Adding Branched-Chain Amino Acids and Vitamin D to Whey Protein Is More Effective than Protein Alone in Preserving Fat Free Mass and Muscle Strength in the First Month after Sleeve Gastrectomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients’ Selection
2.2. Post-SG Diet and Supplementation
2.3. Anthropometric, Body Composition and MS Assessment of the Study Population
2.4. Statistical Analysis
3. Results
3.1. Preoperative Characteristics of the Study Group
3.2. Impact of P+BCAAs+Vit.D vs. Protein Alone on TBW, BMI, FM, FFM, and MS
3.3. Impact of P+BCAAs+Vit.D vs. Protein Alone on Patient’s Clinical Parameter
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hsu, J.L.; Farrell, T.M. Updates in Bariatric Surgery. Am. Surg. 2024, 90, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Iannelli, A.; Treacy, P.; Sebastianelli, L.; Schiavo, L.; Martini, F. Perioperative complications of sleeve gastrectomy: Review of the literature. J. Minimal Access Surg. 2019, 15, 1–7. [Google Scholar]
- Schiavo, L.; Scalera, G.; Pilone, V.; De Sena, G.; Iannelli, A.; Barbarisi, A. Fat mass, fat-free mass, and resting metabolic rate in weight-stable sleeve gastrectomy patients compared with weight-stable nonoperated patients. Surg. Obes. Relat. Dis. Off. J. Am. Soc. Bariatr. Surg. 2017, 13, 1692–1699. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, L.; Scalera, G.; Pilone, V.; De Sena, G.; Quagliariello, V.; Iannelli, A.; Barbarisi, A. A Comparative Study Examining the Impact of a Protein-Enriched Vs Normal Protein Postoperative Diet on Body Composition and Resting Metabolic Rate in Obese Patients after Sleeve Gastrectomy. Obes. Surg. 2017, 27, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, L.; Scalera, G.; Pilone, V.; De Sena, G.; Iannelli, A.; Barbarisi, A. Preservation of Fat-Free Mass After Bariatric Surgery: Our Point of View. Obes. Surg. 2017, 27, 1071–1073. [Google Scholar] [CrossRef] [PubMed]
- Maïmoun, L.; Lefebvre, P.; Jaussent, A.; Fouillade, C.; Mariano-Goulart, D.; Nocca, D. Body composition changes in the first month after sleeve gastrectomy based on gender and anatomic site. Surg. Obes. Relat. Dis. Off. J. Am. Soc. Bariatr. Surg. 2017, 13, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.N.; Kim, S.O.; Jung, C.H.; Lee, W.J.; Kim, M.J.; Cho, Y.K. Preserved Muscle Strength Despite Muscle Mass Loss After Bariatric Metabolic Surgery: A Systematic Review and Meta-analysis. Obes. Surg. 2023, 33, 3422–3430. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, R.R. The underappreciated role of muscle in health and disease. Am. J. Clin. Nutr. 2006, 84, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Ebbeling, C.B.; Swain, J.F.; Feldman, H.A.; Wong, W.W.; Hachey, D.L.; Garcia-Lago, E.; Ludwig, D.S. Effects of dietary composition on energy expenditure during weight-loss maintenance. JAMA 2012, 307, 2627–2634. [Google Scholar] [CrossRef]
- Ravussin, E.; Lillioja, S.; Knowler, W.C.; Christin, L.; Freymond, D.; Abbott, W.G.; Boyce, V.; Howard, B.V.; Bogardus, C. Reduced rate of energy expenditure as a risk factor for body-weight gain. N. Engl. J. Med. 1988, 318, 467–472. [Google Scholar] [CrossRef]
- Nuijten MA, H.; Eijsvogels TM, H.; Monpellier, V.M.; Janssen IM, C.; Hazebroek, E.J.; Hopman, M.T.E. The magnitude and progress of lean body mass, fat-free mass, and skeletal muscle mass loss following bariatric surgery: A systematic review and meta-analysis. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2022, 23, e13370. [Google Scholar] [CrossRef] [PubMed]
- Haghighat, N.; Ashtary-Larky, D.; Bagheri, R.; Aghakhani, L.; Asbaghi, O.; Amini, M.; Moeinvaziri, N.; Hosseini, B.; Wong, A.; Shamekhi, Z.; et al. Preservation of fat-free mass in the first year after bariatric surgery: A systematic review and meta-analysis of 122 studies and 10,758 participants. Surg. Obes. Relat. Dis. Off. J. Am. Soc. Bariatr. Surg. 2022, 18, 964–982. [Google Scholar] [CrossRef] [PubMed]
- Mechanick, J.I.; Youdim, A.; Jones, D.B.; Garvey, W.T.; Hurley, D.L.; McMahon, M.M.; Heinberg, L.J.; Kushner, R.; Adams, T.D.; Shikora, S.; et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient--2013 update: Cosponsored by American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric Surgery. Obesity 2013, 21 (Suppl. 1), S1–S27. [Google Scholar] [PubMed]
- Bavaresco, M.; Paganini, S.; Lima, T.P.; Salgado, W., Jr.; Ceneviva, R.; Dos Santos, J.E.; Nonino-Borges, C.B. Nutritional course of patients submitted to bariatric surgery. Obes. Surg. 2010, 20, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Giusti, V.; Theytaz, F.; Di Vetta, V.; Clarisse, M.; Suter, M.; Tappy, L. Energy and macronutrient intake after gastric bypass for morbid obesity: A 3-y observational study focused on protein consumption. Am. J. Clin. Nutr. 2016, 103, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, C.F.; Morandi Junqueira-Franco, M.V.; dos Santos, J.E.; Marchini, J.S.; Salgado, W., Jr.; Nonino, C.B. Protein and amino acid status before and after bariatric surgery: A 12-month follow-up study. Surg. Obes. Relat. Dis. Off. J. Am. Soc. Bariatr. Surg. 2013, 9, 1008–1012. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Faliva, M.A.; Gasparri, C.; Peroni, G.; Spadaccini, D.; Maugeri, R.; Nichetti, M.; Infantino, V.; Perna, S. Current opinion on dietary advice in order to preserve fat-free mass during a low-calorie diet. Nutrition 2020, 72, 110667. [Google Scholar] [CrossRef]
- Glynn, E.L.; Fry, C.S.; Drummond, M.J.; Timmerman, K.L.; Dhanani, S.; Volpi, E.; Rasmussen, B.B. Excess leucine intake enhances muscle anabolic signaling but not net protein anabolism in young men and women. J. Nutr. 2010, 140, 1970–1976. [Google Scholar] [CrossRef] [PubMed]
- Columbus, D.A.; Fiorotto, M.L.; Davis, T.A. Leucine is a major regulator of muscle protein synthesis in neonates. Amino Acids 2015, 47, 259–270. [Google Scholar] [CrossRef]
- Ceglia, L.; Harris, S.S. Vitamin D and its role in skeletal muscle. Calcif. Tissue Int. 2013, 92, 151–162. [Google Scholar] [CrossRef]
- Trevisan, C.; Veronese, N.; Maggi, S.; Baggio, G.; Toffanello, E.D.; Zambon, S.; Sartori, L.; Musacchio, E.; Perissinotto, E.; Crepaldi, G.; et al. Factors Influencing Transitions Between Frailty States in Elderly Adults: The Progetto Veneto Anziani Longitudinal Study. J. Am. Geriatr. Soc. 2017, 65, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Beaudart, C.; Buckinx, F.; Rabenda, V.; Gillain, S.; Cavalier, E.; Slomian, J.; Petermans, J.; Reginster, J.Y.; Bruyère, O. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: A systematic review and meta-analysis of randomized controlled trials. J. Clin. Endocrinol. Metab. 2014, 99, 4336–4345. [Google Scholar] [CrossRef] [PubMed]
- De Luca, M.; Zappa, M.A.; Zese, M.; Bardi, U.; Carbonelli, M.G.; Carrano, F.M.; Casella, G.; Chianelli, M.; Chiappetta, S.; Iossa, A.; et al. Development of the Italian Clinical Practice Guidelines on Bariatric and Metabolic Surgery: Design and Methodological Aspects. Nutrients 2022, 15, 189. [Google Scholar] [CrossRef] [PubMed]
- National Academy of Sciences, Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (2002/2005). The National Academies Press. Available online: http://fnic.nal.usda.gov (accessed on 17 September 2009).
- Brorsson, A.L.; Nordin, K.; Ekbom, K. Adherence to Vitamin Supplementation Recommendations in Youth Who Have Undergone Bariatric Surgery as Teenagers: A Mixed Methods Study. Obes. Surg. 2020, 30, 4911–4918. [Google Scholar] [CrossRef]
- Schiavo, L.; Scalera, G.; Sergio, R.; De Sena, G.; Pilone, V.; Barbarisi, A. Clinical impact of Mediterranean-enriched-protein diet on liver size, visceral fat, fat mass, and fat-free mass in patients undergoing sleeve gastrectomy. Surg. Obes. Relat. Dis. Off. J. Am. Soc. Bariatr. Surg. 2015, 11, 1164–1170. [Google Scholar] [CrossRef] [PubMed]
- Alba, D.L.; Wu, L.; Cawthon, P.M.; Mulligan, K.; Lang, T.; Patel, S.; King, N.J.; Carter, J.T.; Rogers, S.J.; Posselt, A.M.; et al. Changes in Lean Mass, Absolute and Relative Muscle Strength, and Physical Performance After Gastric Bypass Surgery. J. Clin. Endocrinol. Metab. 2019, 104, 711–720. [Google Scholar] [CrossRef]
- Chaston, T.B.; Dixon, J.B.; O’Brien, P.E. Changes in fat-free mass during significant weight loss: A systematic review. Int. J. Obes. 2007, 31, 743–750. [Google Scholar] [CrossRef]
- Larsen, A.E.; Bibby, B.M.; Hansen, M. Effect of a Whey Protein Supplement on Preservation of Fat Free Mass in Overweight and Obese Individuals on an Energy Restricted Very Low Caloric Diet. Nutrients 2018, 10, 1918. [Google Scholar] [CrossRef]
- Mettler, S.; Mitchell, N.; Tipton, K.D. Increased protein intake reduces lean body mass loss during weight loss in athletes. Med. Sci. Sports Exerc. 2010, 42, 326–337. [Google Scholar] [CrossRef]
- Pasiakos, S.M.; Cao, J.J.; Margolis, L.M.; Sauter, E.R.; Whigham, L.D.; McClung, J.P.; Rood, J.C.; Carbone, J.W.; Combs, G.F., Jr.; Young, A.J. Effects of high-protein diets on fat-free mass and muscle protein synthesis following weight loss: A randomized controlled trial. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2013, 27, 3837–3847. [Google Scholar] [CrossRef]
- Santanasto, A.J.; Glynn, N.W.; Newman, M.A.; Taylor, C.A.; Brooks, M.M.; Goodpaster, B.H.; Newman, A.B. Impact of weight loss on physical function with changes in strength, muscle mass, and muscle fat infiltration in overweight to moderately obese older adults: A randomized clinical trial. J. Obes. 2011, 2011, 516576. [Google Scholar] [CrossRef] [PubMed]
- Carey, D.G.; Pliego, G.J.; Raymond, R.L. Body composition and metabolic changes following bariatric surgery: Effects on fat mass, lean mass and basal metabolic rate: Six months to one-year follow-up. Obes. Surg. 2006, 16, 1602–1608. [Google Scholar] [CrossRef] [PubMed]
- Santarpia, L.; Contaldo, F.; Pasanisi, F. Body composition changes after weight-loss interventions for overweight and obesity. Clin. Nutr. 2013, 32, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Handrigan, G.; Hue, O.; Simoneau, M.; Corbeil, P.; Marceau, P.; Marceau, S.; Tremblay, A.; Teasdale, N. Weight loss and muscular strength affect static balance control. Int. J. Obes. 2010, 34, 936–942. [Google Scholar] [CrossRef]
- Stegen, S.; Derave, W.; Calders, P.; Van Laethem, C.; Pattyn, P. Physical fitness in morbidly obese patients: Effect of gastric bypass surgery and exercise training. Obes. Surg. 2011, 21, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Hue, O.; Berrigan, F.; Simoneau, M.; Marcotte, J.; Marceau, P.; Marceau, S.; Tremblay, A.; Teasdale, N. Muscle force and force control after weight loss in obese and morbidly obese men. Obes. Surg. 2008, 18, 1112–1118. [Google Scholar] [CrossRef]
- Balage, M.; Dardevet, D. Long-term effects of leucine supplementation on body composition. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Pasini, E.; Corsetti, G.; Aquilani, R.; Romano, C.; Picca, A.; Calvani, R.; Dioguardi, F.S. Protein-Amino Acid Metabolism Disarrangements: The Hidden Enemy of Chronic Age-Related Conditions. Nutrients 2018, 10, 391. [Google Scholar] [CrossRef] [PubMed]
- Ruocco, C.; Segala, A.; Valerio, A.; Nisoli, E. Essential amino acid formulations to prevent mitochondrial dysfunction and oxidative stress. Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 88–95. [Google Scholar] [CrossRef]
- Kimball, S.R.; Jefferson, L.S. Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J. Nutr. 2006, 136 (Suppl. 1), 227S–231S. [Google Scholar] [CrossRef]
- Layman, D.K.; Walker, D.A. Potential importance of leucine in treatment of obesity and the metabolic syndrome. J. Nutr. 2006, 136 (Suppl. 1), 319S–323S. [Google Scholar] [CrossRef] [PubMed]
- Houston, D.K.; Tooze, J.A.; Davis, C.C.; Chaves, P.H.; Hirsch, C.H.; Robbins, J.A.; Arnold, A.M.; Newman, A.B.; Kritchevsky, S.B. Serum 25-hydroxyvitamin D and physical function in older adults: The Cardiovascular Health Study All Stars. J. Am. Geriatr. Soc. 2011, 59, 1793–1801. [Google Scholar] [CrossRef] [PubMed]
- Houston, D.K.; Cesari, M.; Ferrucci, L.; Cherubini, A.; Maggio, D.; Bartali, B.; Johnson, M.A.; Schwartz, G.G.; Kritchevsky, S.B. Association between vitamin D status and physical performance: The InCHIANTI study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2007, 62, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Hirani, V.; Naganathan, V.; Cumming, R.G.; Blyth, F.; Le Couteur, D.G.; Handelsman, D.J.; Waite, L.M.; Seibel, M.J. Associations between frailty and serum 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D concentrations in older Australian men: The Concord Health and Ageing in Men Project. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013, 68, 1112–1121. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, L.; Pilone, V.; Tramontano, S.; Rossetti, G.; Iannelli, A. May Bioelectrical Impedance Analysis Method Be Used in Alternative to the Dual-Energy X-Ray Absorptiometry in the Assessment of Fat Mass and Fat-Free Mass in Patients with Obesity? Pros, Cons, and Perspectives. Obes. Surg. 2020, 30, 3212–3215. [Google Scholar] [CrossRef]
- Parraca, J.A.; Adsuar, J.C.; Domínguez-Muñoz, F.J.; Barrios-Fernandez, S.; Tomas-Carus, P. Test-Retest Reliability of Isokinetic Strength Measurements in Lower Limbs in Elderly. Biology 2022, 11, 802. [Google Scholar] [CrossRef]
Parameter | Group | Baseline | 4-Weeks Follow-Up | p Value * | p Value ** |
---|---|---|---|---|---|
Total body weight (kg) | P+BCAA+Vit.D | 116.1 ± 22.5 | 103.6 ± 20.6 | 0.026 | 0.994 |
Protein alone | 118.4 ± 22.7 | 105.9 ± 20.1 | 0.040 | ||
BMI (kg/m2) | P+BCAA+Vit.D | 42.8 ± 5.98 | 38.3 ± 5.93 | 0.004 | 0.401 |
Protein alone | 43.3 ± 7.00 | 39.2 ± 5.82 | 0.027 | ||
Fat Mass (kg) | P+BCAA+Vit.D | 53.7 ± 11.1 | 43.8 ± 10.3 | <0.001 | 0.023 |
Protein alone | 55.6 ± 12.4 | 48.2 ± 11.4 | 0.030 | ||
Fat-Free Mass (kg) | P+BCAA+Vit.D | 57.1 ± 13.6 | 54.7 ± 12.8 | 0.485 | <0.001 |
Protein alone | 57.7 ± 12.2 | 51.1 ± 10.4 | 0.041 | ||
Muscle Strenght (kg) | P+BCAA+Vit.D | 39.1 ± 14.3 | 37.6 ± 13.4 | 0.675 | <0.001 |
Protein alone | 38.6 ± 13.4 | 31.3 ± 12.4 | 0.047 |
Clinical Characteristics | Group | Baseline | 4-Week Follow-Up | p |
---|---|---|---|---|
Glucose (mg/dL) | P+BCCAs+Vit. D | 122.1 ± 60.37 | 91.6 ± 18.62 | 0.011 |
Protein alone | 108.6 ± 16.48 | 91.2 ± 13.18 | <0.001 | |
Insulin (mU/L) | P+BCCAs+Vit. D | 25.9 ± 17.67 | 14.5 ± 8.32 | <0.001 |
Protein alone | 28.7 ± 21.27 | 16.9 ± 10.83 | 0.015 | |
HOMA Index | P+BCCAs+Vit. D | 8.74 ± 9.83 | 3.31 ± 2.14 | 0.005 |
Protein alone | 7.80 ± 6.38 | 3.80 ± 2.42 | 0.005 | |
Hemoglobin A1C (%) | P+BCCAs+Vit. D | 6.04 ± 1.68 | 5.52 ± 1.10 | 0.155 |
Protein alone | 5.54 ± 0.75 | 5.00 ± 0.80 | 0.015 | |
Creatine (mg/dL) | P+BCCAs+Vit. D | 0.80 ± 0.19 | 0.85 ± 0.34 | 0.310 |
Protein alone | 0.78 ± 0.17 | 0.86 ± 0.25 | 0.157 | |
GFR (mL/min) | P+BCCAs+Vit. D | 102.1 ± 15.42 | 100 ± 15.85 | 0.611 |
Protein alone | 98.9 ± 12.42 | 95.5 ± 20.88 | 0.479 | |
Iron (ng/dL) | P+BCCAs+Vit. D | 62.5 ± 32.14 | 63.5 ± 23.39 | 0.886 |
Protein alone | 71.6 ± 17.02 | 67.1 ± 22.88 | 0.425 | |
Uric Acid (mg/dL) | P+BCCAs+Vit. D | 5.63 ± 1.41 | 6.03 ± 1.92 | 0.347 |
Protein alone | 5.68 ± 1.17 | 6.06 ± 2.28 | 0.397 | |
Total cholesterol (mg/dL) | P+BCCAs+Vit. D | 204.4 ± 46.28 | 170.1 ± 28.51 | 0.001 |
Protein alone | 185.4 ± 45.10 | 167.3 ± 39.37 | 0.129 | |
HDL (mg/dL) | P+BCCAs+Vit. D | 49.6 ± 11.37 | 44.6 ± 10.87 | 0.082 |
Protein alone | 52.50 ± 21.37 | 47.8 ± 13.65 | 0.351 | |
Triglycerides (mg/dL) | P+BCCAs+Vit. D | 158.7 ± 132.76 | 124.1 ± 68.19 | 0.204 |
Protein alone | 122.8 ± 69.90 | 114.7 ± 51.88 | 0.637 | |
GOT (U/L) | P+BCCAs+Vit. D | 24.5 ± 13.82 | 33.0 ± 18.21 | 0.043 |
Protein alone | 27.6 ± 23.87 | 31.0 ± 19.65 | 0.583 | |
GPT (U/L) | P+BCCAs+Vit. D | 30.2 ± 20.11 | 40.4 ± 23.68 | 0.073 |
Protein alone | 37.6 ± 37.24 | 41.4 ± 32.87 | 0.703 | |
GGT (U/L) | P+BCCAs+Vit. D | 33.4 ± 24.39 | 29.4 ± 16.89 | 0.456 |
Protein alone | 32.3 ± 20.10 | 30.4 ± 19.62 | 0.728 | |
ESR (mm/h) | P+BCCAs+Vit. D | 20.8 ± 11.92 | 19.3 ± 13.25 | 0.637 |
Protein alone | 17.4 ± 10.83 | 18.9 ± 12.65 | 0.631 | |
RCP (mg/L) | P+BCCAs+Vit. D | 3.62 ± 4.70 | 1.29 ± 1.92 | 0.015 |
Protein alone | 4.12 ± 8.24 | 1.51 ± 3.00 | 0.139 | |
Na (mEq/L) | P+BCCAs+Vit. D | 140.9 ± 3.31 | 141.3 ± 2.16 | 0.291 |
Protein alone | 141.2 ± 2.23 | 142.3 ± 2.65 | 0.119 | |
K (mEq/L) | P+BCCAs+Vit. D | 4.36 ± 0.41 | 4.14 ± 0.44 | 0.046 |
Protein alone | 4.37 ± 0.41 | 4.26 ± 0.47 | 0.368 | |
Cl (mEq/L) | P+BCCAs+Vit. D | 103.3 ± 3.08 | 103.4 ± 2.14 | 0.849 |
Protein alone | 104.1 ± 2.95 | 103.5 ± 2.52 | 0.422 | |
Vitamin D (ng/mL) | P+BCCAs+Vit. D | 24.3 ± 3.1 | 31.4 ± 2.14 | 0.031 |
Protein alone | 22.4 ± 2.75 | 23.2 ± 2.21 | 0.295 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schiavo, L.; Santella, B.; Paolini, B.; Rahimi, F.; Giglio, E.; Martinelli, B.; Boschetti, S.; Bertolani, L.; Gennai, K.; Arolfo, S.; et al. Adding Branched-Chain Amino Acids and Vitamin D to Whey Protein Is More Effective than Protein Alone in Preserving Fat Free Mass and Muscle Strength in the First Month after Sleeve Gastrectomy. Nutrients 2024, 16, 1448. https://doi.org/10.3390/nu16101448
Schiavo L, Santella B, Paolini B, Rahimi F, Giglio E, Martinelli B, Boschetti S, Bertolani L, Gennai K, Arolfo S, et al. Adding Branched-Chain Amino Acids and Vitamin D to Whey Protein Is More Effective than Protein Alone in Preserving Fat Free Mass and Muscle Strength in the First Month after Sleeve Gastrectomy. Nutrients. 2024; 16(10):1448. https://doi.org/10.3390/nu16101448
Chicago/Turabian StyleSchiavo, Luigi, Biagio Santella, Barbara Paolini, Farnaz Rahimi, Emmanuele Giglio, Barbara Martinelli, Stefano Boschetti, Lilia Bertolani, Katia Gennai, Simone Arolfo, and et al. 2024. "Adding Branched-Chain Amino Acids and Vitamin D to Whey Protein Is More Effective than Protein Alone in Preserving Fat Free Mass and Muscle Strength in the First Month after Sleeve Gastrectomy" Nutrients 16, no. 10: 1448. https://doi.org/10.3390/nu16101448
APA StyleSchiavo, L., Santella, B., Paolini, B., Rahimi, F., Giglio, E., Martinelli, B., Boschetti, S., Bertolani, L., Gennai, K., Arolfo, S., Bertani, M. P., & Pilone, V. (2024). Adding Branched-Chain Amino Acids and Vitamin D to Whey Protein Is More Effective than Protein Alone in Preserving Fat Free Mass and Muscle Strength in the First Month after Sleeve Gastrectomy. Nutrients, 16(10), 1448. https://doi.org/10.3390/nu16101448