Associations of Obstructive Sleep Apnea Risk with Obesity, Body Composition and Metabolic Abnormalities in School-Aged Children and Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection and Measurements
2.2.1. Sleep Assessment
2.2.2. Anthropometric Measurements
2.2.3. Metabolic Indicators
2.2.4. Covariates
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mokhlesi, B.; Temple, K.A.; Tjaden, A.H.; Edelstein, S.L.; Nadeau, K.J.; Hannon, T.S.; Manchanda, S.; Sam, S.; Barengolts, E.; Utzschneider, K.M.; et al. The association of sleep disturbances with glycemia and obesity in youth at risk for or with recently diagnosed type 2 diabetes. Pediatr. Diabetes 2019, 20, 1056–1063. [Google Scholar] [CrossRef] [PubMed]
- Magnusdottir, S.; Hill, E.A. Prevalence of obstructive sleep apnea (OSA) among preschool aged children in the general population: A systematic review. Sleep Med. Rev. 2024, 73, 101871. [Google Scholar] [CrossRef] [PubMed]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in underweight and obesity from 1990 to 2022: A pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 2024, 403, 1027–1050. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.T.; Chou, C.H.; Weng, W.C.; Lee, P.L.; Hsu, W.C. Associations between adenotonsillar hypertrophy, age, and obesity in children with obstructive sleep apnea. PLoS ONE 2013, 8, e78666. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.T.; Lee, P.L.; Weng, W.C.; Hsu, W.C. Body weight status and obstructive sleep apnea in children. Int. J. Obes. 2012, 36, 920–924. [Google Scholar] [CrossRef] [PubMed]
- Talib, A.; Roebroek, Y.G.M.; van Waardenburg, D.A.; van der Grinten, C.P.M.; Winkens, B.; Bouvy, N.D.; van Heurn, E. Obstructive sleep apnea in obese adolescents referred for bariatric surgery: Association with metabolic and cardiovascular variables. Sleep Med. 2020, 75, 246–250. [Google Scholar] [CrossRef]
- Bhattacharjee, R.; Kheirandish-Gozal, L.; Spruyt, K.; Mitchell, R.B.; Promchiarak, J.; Simakajornboon, N.; Kaditis, A.G.; Splaingard, D.; Splaingard, M.; Brooks, L.J.; et al. Adenotonsillectomy outcomes in treatment of obstructive sleep apnea in children: A multicenter retrospective study. Am. J. Respir. Crit. Care Med. 2010, 182, 676–683. [Google Scholar] [CrossRef]
- Piovezan, R.D.; Hirotsu, C.; Moizinho, R.; de Sá Souza, H.; D’Almeida, V.; Tufik, S.; Poyares, D. Associations between sleep conditions and body composition states: Results of the EPISONO study. J. Cachexia Sarcopenia Muscle 2019, 10, 962–973. [Google Scholar] [CrossRef]
- Glicksman, A.; Hadjiyannakis, S.; Barrowman, N.; Walker, S.; Hoey, L.; Katz, S.L. Body Fat Distribution Ratios and Obstructive Sleep Apnea Severity in Youth With Obesity. J. Clin. Sleep Med. 2017, 13, 545–550. [Google Scholar] [CrossRef]
- Lei, L.; Zhang, X.; Wang, B.; Lei, F.; Dai, L.; Sun, X.; Zhao, Y.; Zhu, P.; Zou, J. Effects of sleep-disordered breathing on serum lipid levels in children:a case control study. BMC Pediatr. 2024, 24, 220. [Google Scholar] [CrossRef]
- Brooks, D.M.; Kelly, A.; Sorkin, J.D.; Koren, D.; Chng, S.Y.; Gallagher, P.R.; Amin, R.; Dougherty, S.; Guo, R.; Marcus, C.L.; et al. The relationship between sleep-disordered breathing, blood pressure, and urinary cortisol and catecholamines in children. J. Clin. Sleep Med. 2020, 16, 907–916. [Google Scholar] [CrossRef]
- Lee, C.H.; Kang, K.T.; Chiu, S.N.; Chang, I.S.; Weng, W.C.; Lee, P.L.; Hsu, W.C. Association of Adenotonsillectomy with Blood Pressure among Hypertensive and Nonhypertensive Children with Obstructive Sleep Apnea. JAMA Otolaryngol. Head Neck Surg. 2018, 144, 300–307. [Google Scholar] [CrossRef]
- Blechner, M.; Williamson, A.A. Consequences of Obstructive Sleep Apnea in Children. Curr. Probl. Pediatr. Adolesc. Health Care 2016, 46, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Kumpawat, S.; Goel, A.; Banga, A.; Ramakrishnan, L.; Chaturvedi, P. Obesity, and not obstructive sleep apnea, is responsible for metabolic abnormalities in a cohort with sleep-disordered breathing. Sleep Med. 2007, 8, 12–17. [Google Scholar] [CrossRef]
- Shamsuzzaman, A.; Szczesniak, R.D.; Fenchel, M.C.; Amin, R.S. Glucose, insulin, and insulin resistance in normal-weight, overweight and obese children with obstructive sleep apnea. Obes. Res. Clin. Pract. 2014, 8, e584–e591. [Google Scholar] [CrossRef] [PubMed]
- Beck, S.E.; Marcus, C.L. Pediatric polysomnography. Sleep Med. Clin. 2009, 4, 393–406. [Google Scholar] [CrossRef]
- Katz, S.L.; Witmans, M.; Barrowman, N.; Hoey, L.; Su, S.; Reddy, D.; Narang, I. Paediatric sleep resources in Canada: The scope of the problem. Paediatr. Child Health 2014, 19, 367–372. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef] [PubMed]
- Chervin, R.D.; Hedger, K.; Dillon, J.E.; Pituch, K.J. Pediatric sleep questionnaire (PSQ): Validity and reliability of scales for sleep-disordered breathing, snoring, sleepiness, and behavioral problems. Sleep Med. 2000, 1, 21–32. [Google Scholar] [CrossRef]
- Li, X.D.; Tai, J.; Xu, Z.F.; Peng, X.X.; Feng, G.S.; Zhang, Y.M.; Zhang, J.; Guo, Y.L.; Wu, Y.X.; Shi, J.; et al. The validity and reliability of simplified Chinese version of the pediatric sleep questionnaire for screening children with obstructive sleep apnea syndrome in Beijing. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi = Chin. J. Otorhinolaryngol. Head Neck Surg. 2016, 51, 812–818. (In Chinese) [Google Scholar] [CrossRef]
- Marcus, C.L.; Brooks, L.J.; Draper, K.A.; Gozal, D.; Halbower, A.C.; Jones, J.; Schechter, M.S.; Ward, S.D.; Sheldon, S.H.; Shiffman, R.N.; et al. Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics 2012, 130, e714–e755. [Google Scholar] [CrossRef]
- Liao, Z.; Wang, J.; Chen, F.; Chen, Y.; Zhang, T.; Liu, G.; Xie, X.; Tai, J. Association of Cesarean Delivery with Trajectories of Growth and Body Composition in Preschool Children. Nutrients 2022, 14, 1806. [Google Scholar] [CrossRef]
- Li, M.; Shu, W.; Zunong, J.; Amaerjiang, N.; Xiao, H.; Li, D.; Vermund, S.H.; Hu, Y. Predictors of non-alcoholic fatty liver disease in children. Pediatr. Res. 2022, 92, 322–330. [Google Scholar] [CrossRef]
- Wilke, M.S.; Maximova, K.; Henderson, M.; Levy, E.; Paradis, G.; O’Loughlin, J.; Tremblay, A.; Proctor, S.D. Adiposity in Children and CVD Risk: ApoB48 Has a Stronger Association With Central Fat Than Classic Lipid Markers. J. Clin. Endocrinol. Metab. 2016, 101, 2915–2922. [Google Scholar] [CrossRef]
- Huang, Y.; Gao, L.; Cheng, H.; Wang, X.; Dong, H.; Yan, Y.; Zhao, X.; Liu, J.; Shan, X.; Mi, J. Difference of glucose and lipid metabolism abnormalities and body fat between the Chinese and USA teenagers. J. Glob. Health 2023, 13, 04041. [Google Scholar] [CrossRef]
- World Health Organization. WHO Child Growth Standards SAS Igrowup Package; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr. Suppl. 2006, 450, 76–85. [Google Scholar]
- WHO Multicentre Growth Reference Study Group; World Health Organization. WHO Child Growth Standards: Length/Height-for-Age, Weightfor-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- de Onis, M.; Lobstein, T. Defining obesity risk status in the general childhood population: Which cut-offs should we use? Int. J. Pediatr. Obes. 2010, 5, 458–460. [Google Scholar] [CrossRef]
- McCarthy, H.D.; Ashwell, M. A study of central fatness using waist-to-height ratios in UK children and adolescents over two decades supports the simple message--‘keep your waist circumference to less than half your height’. Int. J. Obes. 2006, 30, 988–992. [Google Scholar] [CrossRef]
- Sharma, A.K.; Metzger, D.L.; Daymont, C.; Hadjiyannakis, S.; Rodd, C.J. LMS tables for waist-circumference and waist-height ratio Z-scores in children aged 5-19 y in NHANES III: Association with cardio-metabolic risks. Pediatr. Res. 2015, 78, 723–729. [Google Scholar] [CrossRef]
- Wu, T.; Liao, Z.; Wang, J.; Liu, M. The Accumulative Effect of Multiple Postnatal Risk Factors with the Risk of Being Overweight/Obese in Late Childhood. Nutrients 2024, 16, 1536. [Google Scholar] [CrossRef]
- Gao, L.; Cheng, H.; Yan, Y.; Liu, J.; Shan, X.; Wang, X.; Mi, J. The associations of muscle mass with glucose and lipid metabolism are influenced by body fat accumulation in children and adolescents. Front. Endocrinol. 2022, 13, 976998. [Google Scholar] [CrossRef]
- WS/T 610-2018[S]; Reference of Screening for Elevated Blood Pressure among Children and Adolescents Aged 7~18 Years. National Health Commission of the People’s Republic of China: Beijing, China, 2018. (In Chinese)
- Fan, H.; Yan, Y.; Mi, J. Updating blood pressure references for Chinese children aged 3–17 years. Zhong hua Gao Xue Ya Za Zhi 2017, 25, 428–435. (In Chinese) [Google Scholar]
- Subspecialty Group of Rare Diseases; the Society of Pediatrics; Chinese Medical Association; Subspecialty Group of Cardiology; the Society of Pediatrics; Chinese Medical Association; Subspecialty Group of Child Health Care; the Society of Pediatrics; Chinese Medical Association; Subspecialty Group of Endocrinological; et al. Expert consensus on diagnosis and management of dyslipidemia in children. Zhonghua Er Ke Za Zhi 2022, 60, 633–639. (In Chinese) [Google Scholar]
- Chen, F.; Liu, J.; Yan, Y.; Mi, J.; China Child and Adolescent Cardiovascular Health (CCACH) Study Group. Abnormal Metabolic Phenotypes Among Urban Chinese Children: Epidemiology and the Impact of DXA-Measured Body Composition. Obesity 2019, 27, 837–844. [Google Scholar] [CrossRef]
- Rao, J.; Ye, P.; Lu, J.; Chen, B.; Li, N.; Zhang, H.; Bo, H.; Chen, X.; Liu, H.; Zhang, C.; et al. Prevalence and related factors of hyperuricaemia in Chinese children and adolescents: A pooled analysis of 11 population-based studies. Ann. Med. 2022, 54, 1608–1615. [Google Scholar] [CrossRef]
- Tsampalieros, A.; Blinder, H.; Hoey, L.; Momoli, F.; Barrowman, N.; Feber, J.; Spitale, N.; Katz, S.L. Obstructive sleep apnea and hypertension in pediatric chronic kidney disease. Pediatr. Nephrol. 2019, 34, 2361–2370. [Google Scholar] [CrossRef]
- Reisinger, C.; Nkeh-Chungag, B.N.; Fredriksen, P.M.; Goswami, N. The prevalence of pediatric metabolic syndrome-a critical look on the discrepancies between definitions and its clinical importance. Int. J. Obes. 2021, 45, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Lo Bue, A.; Salvaggio, A.; Insalaco, G. Obstructive sleep apnea in developmental age. A narrative review. Eur. J. Pediatr. 2020, 179, 357–365. [Google Scholar] [CrossRef]
- Katz, S.L.; Vaccani, J.P.; Barrowman, N.; Momoli, F.; Bradbury, C.L.; Murto, K. Does neck-to-waist ratio predict obstructive sleep apnea in children? J. Clin. Sleep Med. 2014, 10, 1303–1308. [Google Scholar] [CrossRef]
- Schwartz, A.R.; Patil, S.P.; Laffan, A.M.; Polotsky, V.; Schneider, H.; Smith, P.L. Obesity and obstructive sleep apnea: Pathogenic mechanisms and therapeutic approaches. Proc. Am. Thorac. Soc. 2008, 5, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Simpson, L.; Mukherjee, S.; Cooper, M.N.; Ward, K.L.; Lee, J.D.; Fedson, A.C.; Potter, J.; Hillman, D.R.; Eastwood, P.; Palmer, L.J.; et al. Sex differences in the association of regional fat distribution with the severity of obstructive sleep apnea. Sleep 2010, 33, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.R.; Song, P.; Joo, E.Y. Sex Differences in Obstructive Sleep Apnea by Bioelectrical Impedance Analysis. J. Clin. Neurol. 2021, 17, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Larson-Meyer, D.E.; Newcomer, B.R.; Ravussin, E.; Volaufova, J.; Bennett, B.; Chalew, S.; Cefalu, W.T.; Sothern, M. Intrahepatic and intramyocellular lipids are determinants of insulin resistance in prepubertal children. Diabetologia 2011, 54, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Katz, E.S.; D’Ambrosio, C.M. Pediatric obstructive sleep apnea syndrome. Clin. Chest Med. 2010, 31, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.T.; Chiu, S.N.; Weng, W.C.; Lee, P.L.; Hsu, W.C. Comparisons of Office and 24-Hour Ambulatory Blood Pressure Monitoring in Children with Obstructive Sleep Apnea. J. Pediatr. 2017, 182, 177–183.e2. [Google Scholar] [CrossRef]
- Erdim, I.; Akcay, T.; Yilmazer, R.; Erdur, O.; Kayhan, F.T. Is Metabolic Syndrome Associated with Obstructive Sleep Apnea in Obese Adolescents? J. Clin. Sleep Med. 2015, 11, 1371–1376. [Google Scholar] [CrossRef]
- Koren, D.; Gozal, D.; Philby, M.F.; Bhattacharjee, R.; Kheirandish-Gozal, L. Impact of obstructive sleep apnoea on insulin resistance in nonobese and obese children. Eur. Respir. J. 2016, 47, 1152–1161. [Google Scholar] [CrossRef]
- Li, A.M.; Au, C.T.; Ng, C.; Lam, H.S.; Ho, C.K.W.; Wing, Y.K. A 4-year prospective follow-up study of childhood OSA and its association with BP. Chest 2014, 145, 1255–1263. [Google Scholar] [CrossRef]
- Fernandez-Mendoza, J.; He, F.; Calhoun, S.L.; Vgontzas, A.N.; Liao, D.; Bixler, E.O. Association of Pediatric Obstructive Sleep Apnea With Elevated Blood Pressure and Orthostatic Hypertension in Adolescence. JAMA Cardiol. 2021, 6, 1144–1151. [Google Scholar] [CrossRef]
- Kang, K.T.; Chiu, S.N.; Weng, W.C.; Lee, P.L.; Hsu, W.C. Analysis of 24H-our Ambulatory Blood Pressure Monitoring in Children with Obstructive Sleep Apnea: A Hospital-Based Study. Medicine 2015, 94, e1568. [Google Scholar] [CrossRef]
Characteristics | Low-Risk for OSA (n = 4428) | High-Risk for OSA (n = 572) | p |
---|---|---|---|
Maternal age at delivery (year), Mean ± SD | 27.8 ± 4.3 | 27.6 ± 4.5 | 0.267 |
Maternal age at delivery (year), n (%) | |||
<35 | 3917 (93.0) | 508 (94.1) | 0.368 |
≥35 | 296 (7.0) | 32 (5.9) | |
Maternal history of gestational diabetes mellitus/hypertension, n (%) | |||
Without | 4082 (92.2) | 525 (91.8) | 0.741 |
With | 346 (7.8) | 47 (8.2) | |
Delivery mode, n (%) | |||
Vaginal delivery | 1985 (45.9) | 268 (48.3) | 0.298 |
Cesarean delivery | 2340 (54.1) | 287 (51.7) | |
Child sex, n (%) | |||
Male | 2194 (49.5) | 343 (60.0) | <0.001 |
Female | 2234 (50.5) | 229 (40.0) | |
Birthweight (g), Mean ± SD | 3393.7 ± 659.3 | 3369.1 ± 592.6 | 0.426 |
Birthweight (g), n (%) | |||
<2500 | 136 (3.9) | 16 (3.8) | 0.893 |
2500–3999 | 2927 (84.2) | 355 (83.5) | |
≥4000 | 415 (11.9) | 54 (12.7) | |
Exclusive breastfeeding duration in the first six months, n (%) | |||
yes | 2528 (59.7) | 302 (55.2) | 0.047 |
no | 1703 (40.3) | 245 (44.8) | |
Family history of metabolic abnormalities, n (%) | |||
Without | 1490 (33.6) | 163 (28.5) | 0.014 |
With | 2938 (66.4) | 409 (71.5) | |
Annual family income (CNY), n (%) | |||
<20,000 | 760 (18.4) | 105 (19.7) | 0.708 |
20,000–120,000 | 1403 (33.9) | 175 (32.9) | |
120,000–250,000 | 1284 (31) | 171 (32.1) | |
≥250,000 | 689 (16.7) | 81 (15.2) | |
Maternal education, n (%) | |||
High School or less | 2371 (55.5) | 308 (55.8) | 0.749 |
College | 1838 (43) | 238 (43.1) | |
Above college | 64 (1.5) | 6 (1.1) | |
Paternal education, n (%) | |||
High School or less | 2518 (59.2) | 335 (60.4) | 0.548 |
College | 1645 (38.7) | 205 (36.9) | |
Above college | 91 (2.1) | 15 (2.7) | |
Maternal current BMI (kg/m2), Mean ± SD | 24.1 (5.4) | 24.3 (5.5) | 0.376 |
Maternal current BMI (kg/m2), n (%) | |||
<18.5 | 206 (4.9) | 19 (3.5) | 0.443 |
18–23 | 1843 (44) | 231 (43) | |
23–27.5 | 1527 (36.5) | 208 (38.7) | |
≥27.5 | 612 (14.6) | 79 (14.7) | |
Paternal current BMI (kg/m2), Mean ± SD | 26.3 (5.6) | 26.6 (5.2) | 0.298 |
Paternal current BMI (kg/m2), n (%) | |||
<23 | 916 (22.1) | 106 (19.8) | 0.006 |
23–27.5 | 2011 (48.4) | 235 (43.9) | |
≥27.5 | 1227 (29.5) | 194 (36.3) | |
Child age (year), Mean ± SD | 11.0 ± 3.0 | 11.1 ± 2.9 | 0.708 |
Sugary beverage consumption pattern, n (%) | |||
≥1/day | 296 (6.8) | 41 (7.3) | 0.001 |
4–6/week | 372 (8.6) | 58 (10.3) | |
1–3/week | 1371 (31.7) | 217 (38.4) | |
<1/week | 2291 (52.9) | 249 (44.1) | |
Passive smoking in the past week, n (%) | |||
no | 3141 (73.4) | 349 (62.9) | <0.001 |
yes | 1137 (26.6) | 206 (37.1) | |
Child weight status, n (%) | |||
Normal | 2592 (58.7) | 249 (43.6) | <0.001 |
Overweight | 869 (19.7) | 131 (22.9) | |
Obesity | 952 (21.6) | 191 (33.5) | |
Child body composition phenotype, n (%) | |||
Normal fat-normal muscle mass | 3459 (78.4) | 398 (69.7) | <0.001 |
High fat-normal muscle mass | 351 (7.9) | 59 (10.3) | |
Normal fat-high muscle mass | 265 (6.0) | 37 (6.5) | |
High fat-high muscle mass | 338 (7.7) | 77 (13.5) |
Crude OR (95% CI) | p | Adjusted OR (95% CI) * | p | |
---|---|---|---|---|
Child weight status | ||||
Normal | 1 | 1 | ||
Overweight | 1.57 (1.25, 1.97) | <0.001 | 1.53 (1.22, 1.92) | <0.001 |
Obesity | 2.09 (1.71, 2.56) | <0.001 | 1.94 (1.57, 2.40) | <0.001 |
Abdominal obesity | ||||
WHtR < 0.5 | 1 | 1 | ||
WHtR ≥ 0.5 | 1.74 (1.45, 2.09) | <0.001 | 1.59 (1.31, 1.93) | <0.001 |
Body composition phenotype | ||||
Normal fat -normal muscle mass | 1 | 1 | ||
High fat-normal muscle mass | 1.46 (1.09, 1.96) | 0.012 | 1.39 (1.03, 1.88) | 0.032 |
Normal fat-high muscle mass | 1.21 (0.85, 1.74) | 0.291 | 1.21 (0.84, 1.73) | 0.314 |
High fat-high muscle mass | 1.98 (1.51, 2.59) | <0.001 | 2.05 (1.56, 2.69) | <0.001 |
Metabolic Abnormalities | Crude OR (95% CI) | p | Model 1 | Model 2 | ||
---|---|---|---|---|---|---|
Adjusted OR (95% CI) | p | Adjusted OR (95% CI) | p | |||
High TC levels | 1.22 (0.89, 1.67) | 0.222 | 1.22 (0.88, 1.68) | 0.228 | 1.17 (0.85, 1.61) | 0.339 |
High LDL-C levels | 1.31 (1.02, 1.68) | 0.036 | 1.27 (0.99, 1.64) | 0.063 | 1.11 (0.86, 1.44) | 0.425 |
Low HDL-C levels | 1.41 (1.04, 1.91) | 0.028 | 1.37 (1.01, 1.88) | 0.045 | 1.11 (0.80, 1.54) | 0.546 |
High TG levels | 1.38 (1.09, 1.75) | 0.007 | 1.34 (1.06, 1.71) | 0.015 | 1.08 (0.84, 1.40) | 0.531 |
IFG | 0.89 (0.56, 1.43) | 0.642 | 0.81 (0.50, 1.31) | 0.396 | 0.77 (0.48, 1.25) | 0.287 |
High UA levels | 1.13 (0.93, 1.36) | 0.216 | 1.13 (0.92, 1.37) | 0.245 | 0.88 (0.70, 1.09) | 0.240 |
Hypertension | 1.08 (0.84, 1.39) | 0.568 | 1.05 (0.81, 1.36) | 0.704 | 0.79 (0.59, 1.04) | 0.091 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Z.; Chen, Y.; Wu, L.; Huang, Y.; Li, S.; Liu, J.; Zong, X.; Tai, J.; Chen, F. Associations of Obstructive Sleep Apnea Risk with Obesity, Body Composition and Metabolic Abnormalities in School-Aged Children and Adolescents. Nutrients 2024, 16, 2419. https://doi.org/10.3390/nu16152419
Liao Z, Chen Y, Wu L, Huang Y, Li S, Liu J, Zong X, Tai J, Chen F. Associations of Obstructive Sleep Apnea Risk with Obesity, Body Composition and Metabolic Abnormalities in School-Aged Children and Adolescents. Nutrients. 2024; 16(15):2419. https://doi.org/10.3390/nu16152419
Chicago/Turabian StyleLiao, Zijun, Yiren Chen, Lijun Wu, Yiying Huang, Shaoli Li, Junting Liu, Xinnan Zong, Jun Tai, and Fangfang Chen. 2024. "Associations of Obstructive Sleep Apnea Risk with Obesity, Body Composition and Metabolic Abnormalities in School-Aged Children and Adolescents" Nutrients 16, no. 15: 2419. https://doi.org/10.3390/nu16152419
APA StyleLiao, Z., Chen, Y., Wu, L., Huang, Y., Li, S., Liu, J., Zong, X., Tai, J., & Chen, F. (2024). Associations of Obstructive Sleep Apnea Risk with Obesity, Body Composition and Metabolic Abnormalities in School-Aged Children and Adolescents. Nutrients, 16(15), 2419. https://doi.org/10.3390/nu16152419