COntrolling NUTritional Status (CONUT) as Predictive Score of Hospital Length of Stay (LOS) and Mortality: A Prospective Cohort Study in an Internal Medicine and Gastroenterology Unit in Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Committee Approval
2.2. Patients
2.3. Protocol Description
2.4. Data Collection and Statistical Analysis
3. Results
3.1. Baseline Characteristics of Patients
3.2. Associations of Risk Factors with LOS
3.3. Associations of Risk Factors with Hospital Mortality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schuetz, P.; Seres, D.; Lobo, D.N.; Gomes, F.; Kaegi-Braun, N.; Stanga, Z. Management of disease-related malnutrition for patients being treated in hospital. Lancet 2021, 398, 1927–1938. [Google Scholar] [CrossRef]
- Felder, S.; Lechtenboehmer, C.; Bally, M.; Fehr, R.; Deiss, M.; Faessler, L.; Kutz, A.; Steiner, D.; Rast, A.C.; Laukemann, S.; et al. Association of nutritional risk and adverse medical outcomes across different medical inpatient populations. Nutrition 2015, 31, 1385–1393. [Google Scholar] [CrossRef]
- Guenter, P.; Abdelhadi, R.; Anthony, P.; Blackmer, A.; Malone, A.; Mirtallo, J.M.; Phillips, W.; Resnick, H.E. Malnutrition diagnoses and associated outcomes in hospitalized patients: United States 2018. Nutr. Clin. Pract. 2021, 36, 957–969. [Google Scholar] [CrossRef]
- Rinninella, E.; Cintoni, M.; De Lorenzo, A.; Addolorato, G.; Vassallo, G.; Moroni, R.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. Risk, prevalence, and impact of hospital malnutrition in a Tertiary Care Referral University Hospital: A cross-sectional study. Intern. Emerg. Med. 2018, 13, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.G.A.; Molinger, J.; Wischmeyer, P.E. The malnourished surgery patient: A silent epidemic in perioperative outcomes? Curr. Opin. Anaesthesiol. 2019, 32, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.L.; Ong, K.C.; Chan, Y.H.; Loke, W.C.; Ferguson, M.; Daniels, L. Malnutrition and its impact on cost of hospitalization, length of stay, readmission and 3-year mortality. Clin. Nutr. 2012, 31, 345–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Q.; Cheng, Y.; Li, Z.; Tang, Q.; Qiu, R.; Cai, S.; Xu, X.; Peng, J.; Xie, H. Association between nutritional risk screening score and prognosis of patients with sepsis. Infect. Drug Resist. 2021, 14, 3817–3825. [Google Scholar] [CrossRef] [PubMed]
- Munoz, N.; Posthauer, M.E.; Cereda, E.; Schols, J.M.G.A.; Haesler, E. The role of nutrition for pressure injury prevention and healing: The 2019 international clinical practice guideline recommendations. Adv. Skin Wound Care 2020, 33, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Saghaleini, S.H.; Dehghan, K.; Shadvar, K.; Sanaie, S.; Mahmoodpoor, A.; Ostadi, Z. Pressure Ulcer and Nutrition. Indian J. Crit. Care Med. 2018, 22, 283–289. [Google Scholar]
- Hill, A.; Elke, G.; Weimann, A. Nutrition in the intensive care unit: A narrative review. Nutrients 2021, 13, 2851. [Google Scholar] [CrossRef]
- Graeb, F.; Wolke, R. Malnutrition and inadequate eating behaviour during hospital stay in geriatrics-an explorative analyses of nutrition day data in two hospitals. Nurs. Rep. 2021, 11, 929–941. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Khalatbari-Soltani, S.; Marques-Vidal, P. Adherence to hospital nutritional status monitoring and reporting guidelines. PLoS ONE 2018, 13, e0204000. [Google Scholar] [CrossRef] [Green Version]
- Ignacio de Ulíbarri, J.; González-Madroño, A.; de Villar, N.G.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar]
- Kheirouri, S.; Alizadeh, M. Prognostic Potential of the Preoperative Controlling Nutritional Status (CONUT) Score in Predicting Survival of Patients with Cancer: A Systematic Review. Adv. Nutr. 2021, 12, 234–250. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Song, P.; Peng, Z.; Liu, Z.; Yang, L.; Wang, L.; Zhou, J.; Dong, Q. The Controlling Nutritional Status (CONUT) Score and Prognosis in Malignant Tumors: A Systematic Review and Meta-Analysis. Nutr. Cancer 2022, 74, 3146–3163. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Lu, Y.; Xia, J.; Mao, J.; Wang, J.; Guo, H. Association between baseline Controlling Nutritional Status score and clinical outcomes of patients with multiple myeloma. Cancer Biomark 2021, 32, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Akgün Çağlıyan, G.; Hacıoğlu, S.; Ünver Koluman, B.; İlkkılıç, K.; Nar, R.; Başer, M.N.; Bozdemir, A.; Şenol, H.; Şen Türk, N.; Erol, V.; et al. Is CONUT score a prognostic index in patients with diffuse large cell lymphoma? Turk. J. Med. Sci. 2021, 51, 2112–2119. [Google Scholar] [CrossRef]
- Akgun Cagliyan, G. Is CONUT score a predictor of morbidity in patients with adult transfusion dependent beta thalassemia? Transfus. Apher. Sci. 2021, 60, 103126. [Google Scholar] [CrossRef]
- Spoletini, G.; Ferri, F.; Mauro, A.; Mennini, G.; Bianco, G.; Cardinale, V.; Agnes, S.; Rossi, M.; Avolio, A.W.; Lai, Q. CONUT Score Predicts Early Morbidity After Liver Transplantation: A Collaborative Study. Front. Nutr. 2022, 8, 793885. [Google Scholar] [CrossRef]
- Teker Açıkel, M.E.; Korkut, A.K. Impact of Controlling Nutritional Status Score (CONUT) and Prognostic Nutritional Index (PIN) on Patients Undergoing Coronary Artery Bypass Graft Surgery. Heart Surg. Forum 2019, 22, E294–E297. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Yaku, H.; Morimoto, T.; Inuzuka, Y.; Tamaki, Y.; Yamamoto, E.; Yoshikawa, Y.; Kitai, T.; Taniguchi, R.; Iguchi, M.; et al. Association with Controlling Nutritional Status (CONUT) Score and In-hospital Mortality and Infection in Acute Heart Failure. Sci. Rep. 2020, 10, 3320. [Google Scholar] [CrossRef] [Green Version]
- Yıldırım, B.; Karakaya, Z.; Acar, E.; Demir, A.; Gökçek, K.; Gökçek, A.; Doğan, V.; Biteker, M. Controlling Nutritional Status (CONUT) score predicts in-hospital mortality in acute pulmonary embolism. Med. Princ. Pract. 2022, 31, 439–444. [Google Scholar] [CrossRef]
- Hao, R.; Qi, X.; Xia, X.; Wang, L.; Li, X. Malnutrition on admission increases the in-hospital mortality and length of stay in elder adults with acute ischemic stroke. J. Clin. Lab. Anal. 2022, 36, e24132. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, M.; Yang, X.; Cui, H.; Li, Z.; Wei, J. Controlling Nutritional Status Score as a Predictive Marker of In-hospital Mortality in Older Adult Patients. Front. Nutr. 2021, 8, 738045. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.strobe-statement.org/ (accessed on 11 February 2022).
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic. Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Matsukawa, T.; Suto, K.; Kanaya, M.; Izumiyama, K.; Minauchi, K.; Yoshida, S.; Oda, H.; Miyagishima, T.; Mori, A.; Ota, S.; et al. Validation and comparison of prognostic values of GNRI, PNI, and CONUT in newly diagnosed diffuse large B cell lymphoma. Ann. Hematol. 2020, 99, 2859–2868. [Google Scholar] [CrossRef]
- Nishi, I.; Seo, Y.; Hamada-Harimura, Y.; Sato, K.; Sai, S.; Yamamoto, M.; Ishizu, T.; Sugano, A.; Obara, K.; Wu, L.; et al. Utility of nutritional screening in predicting short-term prognosis of heart failure patients. Int. Heart J. 2018, 59, 354–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, D.C.; Corkins, M.R.; Malone, A.; Miller, S.; Mogensen, K.M.; Guenter, P.; Jensen, G.L.; ASPEN Malnutrition Committee. The Use of Visceral Proteins as Nutrition Markers: An ASPEN Position Paper. Nutr. Clin. Pract. 2021, 36, 22–28, Erratum in: Nutr. Clin. Pract. 2021, 36, 909. [Google Scholar] [CrossRef]
- Jagadeswaran, D.; Indhumathi, E.; Hemamalini, A.J.; Sivakumar, V.; Soundararajan, P.; Jayakumar, M. Inflammation and nutritional status assessment by malnutrition inflammation score and its outcome in pre-dialysis chronic kidney disease patients. Clin. Nutr. 2019, 38, 341–347. [Google Scholar] [CrossRef]
- Anzo, F.M.; Buan-Mayo, M. Nutritional biomarkers as predictors of clinical outcomes between COVID-19 severity groups in a tertiary government hospital. Clin. Nutr. ESPEN 2023, 53, 134–143. [Google Scholar] [CrossRef]
- Akirov, A.; Gorshtein, A.; Adler-Cohen, C.; Steinmetz, T.; Shochat, T.; Shimon, I. Low serum albumin levels predict short- and long-term mortality risk in patients hospitalised to general surgery wards. Intern. Med. J. 2020, 50, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Deng, H.; Wang, Y.; Chen, L.; Gu, X.; Wang, X. Predictive value of the prognostic nutritional index for the severity of coronavirus disease 2019. Nutrition 2021, 84, 111123. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Coresh, J.; Eustace, J.A.; Longenecker, J.C.; Jaar, B.; Fink, N.E.; Tracy, R.P.; Powe, N.R.; Klag, M.J. Association between cholesterol level and mortality in dialysis patients: Role of inflammation and malnutrition. JAMA 2004, 291, 451–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morimoto, N.; Urayama, K.Y.; Ozawa, K.; Tanaka, H. Utility of a modified Controlling Nutritional Status score in mortality risk assessment of patients on hemodialysis. Int. Urol. Nephrol. 2022. Epub ahead of print. [Google Scholar] [CrossRef]
- Schuetz, P.; Fehr, R.; Baechli, V.; Geiser, M.; Deiss, M.; Gomes, F.; Kutz, A.; Tribolet, P.; Bregenzer, T.; Braun, N.; et al. Individualised nutritional support in medical inpatients at nutritional risk: A randomised clinical trial. Lancet 2019, 393, 2312–2321. [Google Scholar] [CrossRef]
- Rinninella, E.; D’Angelo, M.; Borriello, R.; Galasso, T.; Cintoni, M.; Raoul, P.; Impagnatiello, M.; Annicchiarico, B.E.; Gasbarrini, A.; Mele, M.C. Incidence and Impact of Refeeding Syndrome in an Internal Medicine and Gastroenterology Ward of an Italian Tertiary Referral Center: A Prospective Cohort Study. Nutrients 2022, 14, 1343. [Google Scholar] [CrossRef]
Variables | Undernutrition Status | |||
---|---|---|---|---|
Normal | Mild | Moderate | Severe | |
Albumin (g/dL) | ≥3.5 | 3.0–3.49 | 2.5–2.9 | <2.5 |
Points | 0 | 2 | 4 | 6 |
Total lymphocyte count (/mm3) | >1600 | 1200–1599 | 800–1199 | <800 |
Points | 0 | 1 | 2 | 3 |
Total cholesterol (mg/dL) | >180 | 140–180 | 100–139 | <100 |
Points | 0 | 1 | 2 | 3 |
Total CONUT score | 0–1 | 2–4 | 5–8 | 9–12 |
Baseline Characteristics | Total (N = 203) |
---|---|
Males (n, %) | 127 (62.6) |
Females (n, %) | 76 (37.4) |
Age, years (mean ± SD) | 66.05 ±14.08 |
Weight, kg (mean ± SD) | 71.76 ± 16.29 |
Height, cm (mean ± SD) | 169.03 ± 8.56 |
BMI, kg/m2 (mean ± SD) | 25.02 ± 4.88 |
Admission type (n, %) | |
Elective | 62 (30.5) |
Emergency | 139 (68.5) |
Other | 2 (1) |
CCI score (mean ± SD) | 3.02 ± 2.43 |
NRS-2002 (n, %) | |
>3 | 70 (34.5) |
≤3 | 133 (65.5) |
MUST (n, %) | |
0 | 73 (36.0) |
1 | 31 (15.3) |
≥2 | 99 (48.7) |
CONUT (n, %) | |
Normal (0–1) | 44 (21.7) |
Mild (2–4) | 66 (32.5) |
Moderate (5–8) | 68 (33.5) |
Severe (9–12) | 25 (12.3) |
RS risk (n, %) | |
Low | 105 (51.7) |
Medium | 44 (21.7) |
High | 54 (26.6) |
RS diagnosis | 38 (18.7) |
LOS, days (mean ± SD) | 8.24 ± 5.75 |
In-hospital mortality (n, %) | 9 (4.4) |
Re-admission within 30 days (n, %) | 13 (6.4) |
Variables | CONUT | CONUT | p-Value |
---|---|---|---|
Normal-Mild | Moderate-Severe | ||
≤4 (n = 100) | ≥5 (n = 103) | ||
Gender, male (n, %) | 67 (60.9) | 60 (64.5) | 0.59 |
Age, years (mean ± SD) | 63.9 ± 14.3 | 68.7 ± 13.5 | 0.01 |
Weight, kg (mean ± SD) | 72.6 ± 16.1 | 70.8 ± 16.5 | 0.45 |
Height, cm (mean ± SD) | 168.8 ± 7.5 | 169.3 ± 9.7 | 0.69 |
BMI, kg/m2 (mean ± SD) | 25.3 ± 4.9 | 24.6 ± 4.8 | 0.27 |
Admission type (n, %) | |||
Elective | 52 (47.7) | 10 (10.9) | <0.0001 |
Emergency | 57 (52.3) | 82 (89.1) | <0.0001 |
CCI score (mean ± SD) | 2.7 ± 2.4 | 3.3 ± 2.5 | 0.09 |
NRS-2002 (n, %) | |||
>3 | 21 (19.1) | 49 (52.7) | <0.0001 |
≤3 | 89 (80.9) | 44 (47.3) | <0.0001 |
MUST (n, %) | |||
0 | 54 (49.1) | 19 (20.4) | <0.0001 |
1 | 17 (15.5) | 14 (15.1) | 0.93 |
≥2 | 39 (35.5) | 60 (64.5) | <0.0001 |
Sodium (mmol/L) | 140.9 ± 2.6 | 138.7 ± 4.6 | 0.0001 |
Potassium (mmol/L) | 3.9 ± 0.4 | 3.8 ± 0.5 | 0.41 |
Calcium (mg/dL) | 9.5 ± 0.6 | 8.8 ± 0.5 | <0.0001 |
Chlorine (mmol/L) | 104.0 ± 4.6 | 102.5 ± 4.5 | 0.04 |
Phosphorus (mg/dL) | 3.3 ± 0.5 | 3.4 ± 0.6 | 0.64 |
Magnesium (mg/dL) | 2.0 ± 0.3 | 2.1 ± 0.3 | 0.57 |
Albumin (g/L) | 36.5 ± 4.4 | 26.9 ± 5.2 | <0.0001 |
WBC (109/µL) | 7.4 ± 1.2 | 7.8 ± 0.8 | 0.63 |
Lymphocytes (109/µL) | 1.6 ± 0.4 | 0.9 ± 0.6 | <0.0001 |
Total cholesterol (mg/dL) | 166.6 ± 9.3 | 120.4 ± 10.1 | <0.0001 |
Triglycerides (mg/dL) | 106.2 ± 7.1 | 71 ± 6.8 | 0.001 |
Creatinine (mg/dL) | 0.8 ± 0.1 | 0.9 ± 0.3 | 0.87 |
RS risk (n, %) | |||
Low | 76 (69.1) | 30 (32.3) | <0.0001 |
Medium | 15 (13.6) | 29 (31.2) | <0.0001 |
High | 19 (17.3) | 34 (36.5) | <0.0001 |
RS diagnosis | |||
Yes | 11 (10.0) | 27 (29.0) | <0.0001 |
No | 99 (90.0) | 66 (70.9) | <0.0001 |
Nutritional supplementation within 48 h (n, %) | 27 (24.6) | 47 (50.5) | <0.0001 |
LOS, days (mean ± SD) | 6.5±4.0 | 9.9±6.4 | <0.0001 |
In-hospital mortality (n, %) | 2 (1.8) | 7 (7.5) | 0.049 |
Re-admission within 30 days (n, %) | 8 (7.3) | 5 (5.4) | 0.58 |
Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|
Risk Factors | HR (95% CI) | p-Value | HR (95% CI) | p-Value |
Male | 1.11 (0.83–1.48) | 0.45 | ||
Age | 0.99 (0.98–1.01) | 0.34 | ||
ER admission | 2.61 (1.89–3.61) | <0.0001 | 2.16 (1.48–3.16) | <0.0001 |
CCI score | 1.01 (0.95–1.07) | 0.65 | ||
Baseline Weight | 1.00 (0.99–1.01) | 0.12 | ||
Height | 1.00 (0.98–1.02) | 0.60 | ||
Baseline BMI | 1.02 (0.99–1.05) | 0.08 | ||
Baseline NRS-2002 > 3 | 1.47 (1.09–1.99) | 0.01 | 0.90 (0.62–1.31) | 0.61 |
Baseline MUST ≥ 2 | 1.57 (1.18–2.08) | <0.0001 | 1.05 (0.73–1.48) | 0.81 |
Baseline CONUT | ||||
Normal-Mild | 0.53 (0.40–0.71) | <0.0001 | Not included | |
Moderate-Severe | 1.86 (13.9–3.47) | <0.0001 | 1.52 (1.10–2.09) | 0.01 |
RS risk | 1.50 (1.13–1.99) | 0.005 | Not included | |
RS diagnosis | 2.21 (1.51–3.23) | <0.0001 | 2.00 (1.31–3.05) | 0.001 |
Nutritional Supplementation within 48 h | 0.74 (0.46–1.19) | 0.21 | ||
ONS | 1.00 (0.74–1.37) | 0.96 | ||
Parenteral Nutrition | 1.69 (0.96–2.97) | 0.07 |
Risk Factors | OR (95% CI) | p-Value |
---|---|---|
Male | 0.46 (0.09–2.29) | 0.34 |
Age | 1.04 (0.98–1.10) | 0.14 |
ER admission | 3.72 (0.46–30.44) | 0.22 |
CCI score | 1.12 (0.87–1.45) | 0.34 |
Baseline weight | 0.95 (0.89–1.01) | 0.06 |
Baseline height | 1.00 (0.92–1.08) | 0.91 |
Baseline BMI | 0.82 (0.69–0.97) | 0.02 |
NRS-2002 > 3 | 2.48 (0.64–9.55) | 0.18 |
MUST ≥ 2 | 0.37 (0.05–3.17) | 0.37 |
CONUT | 1.61 (1.21–2.15) | 0.001 |
RS diagnosis | 10.1 (2.4–42.6) | 0.002 |
Nutritional Supplementation within 48 h | 0.12 (0.02–0.56) | 0.006 |
ONS | 0.36 (0.03–2.17) | 0.21 |
Parenteral Nutrition | 4.75 (0.89–25.6) | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rinninella, E.; Borriello, R.; D’Angelo, M.; Galasso, T.; Cintoni, M.; Raoul, P.; Impagnatiello, M.; Annicchiarico, B.E.; Gasbarrini, A.; Mele, M.C. COntrolling NUTritional Status (CONUT) as Predictive Score of Hospital Length of Stay (LOS) and Mortality: A Prospective Cohort Study in an Internal Medicine and Gastroenterology Unit in Italy. Nutrients 2023, 15, 1472. https://doi.org/10.3390/nu15061472
Rinninella E, Borriello R, D’Angelo M, Galasso T, Cintoni M, Raoul P, Impagnatiello M, Annicchiarico BE, Gasbarrini A, Mele MC. COntrolling NUTritional Status (CONUT) as Predictive Score of Hospital Length of Stay (LOS) and Mortality: A Prospective Cohort Study in an Internal Medicine and Gastroenterology Unit in Italy. Nutrients. 2023; 15(6):1472. https://doi.org/10.3390/nu15061472
Chicago/Turabian StyleRinninella, Emanuele, Raffaele Borriello, Marco D’Angelo, Tiziano Galasso, Marco Cintoni, Pauline Raoul, Michele Impagnatiello, Brigida Eleonora Annicchiarico, Antonio Gasbarrini, and Maria Cristina Mele. 2023. "COntrolling NUTritional Status (CONUT) as Predictive Score of Hospital Length of Stay (LOS) and Mortality: A Prospective Cohort Study in an Internal Medicine and Gastroenterology Unit in Italy" Nutrients 15, no. 6: 1472. https://doi.org/10.3390/nu15061472
APA StyleRinninella, E., Borriello, R., D’Angelo, M., Galasso, T., Cintoni, M., Raoul, P., Impagnatiello, M., Annicchiarico, B. E., Gasbarrini, A., & Mele, M. C. (2023). COntrolling NUTritional Status (CONUT) as Predictive Score of Hospital Length of Stay (LOS) and Mortality: A Prospective Cohort Study in an Internal Medicine and Gastroenterology Unit in Italy. Nutrients, 15(6), 1472. https://doi.org/10.3390/nu15061472