Fats/Oils intake: almost daily | 1.294 | 0.690–2.427 | 0.421 |
Sarcopenia (n = 85) | Non-Sarcopenia (n = 341) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Low (n = 32) | Moderate (n = 27) | High (n = 26) | Low (n = 165) | Moderate (n = 92) | High (n = 68) | p-Value a | p-Value b | p-Value c | |
Fish intake: almost daily, n (%) | 3 (9.0) | 10 (37.0) | 13 (50.0) | 19 (11.5) | 30 (32.6) | 55 (80.9) | 0.725 | 0.668 | 0.003 |
Meat intake: almost daily, n (%) | 1 (3.1) | 2(7.4) | 11 (42.3) | 16 (9.7) | 13 (14.1) | 49 (72.1) | 0.226 | 0.355 | 0.007 |
Eggs intake: almost daily, n (%) | 5 (15.6) | 18 (54.5) | 23 (88.5) | 4 (2.4) | 92 (100.0) | 23 (33.8) | 0.001 | <0.001 | <0.001 |
Milk intake: almost daily, n (%) | 8 (25.0) | 10 (37.0) | 18 (69.2) | 74 (44.8) | 47 (55.3) | 42 (61.8) | 0.037 | 0.199 | 0.500 |
Soy products intake: almost daily, n (%) | 5 (15.6) | 6 (22.2) | 17 (65.4) | 46 (27.9) | 52 (56.5) | 50 (73.5) | 0.148 | 0.002 | 0.435 |
GYV intake: almost daily, n (%) | 7 (21.9) | 14 (51.9) | 25 (96.2) | 87 (52.7) | 49 (53.3) | 68 (100.0) | 0.001 | 0.897 | 0.104 |
Seaweed intake: almost daily, n (%) | 1 (3.1) | 2 (7.4) | 15 (57.7) | 7 (4.2) | 75 (81.5) | 42 (61.8) | 0.770 | <0.001 | 0.718 |
Potatoes intake: almost daily, n (%) | 2 (6.3) | 0 (0.0) | 7 (26.9) | 6 (3.6) | 23 (25.0) | 17 (25.0) | 0.493 | 0.004 | 0.848 |
Fruits intake: almost daily, n (%) | 0 (0.0) | 27 (100.0) | 19 (73.1) | 66 (40.0) | 10 (10.9) | 54 (79.4) | <0.001 | <0.001 | 0.510 |
Fats/Oils intake: almost daily, n (%) | 9 (28.1) | 8 (27.0) | 15 (57.7) | 48 (29.1) | 55 (59.8) | 40 (58.8) | 0.912 | 0.006 | 0.921 |
DVS, mean ± SD | 1.28 ± 1.30 | 3.11 ± 1.05 | 6.27 ± 1.34 | 2.26 ± 1.28 | 4.70 ± 1.38 | 6.47 ± 1.50 | <0.001 | <0.001 | 0.551 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inoshita, H.; Asaoka, D.; Matsuno, K.; Yanagisawa, N.; Suzuki, Y.; Miyauchi, K. Cross-Sectional Study on the Association between Dietary Patterns and Sarcopenia in Elderly Patients with Chronic Kidney Disease Receiving Conservative Treatment. Nutrients 2023, 15, 4994. https://doi.org/10.3390/nu15234994
Inoshita H, Asaoka D, Matsuno K, Yanagisawa N, Suzuki Y, Miyauchi K. Cross-Sectional Study on the Association between Dietary Patterns and Sarcopenia in Elderly Patients with Chronic Kidney Disease Receiving Conservative Treatment. Nutrients. 2023; 15(23):4994. https://doi.org/10.3390/nu15234994
Chicago/Turabian StyleInoshita, Hiroyuki, Daisuke Asaoka, Kei Matsuno, Naotake Yanagisawa, Yusuke Suzuki, and Katsumi Miyauchi. 2023. "Cross-Sectional Study on the Association between Dietary Patterns and Sarcopenia in Elderly Patients with Chronic Kidney Disease Receiving Conservative Treatment" Nutrients 15, no. 23: 4994. https://doi.org/10.3390/nu15234994
APA StyleInoshita, H., Asaoka, D., Matsuno, K., Yanagisawa, N., Suzuki, Y., & Miyauchi, K. (2023). Cross-Sectional Study on the Association between Dietary Patterns and Sarcopenia in Elderly Patients with Chronic Kidney Disease Receiving Conservative Treatment. Nutrients, 15(23), 4994. https://doi.org/10.3390/nu15234994