Gender Difference in the Impact of Total Energy Intake on the Association between Low Fiber Intake and Mental Health in Middle-Aged and Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Outcome Measurement
2.3. Dietary Assessment
2.4. Baseline Measurements
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mental Health Atlas 2020; World Health Organization: Geneva, Switzerland, 2021.
- Su, G.; Song, H.; Lanka, V.; Liu, X.; Fang, F.; Valdimarsdóttir, U.A.; Carrero, J.J. Stress Related Disorders and the Risk of Kidney Disease. Kidney Int. Rep. 2021, 6, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Chauvet-Gelinier, J.-C.; Bonin, B. Stress, anxiety and depression in heart disease patients: A major challenge for cardiac rehabilitation. Ann. Phys. Rehabil. Med. 2017, 60, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Cooper, K.; Campbell, F.; Harnan, S.; Sutton, A. Association between stress, depression or anxiety and cancer: Rapid review of reviews. Compr. Psychoneuroendocrinol. 2023, 16, 100215. [Google Scholar] [CrossRef] [PubMed]
- Garbarski, D. Research in and Prospects for the Measurement of Health Using Self-Rated Health. Public Opin. Q. 2016, 80, 977–997. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, R.; Selvamani, T.Y.; Zahra, A.; Malla, J.; Dhanoa, R.K.; Venugopal, S.; Shoukrie, S.I.; Hamouda, R.K.; Hamid, P. Association Between Dietary Habits and Depression: A Systematic Review. Cureus 2022, 14, e32359. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, B.; Flood, V.M.; Burlutksy, G.; Louie, J.C.; Mitchell, P. Association between carbohydrate nutrition and prevalence of depressive symptoms in older adults. Br. J. Nutr. 2016, 116, 2109–2114. [Google Scholar] [CrossRef] [PubMed]
- Jacka, F.N.; Pasco, J.A.; Mykletun, A.; Williams, L.J.; Hodge, A.M.; O’Reilly, S.L.; Nicholson, G.C.; Kotowicz, M.A.; Berk, M. Association of Western and traditional diets with depression and anxiety in women. Am. J. Psychiatry 2010, 167, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, O.; Keshteli, A.H.; Afshar, H.; Esmaillzadeh, A.; Adibi, P. Adherence to Mediterranean dietary pattern is inversely associated with depression, anxiety and psychological distress. Nutr. Neurosci. 2021, 24, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Zheng, Y.; Gao, Y.; Xu, W. Dietary Fiber Intake and Gut Microbiota in Human Health. Microorganisms 2022, 10, 2507. [Google Scholar] [CrossRef]
- McRae, M.P. Dietary Fiber Is Beneficial for the Prevention of Cardiovascular Disease: An Umbrella Review of Meta-analyses. J. Chiropr. Med. 2017, 16, 289–299. [Google Scholar] [CrossRef]
- Kunzmann, A.T.; Coleman, H.G.; Huang, W.Y.; Kitahara, C.M.; Cantwell, M.M.; Berndt, S.I. Dietary fiber intake and risk of colorectal cancer and incident and recurrent adenoma in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Am. J. Clin. Nutr. 2015, 102, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, K.; Maruyama, K.; Ikeda, A.; Nagao, M.; Noda, H.; Umesawa, M.; Hayama-Terada, M.; Muraki, I.; Okada, C.; Tanaka, M.; et al. Dietary fiber intake and risk of incident disabling dementia: The Circulatory Risk in Communities Study. Nutr. Neurosci. 2023, 26, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Saghafian, F.; Sharif, N.; Saneei, P.; Keshteli, A.H.; Hosseinzadeh-Attar, M.J.; Afshar, H.; Esmaillzadeh, A.; Adibi, P. Consumption of Dietary Fiber in Relation to Psychological Disorders in Adults. Front. Psychiatry 2021, 12, 587468. [Google Scholar] [CrossRef] [PubMed]
- Chi, S.H.; Wang, J.Y.; Tsai, A.C. Combined association of leisure-time physical activity and fruit and vegetable consumption with depressive symptoms in older Taiwanese: Results of a national cohort study. Geriatr. Gerontol. Int. 2016, 16, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Abate, K.H. Gender disparity in prevalence of depression among patient population: A systematic review. Ethiop. J. Health Sci. 2013, 23, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Han, B.G. Cohort Profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. Int. J. Epidemiol. 2017, 46, e20. [Google Scholar] [CrossRef] [PubMed]
- Group, H.E.H.S. The Health Examinees (HEXA) Study: Rationale, Study Design and Baseline Characteristics. Asian Pac. J. Cancer Prev. 2015, 16, 1591–1597. [Google Scholar] [CrossRef]
- Kim, K.N.; Park, J.Y.; Shin, T.S.; Jun, K.J.; Choi, E.Y.; Kim, H.J.; Lee, S.H.; Yoo, T.W.; Huh, B.Y. Degree of stress and stress-related factors by the Korean version of the BEPSI. J. Korean Acad. Fam. Med. 1998, 19, 559–570. [Google Scholar]
- Chang, S. Standardization of Collection and Measurement for Heath Data; Kyechukmunhwasa: Seoul, Republic of Korea, 2000; pp. 121–159. [Google Scholar]
- Kang, Y.S.; Choi, S.Y.; Ryu, E. The effectiveness of a stress coping program based on mindfulness meditation on the stress, anxiety, and depression experienced by nursing students in Korea. Nurse Educ. Today 2009, 29, 538–543. [Google Scholar] [CrossRef]
- Kim, J.Y.; Joo, Y.S.; Jhee, J.H.; Han, S.H.; Yoo, T.-H.; Kang, S.-W.; Park, J.T. Effect of Psychosocial Distress on the Rate of Kidney Function Decline. J. Gen. Intern. Med. 2021, 36, 2966–2974. [Google Scholar] [CrossRef]
- Chang, W.H.; Sohn, M.K.; Lee, J.; Kim, D.Y.; Lee, S.-G.; Shin, Y.-I.; Oh, G.-J.; Lee, Y.-S.; Joo, M.C.; Han, E.Y.; et al. Korean Stroke Cohort for functioning and rehabilitation (KOSCO): Study rationale and protocol of a multi-centre prospective cohort study. BMC Neurol. 2015, 15, 42. [Google Scholar] [CrossRef] [PubMed]
- Park, B.; Lee, M.H.; Kong, S.Y.; Lee, E.S. Psychosocial Health of Disease-Free Breast Cancer Survivors Compared with Matched Non-cancer Controls. Cancer Res. Treat. 2019, 51, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.J.; Kim, K.H. Diagnostic validity of the CES-D(Korean version) in the assessment of DSM-III-R major depression. J. Korean Neuropsychiatr. Assoc. 1993, 32, 381–399. [Google Scholar]
- Irwin, M.; Artin, K.H.; Oxman, M.N. Screening for depression in the older adult: Criterion validity of the 10-item Center for Epidemiological Studies Depression Scale (CES-D). Arch. Intern. Med. 1999, 159, 1701–1704. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, J.S.; Hong, K.H.; Yeom, H.S.; Nam, Y.S.; Kim, J.Y.; Park, Y.K. Development and relative validity of semi-quantitative food frequency questionnaire for Korean adults. J. Nutr. Health 2018, 51, 103–119. [Google Scholar] [CrossRef]
- Paik, H.Y. Dietary reference intakes for Koreans (KDRIs). Asia Pac. J. Clin. Nutr. 2008, 17, 416–419. [Google Scholar]
- Freiberg, M.S.; Cabral, H.J.; Heeren, T.C.; Vasan, R.S.; Curtis Ellison, R. Alcohol Consumption and the Prevalence of the Metabolic Syndrome in the U.S.: A cross-sectional analysis of data from the Third National Health and Nutrition Examination Survey. Diabetes Care 2004, 27, 2954–2959. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Henry, C. Basal metabolic rate studies in humans: Measurement and development of new equations. Public Health Nutr. 2005, 8, 1133–1152. [Google Scholar] [CrossRef]
- Kim, Y.; Hong, M.; Kim, S.; Shin, W.Y.; Kim, J.H. Inverse association between dietary fiber intake and depression in premenopausal women: A nationwide population-based survey. Menopause 2020, 28, 150–156. [Google Scholar] [CrossRef]
- Park, S.K.; Oh, C.-M.; Ryoo, J.-H.; Jung, J.Y. The possible association of dietary fiber intake with the incidence of depressive symptoms in the Korean population. Nutr. Neurosci. 2024, 16, 1–9. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, S.M.; Clarke, G.; Borre, Y.E.; Dinan, T.G.; Cryan, J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015, 277, 32–48. [Google Scholar] [CrossRef] [PubMed]
- Maslowski, K.M.; Vieira, A.T.; Ng, A.; Kranich, J.; Sierro, F.; Di, Y.; Schilter, H.C.; Rolph, M.S.; Mackay, F.; Artis, D.; et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009, 461, 1282–1286. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Covián, D.; Ruas-Madiedo, P.; Margolles, A.; Gueimonde, M.; de Los Reyes-Gavilán, C.G.; Salazar, N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front. Microbiol. 2016, 7, 185. [Google Scholar] [CrossRef] [PubMed]
- Calbet, J.A.; MacLean, D.A. Role of caloric content on gastric emptying in humans. J. Physiol. 1997, 498 Pt 2, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, S.; Hancock, D.P.; Petocz, P.; Ceriello, A.; Brand-Miller, J. High-glycemic index carbohydrate increases nuclear factor-kappaB activation in mononuclear cells of young, lean healthy subjects. Am. J. Clin. Nutr. 2008, 87, 1188–1193. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Kim, H.J.; Hwang, J.; Park, M. Gender Difference of the Association between Energy Intake Expenditure Balance and Depression among Korean Adults: A Cross-Sectional Study from the 2014, 2016, and 2018 Korea National Health and Nutrition Examination Survey. Korean J. Fam. Med. 2023, 44, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Begdache, L.; Patrissy, C.M. Customization of Diet May Promote Exercise and Improve Mental Wellbeing in Mature Adults: The Role of Exercise as a Mediator. J. Pers. Med. 2021, 11, 435. [Google Scholar] [CrossRef] [PubMed]
- Lundsgaard, A.M.; Kiens, B. Gender differences in skeletal muscle substrate metabolism–molecular mechanisms and insulin sensitivity. Front. Endocrinol. 2014, 5, 195. [Google Scholar] [CrossRef]
- Haizlip, K.M.; Harrison, B.C.; Leinwand, L.A. Sex-based differences in skeletal muscle kinetics and fiber-type composition. Physiology 2015, 30, 30–39. [Google Scholar] [CrossRef]
- Merz, K.E.; Thurmond, D.C. Role of Skeletal Muscle in Insulin Resistance and Glucose Uptake. Compr. Physiol. 2020, 10, 785–809. [Google Scholar] [CrossRef] [PubMed]
- Mearadji, B.; Penning, C.; Vu, M.K.; van der Schaar, P.J.; van Petersen, A.S.; Kamerling, I.M.C.; Masclee, A.A.M. Influence of gender on proximal gastric motor and sensory function. Am. J. Gastroenterol. 2001, 96, 2066–2073. [Google Scholar] [CrossRef] [PubMed]
- Simkin, D.R. Microbiome and Mental Health, Specifically as It Relates to Adolescents. Curr. Psychiatry Rep. 2019, 21, 93. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.; Kim, H.; Kim, J.; Hwang, J.-Y.; Lee, J.; Yoon, M.O. The development of the 2020 Dietary Reference Intakes for Korean population: Lessons and challenges. J. Nutr. Health 2021, 54, 425–434. [Google Scholar] [CrossRef]
- Kim, J.; Baek, Y.; Lee, S. Consumption of dietary fiber and APOA5 genetic variants in metabolic syndrome: Baseline data from the Korean Medicine Daejeon Citizen Cohort Study. Nutr. Metab. 2024, 21, 19. [Google Scholar] [CrossRef]
- Czajkowski, P.; Adamska-Patruno, E.; Bauer, W.; Krasowska, U.; Fiedorczuk, J.; Moroz, M.; Gorska, M.; Kretowski, A. Dietary Fiber Intake May Influence the Impact of FTO Genetic Variants on Obesity Parameters and Lipid Profile-A Cohort Study of a Caucasian Population of Polish Origin. Antioxidants 2021, 10, 1793. [Google Scholar] [CrossRef]
Sex | Male | Female | p |
---|---|---|---|
(N = 4112) | (N = 7176) | ||
Age | 54.0 [47.0; 61.0] | 52.0 [47.0; 58.0] | <0.001 * |
BMI | <0.001 * | ||
Underweight | 40 (1.0%) | 133 (1.9%) | |
Normal | 1180 (28.7%) | 3029 (42.2%) | |
Overweight | 1248 (30.4%) | 1912 (26.6%) | |
Obese | 1644 (40.0%) | 2102 (29.3%) | |
Total energy (kcal/day) | 1806.5 [1544.1; 2159.2] | 1639.2 [1361.0; 1962.5] | <0.001 * |
Protein (gram/day) | 58.8 [47.3; 74.9] | 52.7 [41.5; 66.7] | <0.001 * |
Fat (gram/day) | 27.2 [19.3; 38.5] | 22.6 [15.5; 32.0] | <0.001 * |
Carbohydrate (gram/day) | 321.9 [281.4; 377.5] | 301.3 [248.9; 351.4] | <0.001 * |
Carbohydrate (%) | 72.0 [67.4; 75.8] | 73.2 [68.6; 77.3] | <0.001 * |
Fiber (gram/day) | 5.5 [4.1; 7.1] | 5.3 [3.9; 7.0] | 0.001 * |
Smoking habit | <0.001 * | ||
Never | 1026 (25.0%) | 6947 (96.8%) | |
Ex-smoker | 1774 (43.1%) | 91 (1.3%) | |
Current | 1312 (31.9%) | 138 (1.9%) | |
Alcohol intake | <0.001 * | ||
Never | 768 (18.7%) | 4753 (66.2%) | |
Ex | 308 (7.5%) | 124 (1.7%) | |
Current | 3036 (73.8%) | 2299 (32.0%) | |
Regular exercise | <0.001 * | ||
No | 1759 (42.8%) | 3396 (47.3%) | |
Yes | 2353 (57.2%) | 3780 (52.7%) | |
Hypertension | 943 (22.9%) | 1186 (16.5%) | <0.001 * |
Diabetes | 379 (9.2%) | 352 (4.9%) | <0.001 * |
Dyslipidemia | 414 (10.1%) | 614 (8.6%) | 0.008 * |
Income | <0.001 * | ||
<300 KRW | 2282 (55.5%) | 4321 (60.2%) | |
≥300 KRW | 1830 (44.5%) | 2855 (39.8%) | |
hs-CRP (mg/dL) | 0.1 [0.0; 0.1] | 0.0 [0.0; 0.1] | <0.001 * |
Stress | <0.001 * | ||
No | 2716 (66.1%) | 3777 (52.6%) | |
Intermittently | 1201 (29.2%) | 2781 (38.8%) | |
Frequently | 195 (4.7%) | 618 (8.6%) | |
SRH | <0.001 * | ||
Very healthy | 134 (3.3%) | 124 (1.7%) | |
Healthy | 1824 (44.4%) | 2465 (34.4%) | |
Normal | 1643 (40.0%) | 3269 (45.6%) | |
Unhealthy | 487 (11.8%) | 1265 (17.6%) | |
Very unhealthy | 24 (0.6%) | 53 (0.7%) | |
PWI-SF | 12.0 [10.0; 18.0] | 15.0 [11.0; 21.0] | <0.001 * |
CES-D | <0.001 * | ||
<16 | 3879 (94.3%) | 6496 (90.5%) | |
≥16 | 233 (5.7%) | 680 (9.5%) |
Lowest Fiber Consumption | ||||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | ||||
OR | 95% CI | OR | 95% CI | OR | 95% CI | |
Male | ||||||
Stress (≥2) | 1.33 * | 1.13–1.55 | 1.31 * | 1.12–1.54 | 1.43 * | 1.20–1.69 |
SRH (≥4) | 1.13 | 0.90–1.41 | 1.09 | 0.86–1.37 | 1.06 | 0.82–1.36 |
PWI-SF (≥3rd tertile) | 1.54 * | 1.31–1.82 | 1.51 * | 1.27–1.79 | 1.46 * | 1.21–1.75 |
CES-D (≥16) | 1.49 * | 1.10–2.01 | 1.43 * | 1.05–1.93 | 1.33 | 0.95–1.86 |
Female | ||||||
Stress (≥2) | 1.09 | 0.97–1.22 | 1.04 | 0.92–1.17 | 1.04 | 0.92–1.18 |
SRH (≥4) | 1.28 * | 1.11–1.47 | 1.18 * | 1.02–1.37 | 1.11 | 0.95–1.31 |
PWI-SF (≥3rd tertile) | 1.73 * | 1.54–1.95 | 1.64 * | 1.45–1.84 | 1.53 * | 1.35–1.74 |
CES-D (≥16) | 1.61 * | 1.35–1.93 | 1.44 * | 1.20–1.73 | 1.40 * | 1.14–1.71 |
Q1 | p for Interaction | Q1 | p for Interaction | |||||
---|---|---|---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | |||||
Male | Female | |||||||
BMI | <25 | <25 | ||||||
Stress | 1.49 * | 1.19–1.86 | 0.649 | 1.05 | 0.91–1.23 | 0.644 | ||
SRH | 1.14 | 0.82–1.56 | 0.529 | 1.02 | 0.83–1.24 | 0.330 | ||
PWI-SF | 1.53 * | 1.21–1.94 | 0.733 | 1.52 * | 1.30–1.77 | 0.826 | ||
CES-D | 1.62 * | 1.06–2.44 | 0.109 | 1.43 * | 1.12–1.82 | 0.963 | ||
≥25 | ≥25 | |||||||
Stress | 1.34 * | 1.01–1.76 | 1.00 | 0.79–1.27 | ||||
SRH | 0.94 | 0.61–1.41 | 1.33 | 1.00–1.76 | ||||
PWI-SF | 1.37 * | 1.02–1.85 | 1.59 * | 1.25–2.03 | ||||
CES-D | 0.98 | 0.54–1.72 | 1.34 | 0.92–1.94 | ||||
Age | <54 | <52 | ||||||
Stress | 1.39 * | 1.09–1.78 | 0.164 | 0.95 | 0.79–1.14 | 0.530 | ||
SRH | 0.96 | 0.65–1.40 | 0.245 | 1.24 | 0.96–1.58 | 0.633 | ||
PWI-SF | 1.39 * | 1.07–1.81 | 0.130 | 1.43 * | 1.19–1.73 | 0.152 | ||
CES-D | 1.42 | 0.88–2.24 | 0.867 | 1.36 | 1.00–1.84 | 0.591 | ||
≥54 | ≥52 | |||||||
Stress | 1.46 * | 1.14–1.86 | 1.15 | 0.96–1.37 | ||||
SRH | 1.15 | 0.81–1.61 | 1.07 | 0.87–1.32 | ||||
PWI-SF | 1.52 * | 1.17–1.98 | 1.66 * | 1.38–1.99 | ||||
CES-D | 1.21 | 0.74–1.95 | 1.47 * | 1.12–1.92 | ||||
TEI | <1807 | <1639 | ||||||
Stress | 1.30 * | 1.06–1.59 | 0.360 | 1.01 | 0.87–1.17 | 0.775 | ||
SRH | 0.94 | 0.69–1.26 | 0.191 | 1.04 | 0.87–1.26 | 0.601 | ||
PWI-SF | 1.29 * | 1.04–1.60 | 0.701 | 1.47 * | 1.27–1.71 | 0.132 | ||
CES-D | 1.18 | 0.79–1.76 | 0.725 | 1.28 * | 1.01–1.62 | 0.114 | ||
≥1807 | ≥1639 | |||||||
Stress | 1.62 * | 1.10–2.37 | 1.02 | 0.76–1.38 | ||||
SRH | 1.51 | 0.87–2.49 | 1.04 | 0.68–1.53 | ||||
PWI-SF | 1.61 * | 1.06–2.42 | 1.25 | 0.92–1.70 | ||||
CES-D | 1.58 | 0.74–3.04 | 1.00 | 0.56–1.67 | ||||
BMR | <1497 | <1248 | ||||||
Stress | 1.44 * | 1.13–1.83 | 0.665 | 1.16 | 0.97–1.39 | 0.157 | ||
SRH | 1.02 | 0.72–1.41 | 0.525 | 1.09 | 0.88–1.36 | 0.761 | ||
PWI-SF | 1.41 * | 1.09–1.83 | 0.470 | 1.56 * | 1.30–1.86 | 0.760 | ||
CES-D | 1.26 | 0.79–1.99 | 0.867 | 1.52 * | 1.15–2.01 | 0.696 | ||
≥1497 | ≥1248 | |||||||
Stress | 1.42 * | 1.11–1.81 | 0.93 | 0.77–1.11 | ||||
SRH | 1.07 | 0.72–1.57 | 1.15 | 0.91–1.46 | ||||
PWI-SF | 1.50 * | 1.15–1.96 | 1.52 * | 1.26–1.83 | ||||
CES-D | 1.41 | 0.85–2.28 | 1.28 | 0.95–1.71 | ||||
Activity | Low | Low | ||||||
Stress | 1.24 * | 1.03–1.50 | 0.035 * | 1.05 | 0.91–1.20 | 0.589 | ||
SRH | 0.99 | 0.75–1.29 | 0.639 | 1.13 | 0.95–1.34 | 0.563 | ||
PWI-SF | 1.32 * | 1.08–1.62 | 0.440 | 1.46 * | 1.27–1.68 | 0.343 | ||
CES-D | 1.22 | 0.83–1.78 | 0.868 | 1.29 * | 1.03–1.61 | 0.279 | ||
High | High | |||||||
Stress | 2.55 * | 1.67–3.91 | 0.98 | 0.71–1.36 | ||||
SRH | 1.50 | 0.76–2.84 | 0.99 | 0.63–1.52 | ||||
PWI-SF | 2.03 * | 1.29–3.18 | 1.94 * | 1.40–2.71 | ||||
CES-D | 1.59 | 0.76–3.15 | 1.97 * | 1.19–3.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.; Park, M. Gender Difference in the Impact of Total Energy Intake on the Association between Low Fiber Intake and Mental Health in Middle-Aged and Older Adults. Nutrients 2024, 16, 2583. https://doi.org/10.3390/nu16162583
Cho S, Park M. Gender Difference in the Impact of Total Energy Intake on the Association between Low Fiber Intake and Mental Health in Middle-Aged and Older Adults. Nutrients. 2024; 16(16):2583. https://doi.org/10.3390/nu16162583
Chicago/Turabian StyleCho, Sinyoung, and Minseon Park. 2024. "Gender Difference in the Impact of Total Energy Intake on the Association between Low Fiber Intake and Mental Health in Middle-Aged and Older Adults" Nutrients 16, no. 16: 2583. https://doi.org/10.3390/nu16162583
APA StyleCho, S., & Park, M. (2024). Gender Difference in the Impact of Total Energy Intake on the Association between Low Fiber Intake and Mental Health in Middle-Aged and Older Adults. Nutrients, 16(16), 2583. https://doi.org/10.3390/nu16162583