Plant miR6262 Modulates the Expression of Metabolic and Thermogenic Genes in Human Hepatocytes and Adipocytes
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Silico Identification of Potential Interactions between Plant miRNAs and Human Genes
2.2. Cell Culture and Transfections with Plan miRNA Mimics
2.3. RNA Purification and Gene Expression Assays
2.4. Cytotoxicity Assays and Intracellular Triglyceride Quantification in HepG2 Cells
2.5. Western Blot and Mitochondrial DNA Quantification Analysis in hMADS Cells
2.6. Statistical Analysis
3. Results
3.1. Selection of Plant miRNAs with Putative Human Target Genes Related to Metabolism
3.2. Plant miR6262 Was Detected in Transfected Hepatocytes and Did Not Induce Cytotoxicity Effects
3.3. Plant miR6262 Regulated the Expression of the Predicted Target RXRA and Metabolic-Related Genes in Hepatocytes
3.4. Plant miR6262 Did Not Attenuate Lipid Accumulation in an In Vitro Hepatocyte Human Cell Model of Liver Steatosis
3.5. Plant miR6262 Regulated the Expression of the Predicted Target RXRA and Metabolic-Related Genes in hMADS Cells Differentiated into Brite Adipocytes
3.6. Plant miR6262 Did Not Have an Impact on UCP-1 Protein Expression and the Mitochondrial DNA Content in hMADS Cells Differentiated into Brite Adipocytes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, S.R. Plant-based diet for obesity treatment. Front. Nutr. 2022, 9, 952553. [Google Scholar] [CrossRef] [PubMed]
- Bagherniya, M.; Nobili, V.; Blesso, C.N.; Sahebkar, A. Medicinal plants and bioactive natural compounds in the treatment of non-alcoholic fatty liver disease: A clinical review. Pharmacol. Res. 2018, 130, 213–240. [Google Scholar] [CrossRef] [PubMed]
- Garima, S.; Ajit Kumar, P.; Marcy, D.M.; Sakthivel, R.; Bhim Pratap, S.; Nachimuthu Senthil, K. Ethnobotanical survey of medicinal plants used in the management of cancer and diabetes. J. Tradit. Chinese Med. Chung i Tsa Chih Ying Wen Pan 2020, 40, 1007–1017. [Google Scholar] [CrossRef]
- Lee, M.-K.; Lee, B.; Kim, C.Y. Natural Extracts That Stimulate Adipocyte Browning and Their Underlying Mechanisms. Antioxidants 2021, 10, 308. [Google Scholar] [CrossRef]
- Sun, Q.; Xin, X.; An, Z.; Hu, Y.; Feng, Q. Therapeutic Potential of Natural Plants Against Non-Alcoholic Fatty Liver Disease: Targeting the Interplay Between Gut Microbiota and Bile Acids. Front. Cell. Infect. Microbiol. 2022, 12, 854879. [Google Scholar] [CrossRef]
- Li, H.-Y.; Gan, R.-Y.; Shang, A.; Mao, Q.-Q.; Sun, Q.-C.; Wu, D.-T.; Geng, F.; He, X.-Q.; Li, H.-B. Plant-Based Foods and Their Bioactive Compounds on Fatty Liver Disease: Effects, Mechanisms, and Clinical Application. Oxid. Med. Cell. Longev. 2021, 2021, 6621644. [Google Scholar] [CrossRef]
- Pacifici, F.; Malatesta, G.; Mammi, C.; Pastore, D.; Marzolla, V.; Ricordi, C.; Chiereghin, F.; Infante, M.; Donadel, G.; Curcio, F.; et al. A Novel Mix of Polyphenols and Micronutrients Reduces Adipogenesis and Promotes White Adipose Tissue Browning via UCP1 Expression and AMPK Activation. Cells 2023, 12, 714. [Google Scholar] [CrossRef]
- Saad, B. A Review of the Anti-Obesity Effects of Wild Edible Plants in the Mediterranean Diet and Their Active Compounds: From Traditional Uses to Action Mechanisms and Therapeutic Targets. Int. J. Mol. Sci. 2023, 24, 12641. [Google Scholar] [CrossRef]
- Gibbs, J.; Cappuccio, F.P. Plant-Based Dietary Patterns for Human and Planetary Health. Nutrients 2022, 14, 1614. [Google Scholar] [CrossRef]
- Clem, J.; Barthel, B. A Look at Plant-Based Diets. Mo. Med. 2021, 118, 233–238. [Google Scholar]
- Hargreaves, S.M.; Raposo, A.; Saraiva, A.; Zandonadi, R.P. Vegetarian Diet: An Overview through the Perspective of Quality of Life Domains. Int. J. Environ. Res. Public Health 2021, 18, 4067. [Google Scholar] [CrossRef] [PubMed]
- Fehér, A.; Gazdecki, M.; Véha, M.; Szakály, M.; Szakály, Z. A Comprehensive Review of the Benefits of and the Barriers to the Switch to a Plant-Based Diet. Sustainability 2020, 12, 4136. [Google Scholar] [CrossRef]
- Hemler, E.C.; Hu, F.B. Plant-Based Diets for Personal, Population, and Planetary Health. Adv. Nutr. 2019, 10, S275–S283. [Google Scholar] [CrossRef] [PubMed]
- Karri, S.; Sharma, S.; Hatware, K.; Patil, K. Natural anti-obesity agents and their therapeutic role in management of obesity: A future trend perspective. Biomed. Pharmacother. 2019, 110, 224–238. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, X.; Fang, H.; Guo, F.; Li, F.; Chen, A.; Huang, S. Flavonoids as inducers of white adipose tissue browning and thermogenesis: Signalling pathways and molecular triggers. Nutr. Metab. 2019, 16, 47. [Google Scholar] [CrossRef]
- Xie, W.; Weng, A.; Melzig, M.F. MicroRNAs as New Bioactive Components in Medicinal Plants. Planta Med. 2016, 82, 1153–1162. [Google Scholar] [CrossRef]
- Li, D.; Yang, J.; Yang, Y.; Liu, J.; Li, H.; Li, R.; Cao, C.; Shi, L.; Wu, W.; He, K. A Timely Review of Cross-Kingdom Regulation of Plant-Derived MicroRNAs. Front. Genet. 2021, 12, 613197. [Google Scholar] [CrossRef]
- Díez-Sainz, E.; Milagro, F.I.; Aranaz, P.; Riezu-Boj, J.I.; Lorente-Cebrián, S. MicroRNAs from edible plants reach the human gastrointestinal tract and may act as potential regulators of gene expression. J. Physiol. Biochem. 2024. [Google Scholar] [CrossRef] [PubMed]
- Philip, A.; Ferro, V.A.; Tate, R.J. Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process. Mol. Nutr. Food Res. 2015, 59, 1962–1972. [Google Scholar] [CrossRef]
- Bartel, D.P. Metazoan MicroRNAs. Cell 2018, 173, 20–51. [Google Scholar] [CrossRef]
- Layton, E.; Fairhurst, A.M.; Griffiths-Jones, S.; Grencis, R.K.; Roberts, I.S. Regulatory RNAs: A universal language for inter-domain communication. Int. J. Mol. Sci. 2020, 21, 8919. [Google Scholar] [CrossRef] [PubMed]
- Owusu Adjei, M.; Zhou, X.; Mao, M.; Rafique, F.; Ma, J. MicroRNAs Roles in Plants Secondary Metabolism. Plant Signal. Behav. 2021, 16, 1915590. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Yang, J.; Zhang, N.; Wu, J.; Si, H. Roles of microRNAs in abiotic stress response and characteristics regulation of plant. Front. Plant Sci. 2022, 13, 919243. [Google Scholar] [CrossRef]
- Dong, Q.; Hu, B.; Zhang, C. microRNAs and Their Roles in Plant Development. Front. Plant Sci. 2022, 13, 824240. [Google Scholar] [CrossRef] [PubMed]
- Minutolo, A.; Potestà, M.; Gismondi, A.; Pirrò, S.; Cirilli, M.; Gattabria, F.; Galgani, A.; Sessa, L.; Mattei, M.; Canini, A.; et al. Olea europaea small RNA with functional homology to human miR34a in cross-kingdom interaction of anti-tumoral response. Sci. Rep. 2018, 8, 12413. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chen, T.; Wang, R.; Luo, J.-Y.; He, J.-J.; Ye, R.-S.; Xie, M.-Y.; Xi, Q.-Y.; Jiang, Q.-Y.; Sun, J.-J.; et al. Plant MIR156 regulates intestinal growth in mammals by targeting the Wnt/β-catenin pathway. Am. J. Physiol. Cell Physiol. 2019, 317, C434–C448. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chen, T.; He, J.-J.; Wu, J.-H.; Luo, J.-Y.; Ye, R.-S.; Xie, M.-Y.; Zhang, H.-J.; Zeng, B.; Liu, J.; et al. Plant MIR167e-5p Inhibits Enterocyte Proliferation by Targeting β-Catenin. Cells 2019, 8, 1385. [Google Scholar] [CrossRef] [PubMed]
- Minutolo, A.; Potestà, M.; Roglia, V.; Cirilli, M.; Iacovelli, F.; Cerva, C.; Fokam, J.; Desideri, A.; Andreoni, M.; Grelli, S.; et al. Plant microRNAs from Moringa oleifera Regulate Immune Response and HIV Infection. Front. Pharmacol. 2020, 11, 620038. [Google Scholar] [CrossRef]
- Teng, Y.; Xu, F.; Zhang, X.; Mu, J.; Sayed, M.; Hu, X.; Lei, C.; Sriwastva, M.; Kumar, A.; Sundaram, K.; et al. Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12. Mol. Ther. 2021, 29, 2424–2440. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, X.; Liu, J.; Dong, L.; Chen, Q.; Liu, J.; Kong, H.; Zhang, Q.; Qi, X.; Hou, D.; et al. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res. 2015, 25, 39–49. [Google Scholar] [CrossRef]
- Cavalieri, D.; Rizzetto, L.; Tocci, N.; Rivero, D.; Asquini, E.; Si-Ammour, A.; Bonechi, E.; Ballerini, C.; Viola, R. Plant microRNAs as novel immunomodulatory agents. Sci. Rep. 2016, 6, 25761. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.-S.; Wang, J.-F.; Guo, M.-Y.; Li, X.-J.; Shi, C.-Y.; Wu, F.; Zhang, H.-H.; Ying, H.-Z.; Yu, C.-H. Rgl-exomiR-7972, a novel plant exosomal microRNA derived from fresh Rehmanniae Radix, ameliorated lipopolysaccharide-induced acute lung injury and gut dysbiosis. Biomed. Pharmacother. 2023, 165, 115007. [Google Scholar] [CrossRef] [PubMed]
- Díez-Sainz, E.; Lorente-Cebrián, S.; Aranaz, P.; Amri, E.-Z.; Riezu-Boj, J.I.; Milagro, F.I. miR482f and miR482c-5p from edible plant-derived foods inhibit the expression of pro-inflammatory genes in human THP-1 macrophages. Front. Nutr. 2023, 10, 1287312. [Google Scholar] [CrossRef]
- Akao, Y.; Kuranaga, Y.; Heishima, K.; Sugito, N.; Morikawa, K.; Ito, Y.; Soga, T.; Ito, T. Plant hvu-MIR168-3p enhances expression of glucose transporter 1 (SLC2A1) in human cells by silencing genes related to mitochondrial electron transport chain complex I. J. Nutr. Biochem. 2022, 101, 108922. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hou, D.; Chen, X.; Li, D.; Zhu, L.; Zhang, Y.; Li, J.; Bian, Z.; Liang, X.; Cai, X.; et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of cross-kingdom regulation by microRNA. Cell Res. 2012, 22, 107–126. [Google Scholar] [CrossRef]
- Aquilano, K.; Ceci, V.; Gismondi, A.; De Stefano, S.; Iacovelli, F.; Faraonio, R.; Di Marco, G.; Poerio, N.; Minutolo, A.; Minopoli, G.; et al. Adipocyte metabolism is improved by TNF receptor-targeting small RNAs identified from dried nuts. Commun. Biol. 2019, 2, 317. [Google Scholar] [CrossRef]
- Chen, T.; Ma, F.; Peng, Y.; Sun, R.; Xi, Q.; Sun, J.; Zhang, J.; Zhang, Y.; Li, M. Plant miR167e-5p promotes 3T3-L1 adipocyte adipogenesis by targeting β-catenin. Vitr. Cell Dev. Biol. Anim. 2022, 58, 471–479. [Google Scholar] [CrossRef]
- Roglia, V.; Potestà, M.; Minchella, A.; Bruno, S.P.; Bernardini, R.; Lettieri-Barbato, D.; Iacovelli, F.; Gismondi, A.; Aquilano, K.; Canini, A.; et al. Exogenous miRNAs from Moringa oleifera Lam. recover a dysregulated lipid metabolism. Front. Mol. Biosci. 2022, 9, 1012359. [Google Scholar] [CrossRef]
- Díez-Sainz, E.; Aranaz, P.; Amri, E.-Z.; Riezu-Boj, J.I.; Lorente-Cebrián, S.; Milagro, F.I. Plant miR8126-3p and miR8126-5p Decrease Lipid Accumulation through Modulation of Metabolic Genes in a Human Hepatocyte Model That Mimics Steatosis. Int. J. Mol. Sci. 2024, 25, 1721. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, L.; Chu, Q.; Sun, S.; Wu, Y.; Tong, Z.; Fang, W.; Timko, M.P.; Fan, L. Large-scale identification of extracellular plant miRNAs in mammals implicates their dietary intake. PLoS ONE 2021, 16, e0257878. [Google Scholar] [CrossRef]
- Díez-Sainz, E.; Lorente-Cebrián, S.; Aranaz, P.; Riezu-Boj, J.I.; Martínez, J.A.; Milagro, F.I. Potential Mechanisms Linking Food-Derived MicroRNAs, Gut Microbiota and Intestinal Barrier Functions in the Context of Nutrition and Human Health. Front. Nutr. 2021, 8, 586564. [Google Scholar] [CrossRef] [PubMed]
- Mlotshwa, S.; Pruss, G.J.; MacArthur, J.L.; Endres, M.W.; Davis, C.; Hofseth, L.J.; Peña, M.M.; Vance, V. A novel chemopreventive strategy based on therapeutic microRNAs produced in plants. Cell Res. 2015, 25, 521–524. [Google Scholar] [CrossRef] [PubMed]
- Kumazoe, M.; Ogawa, F.; Hikida, A.; Shimada, Y.; Yoshitomi, R.; Watanabe, R.; Onda, H.; Fujimura, Y.; Tachibana, H. Plant miRNA osa-miR172d-5p suppressed lung fibrosis by targeting Tab1. Sci. Rep. 2023, 13, 2128. [Google Scholar] [CrossRef] [PubMed]
- Eichelmann, F.; Schwingshackl, L.; Fedirko, V.; Aleksandrova, K. Effect of plant-based diets on obesity-related inflammatory profiles: A systematic review and meta-analysis of intervention trials. Obes. Rev. 2016, 17, 1067–1079. [Google Scholar] [CrossRef]
- Dai, X.; Zhao, P.X. psRNATarget: A plant small RNA target analysis server. Nucleic Acids Res. 2011, 39, W155–W159. [Google Scholar] [CrossRef]
- Bonnet, E.; He, Y.; Billiau, K.; Van de Peer, Y. TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics 2010, 26, 1566–1568. [Google Scholar] [CrossRef]
- Carmona-Saez, P.; Chagoyen, M.; Tirado, F.; Carazo, J.M.; Pascual-Montano, A. GENECODIS: A web-based tool for finding significant concurrent annotations in gene lists. Genome Biol. 2007, 8, R3. [Google Scholar] [CrossRef]
- Rodriguez, A.-M.; Elabd, C.; Delteil, F.; Astier, J.; Vernochet, C.; Saint-Marc, P.; Guesnet, J.; Guezennec, A.; Amri, E.-Z.; Dani, C.; et al. Adipocyte differentiation of multipotent cells established from human adipose tissue. Biochem. Biophys. Res. Commun. 2004, 315, 255–263. [Google Scholar] [CrossRef]
- Rodriguez, A.-M.; Pisani, D.; Dechesne, C.A.; Turc-Carel, C.; Kurzenne, J.-Y.; Wdziekonski, B.; Villageois, A.; Bagnis, C.; Breittmayer, J.-P.; Groux, H.; et al. Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J. Exp. Med. 2005, 201, 1397–1405. [Google Scholar] [CrossRef]
- Zaragosi, L.-E.; Ailhaud, G.; Dani, C. Autocrine fibroblast growth factor 2 signaling is critical for self-renewal of human multipotent adipose-derived stem cells. Stem Cells 2006, 24, 2412–2419. [Google Scholar] [CrossRef]
- Elabd, C.; Chiellini, C.; Carmona, M.; Galitzky, J.; Cochet, O.; Petersen, R.; Pénicaud, L.; Kristiansen, K.; Bouloumié, A.; Casteilla, L.; et al. Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells 2009, 27, 2753–2760. [Google Scholar] [CrossRef] [PubMed]
- Pisani, D.F.; Djedaini, M.; Beranger, G.E.; Elabd, C.; Scheideler, M.; Ailhaud, G.; Amri, E.-Z. Differentiation of Human Adipose-Derived Stem Cells into “Brite” (Brown-in-White) Adipocytes. Front. Endocrinol. 2011, 2, 87. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.-X.; Fan, J.; Ma, J.; Rao, Y.-S.; Zhang, L.; Yan, Y.-E. Selection of Suitable Reference Genes for Quantitative Real-Time PCR Normalization in Three Types of Rat Adipose Tissue. Int. J. Mol. Sci. 2016, 17, 968. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Rao, X.; Huang, X.; Zhou, Z.; Lin, X. An improvement of the 2−ΔΔCT method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinforma. Biomath. 2013, 3, 71–85. [Google Scholar]
- Barquissau, V.; Beuzelin, D.; Pisani, D.F.; Beranger, G.E.; Mairal, A.; Montagner, A.; Roussel, B.; Tavernier, G.; Marques, M.-A.; Moro, C.; et al. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways. Mol. Metab. 2016, 5, 352–365. [Google Scholar] [CrossRef]
- Pisani, D.F.; Barquissau, V.; Chambard, J.-C.; Beuzelin, D.; Ghandour, R.A.; Giroud, M.; Mairal, A.; Pagnotta, S.; Cinti, S.; Langin, D.; et al. Mitochondrial fission is associated with UCP1 activity in human brite/beige adipocytes. Mol. Metab. 2018, 7, 35–44. [Google Scholar] [CrossRef]
- Bordicchia, M.; Liu, D.; Amri, E.-Z.; Ailhaud, G.; Dessì-Fulgheri, P.; Zhang, C.; Takahashi, N.; Sarzani, R.; Collins, S. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J. Clin. Investig. 2012, 122, 1022–1036. [Google Scholar] [CrossRef]
- Alptekin, B.; Akpinar, B.A.; Budak, H. A Comprehensive Prescription for Plant miRNA Identification. Front. Plant Sci. 2016, 7, 2058. [Google Scholar] [CrossRef]
- Zhang, B.; Pan, X.; Cannon, C.H.; Cobb, G.P.; Anderson, T.A. Conservation and divergence of plant microRNA genes. Plant J. 2006, 46, 243–259. [Google Scholar] [CrossRef]
- Verde, I.; Abbott, A.G.; Scalabrin, S.; Jung, S.; Shu, S.; Marroni, F.; Zhebentyayeva, T.; Dettori, M.T.; Grimwood, J.; Cattonaro, F.; et al. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat. Genet. 2013, 45, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, P.K.; Moturu, T.R.; Pandey, P.; Baldwin, I.T.; Pandey, S.P. A comparison of performance of plant miRNA target prediction tools and the characterization of features for genome-wide target prediction. BMC Genom. 2014, 15, 348. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Gong, L.; Fang, Y.; Zhan, Q.; Liu, H.-X.; Lu, Y.; Guo, G.L.; Lehman-McKeeman, L.; Fang, J.; Wan, Y.-J.Y. The role of retinoic acid in hepatic lipid homeostasis defined by genomic binding and transcriptome profiling. BMC Genom. 2013, 14, 575. [Google Scholar] [CrossRef]
- Shoucri, B.M.; Hung, V.T.; Chamorro-García, R.; Shioda, T.; Blumberg, B. Retinoid X Receptor Activation During Adipogenesis of Female Mesenchymal Stem Cells Programs a Dysfunctional Adipocyte. Endocrinology 2018, 159, 2863–2883. [Google Scholar] [CrossRef] [PubMed]
- Metzger, D.; Imai, T.; Jiang, M.; Takukawa, R.; Desvergne, B.; Wahli, W.; Chambon, P. Functional role of RXRs and PPARgamma in mature adipocytes. Prostaglandins. Leukot. Essent. Fatty Acids 2005, 73, 51–58. [Google Scholar] [CrossRef]
- Yamauchi, T.; Waki, H.; Kamon, J.; Murakami, K.; Motojima, K.; Komeda, K.; Miki, H.; Kubota, N.; Terauchi, Y.; Tsuchida, A.; et al. Inhibition of RXR and PPARgamma ameliorates diet-induced obesity and type 2 diabetes. J. Clin. Investig. 2001, 108, 1001–1013. [Google Scholar] [CrossRef]
- Gao, Z.; Shi, T.; Luo, X.; Zhang, Z.; Zhuang, W.; Wang, L. High-throughput sequencing of small RNAs and analysis of differentially expressed microRNAs associated with pistil development in Japanese apricot. BMC Genom. 2012, 13, 371. [Google Scholar] [CrossRef]
- Ahuja, H.S.; Szanto, A.; Nagy, L.; Davies, P.J.A. The retinoid X receptor and its ligands: Versatile regulators of metabolic function, cell differentiation and cell death. J. Biol. Regul. Homeost. Agents 2003, 17, 29–45. [Google Scholar]
- Li, B.; Cai, S.-Y.; Boyer, J.L. The role of the retinoid receptor, RAR/RXR heterodimer, in liver physiology. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166085. [Google Scholar] [CrossRef]
- Gao, M.; Bu, L.; Ma, Y.; Liu, D. Concurrent activation of liver X receptor and peroxisome proliferator-activated receptor alpha exacerbates hepatic steatosis in high fat diet-induced obese mice. PLoS ONE 2013, 8, e65641. [Google Scholar] [CrossRef]
- Ide, T.; Shimano, H.; Yoshikawa, T.; Yahagi, N.; Amemiya-Kudo, M.; Matsuzaka, T.; Nakakuki, M.; Yatoh, S.; Iizuka, Y.; Tomita, S.; et al. Cross-Talk between Peroxisome Proliferator-Activated Receptor (PPAR) α and Liver X Receptor (LXR) in Nutritional Regulation of Fatty Acid Metabolism. II. LXRs Suppress Lipid Degradation Gene Promoters through Inhibition of PPAR Signaling. Mol. Endocrinol. 2003, 17, 1255–1267. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.-Y.; Chen, P.-Y.; Hsu, H.-J.; Lin, C.-Y.; Wu, M.-J.; Yen, J.-H. Tanshinone IIA Downregulates Lipogenic Gene Expression and Attenuates Lipid Accumulation through the Modulation of LXRα/SREBP1 Pathway in HepG2 Cells. Biomedicines 2021, 9, 326. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, T.; Shimano, H.; Amemiya-Kudo, M.; Yahagi, N.; Hasty, A.H.; Matsuzaka, T.; Okazaki, H.; Tamura, Y.; Iizuka, Y.; Ohashi, K.; et al. Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter. Mol. Cell. Biol. 2001, 21, 2991–3000. [Google Scholar] [CrossRef]
- Gan, M.; Chen, X.; Chen, Z.; Chen, L.; Zhang, S.; Zhao, Y.; Niu, L.; Li, X.; Shen, L.; Zhu, L. Genistein Alleviates High-Fat Diet-Induced Obesity by Inhibiting the Process of Gluconeogenesis in Mice. Nutrients 2022, 14, 1551. [Google Scholar] [CrossRef]
- Casteras, S.; Abdul-Wahed, A.; Soty, M.; Vulin, F.; Guillou, H.; Campana, M.; Le Stunff, H.; Pirola, L.; Rajas, F.; Mithieux, G.; et al. The suppression of hepatic glucose production improves metabolism and insulin sensitivity in subcutaneous adipose tissue in mice. Diabetologia 2016, 59, 2645–2653. [Google Scholar] [CrossRef] [PubMed]
- Im, S.-S.; Kim, M.-Y.; Kwon, S.-K.; Kim, T.-H.; Bae, J.-S.; Kim, H.; Kim, K.-S.; Oh, G.-T.; Ahn, Y.-H. Peroxisome proliferator-activated receptor {alpha} is responsible for the up-regulation of hepatic glucose-6-phosphatase gene expression in fasting and db/db Mice. J. Biol. Chem. 2011, 286, 1157–1164. [Google Scholar] [CrossRef]
- Grabner, G.F.; Xie, H.; Schweiger, M.; Zechner, R. Lipolysis: Cellular mechanisms for lipid mobilization from fat stores. Nat. Metab. 2021, 3, 1445–1465. [Google Scholar] [CrossRef]
- Kern, P.A.; Di Gregorio, G.; Lu, T.; Rassouli, N.; Ranganathan, G. Perilipin Expression in Human Adipose Tissue Is Elevated with Obesity. J. Clin. Endocrinol. Metab. 2004, 89, 1352–1358. [Google Scholar] [CrossRef]
- Jash, S.; Banerjee, S.; Lee, M.-J.; Farmer, S.R.; Puri, V. CIDEA Transcriptionally Regulates UCP1 for Britening and Thermogenesis in Human Fat Cells. iScience 2019, 20, 73–89. [Google Scholar] [CrossRef]
- Machado, S.A.; Pasquarelli-do-Nascimento, G.; da Silva, D.S.; Farias, G.R.; de Oliveira Santos, I.; Baptista, L.B.; Magalhães, K.G. Browning of the white adipose tissue regulation: New insights into nutritional and metabolic relevance in health and diseases. Nutr. Metab. 2022, 19, 61. [Google Scholar] [CrossRef]
- Bartelt, A.; Heeren, J. Adipose tissue browning and metabolic health. Nat. Rev. Endocrinol. 2014, 10, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Pieri, M.; Theori, E.; Dweep, H.; Flourentzou, M.; Kalampalika, F.; Maniori, M.-A.; Papagregoriou, G.; Papaneophytou, C.; Felekkis, K. A bovine miRNA, bta-miR-154c, withstands in vitro human digestion but does not affect cell viability of colorectal human cell lines after transfection. FEBS Open Bio 2022, 12, 925–936. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Sticht, C.; Yin, L.; Liu, L.; Karakhanova, S.; Yin, Y.; Georgikou, C.; Gladkich, J.; Gross, W.; Gretz, N.; et al. Novel plant microRNAs from broccoletti sprouts do not show cross-kingdom regulation of pancreatic cancer. Oncotarget 2020, 11, 1203–1217. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Soni, K.G.; Semache, M.; Casavant, S.; Fortier, M.; Pan, L.; Mitchell, G.A. Lipolysis and the integrated physiology of lipid energy metabolism. Mol. Genet. Metab. 2008, 95, 117–126. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, W.; Yuan, Y.; Bai, Y.; Sun, Y.; Zhu, W.; Du, Z. MicroRNAs tend to synergistically control expression of genes encoding extensively-expressed proteins in humans. PeerJ 2017, 5, e3682. [Google Scholar] [CrossRef]
- Zhang, B.; Pan, X.; Cobb, G.P.; Anderson, T.A. Plant microRNA: A small regulatory molecule with big impact. Dev. Biol. 2006, 289, 3–16. [Google Scholar] [CrossRef]
- Ha, M.; Pang, M.; Agarwal, V.; Chen, Z.J. Interspecies regulation of microRNAs and their targets. Biochim. Biophys. Acta 2008, 1779, 735–742. [Google Scholar] [CrossRef]
Gene Name | Assay ID | Accession Number (RefSeq) |
---|---|---|
ACOX1 | 2 Hs.PT.56a.3058584 | NM_001185039(3) |
FASN | 1 Hs01005622_m1 | NM_004104.4; XM_011523538.2 |
FOXO1 | 2 Hs.PT.58.40005627 | NM_002015(1) |
G6PC | 2 Hs.PT.58.5006581 | NM_000151(2) |
GSK3B | 2 Hs.PT.58.40111551 | NM_001146156(2) |
MAPKAPK2 | 2 Hs.PT.58.2443418 | NM_004759(2) |
PPARA | 2 Hs.PT.58.45310483 | NM_001001928(2) |
QKI | 2 Hs.PT.58.2815647 | NM_006775(1) |
RXRA | 2 Hs.PT.58.3784663 | NM_002957(1) |
SREBF1 | 2 Hs.PT.58.3359761 | NM_001005291(2) |
TBP | 1 Hs00427620_m1 | NM_001172085.1; NM_003194.4 |
Gene Name | Forward Primer | Reverse Primer |
---|---|---|
ACOX1 | TCTTCACTTGGGCATGTTCCT | TTCCAGGCGGGCATGA |
ADRB3 | GCCTTCGCCTCCAACATG | GCATCACGAGAAGAGGAAGG |
ATGL (PNPLA2) | GGGAGAAGATCACGTCCTGG | CTCCAGCAAGCAGATGGTGA |
CIDEA | GCGAGAGTCACCTTCGACTTG | CGTTAAGGCAGCCGATGAA |
COL1A1 | ACCTGCGTGTACCCCACTCA | CCGCCATACTCGAACTGGAA |
CPT1M (CHKB-CPT1B) | AACTCCATAGCCATCATCTGCT | GAGCAGCACCCCAATCAC |
FABP4 | TGTGCAGAAATGGGATGGAAA | CAACGTCCCTTGGCTTATGCT |
HSL (LIPE) | GCACTACAAACGCAACGAGACA | GGTTCTGTGTGATCCGCTCAA |
PLIN1 | ACCCCCCTGAAAAGATTGCTT | GATGGGAACGCTGATGCTGTT |
PPARG 1+2 | AGCCTCATGAAGAGCCTTCCA | TCCGGAAGAAACCCTTGCA |
PPARG2 | CAAACCCCTATTCCATGCTGTT | ATCAGTGAAGGAATCGCTTTCTG |
36B4 (RPLP0) | AGGCAGATGGATCAGCCAAGA | TGCATCAGTACCCCATTCTATCAT |
UCP1 | GTGTGCCCAACTGTGCAATG | CCAGGATCCAAGTCGCAAGA |
Gene Name | Forward Primer | Reverse Primer |
---|---|---|
LPL | CGAGTCGTCTTTCTCCTGATGAT | TTCTGGATTCCAATGCTTCGA |
NADHdS1 | CCCTAAAACCCGCCACATCT | GAGCGATGGTGAGAGCTAAGGT |
miR6262 Predicted Human Target Transcripts | ||||
---|---|---|---|---|
psRNATarget. Scoring Schema V1 | ||||
Target Accession | Expectation | UPE | mRNA Target Aligned Fragment (5′-3′) | Inhibitory Effect |
NM_020841|OSBPL8 | 1.5 | 14.479 | 3084-[GCAGUUUUAACUUUCUGAAGA]-3104 | Cleavage |
NM_175854|PAN3 | 2.0 | 10.514 | 290-[CUAAUUUUAAUUUUUUAAAGA]-310 | Cleavage |
NM_001695|ATP6V1C1 | 2.0 | 15.648 | 3909-[GUAAUUCUUGCUUUCUAAAGA]-3929 | Cleavage |
NM_002957|RXRA | 2.0 | 19.619 | 2544-[ACAAUCUUUAAUUUUCUAAAGA]-2565 | Cleavage |
NM_003272|GPR137B | 2.5 | 13.138 | 212-[AUAAUUUAAACUUUUUAAAGA]-232 | Cleavage |
NM_001040424|PRDM15 | 2.5 | 14.964 | 2116-[ACAAUUUUAUUUUUUUAAAGA]-2136 | Cleavage |
NM_033505|EPT1 | 2.5 | 11.079 | 2921-[UUAAUUCUAAUUUUCAAAAGA]-2941 | Cleavage |
NM_205852|CLEC12B | 2.5 | 14.003 | 1998-[ACAAGUAUAAUUUUCUAAAGA]-2018 | Cleavage |
NM_001122842|NCOA7 | 3.0 | 15.696 | 763-[AUAAUUCUAAAUUUCUAAAAA]-783 | Translation |
NM_004707|ATG12 | 3.0 | 16.889 | 2864-[CAGAUUUUAACUUUUUAAAGG]-2884 | Cleavage |
NM_001277783|ATG12 | 3.0 | 16.889 | 2925-[CAGAUUUUAACUUUUUAAAGG]-2945 | Cleavage |
NM_001172698|PPARGC1B | 3.0 | 9.862 | 6938-[UAAAUUUUAAUUUUUUAAAGG]-6958 | Cleavage |
NM_005282|GPR4 | 3.0 | 21.652 | 708-[GCAAUUCUAAGUUUCUAGAUA]-728 | Translation |
NM_153261|CNEP1R1 | 3.0 | 14.936 | 1193-[ACAAUUCUCACUGUUUAGAGA]-1213 | Translation |
NM_007203|PALM2-AKAP2 | 3.0 | 15.903 | 3119-[ACCCUUUUAACUUUCUGAAGA]-3139 | Cleavage |
NM_021089|ZNF8 | 3.0 | 19.35 | 102-[UGACUUCUGACUUUCUAAGGA]-122 | Cleavage |
psRNATarget. Scoring Schema V2 | ||||
Target accession | Expectation | UPE | mRNA target aligned fragment (5′-3′) | Inhibitory effect |
NM_020841|OSBPL8 | 1.5 | N/A | 3084-[GCAGUUUUAACUUUCUGAAGA]-3104 | Cleavage |
NM_175854|PAN3 | 1.5 | N/A | 290-[CUAAUUUUAAUUUUUUAAAGA]-310 | Cleavage |
NM_003272|GPR137B | 2.0 | N/A | 212-[AUAAUUUAAACUUUUUAAAGA]-232 | Cleavage |
NM_001695|ATP6V1C1 | 2.0 | N/A | 3909-[GUAAUUCUUGCUUUCUAAAGA]-3929 | Cleavage |
NM_033505|EPT1 | 2.0 | N/A | 2921-[UUAAUUCUAAUUUUCAAAAGA]-2941 | Cleavage |
NM_004707|ATG12 | 2.0 | N/A | 2864-[CAGAUUUUAACUUUUUAAAGG]-2884 | Cleavage |
NM_001277783|ATG12 | 2.0 | N/A | 2925-[CAGAUUUUAACUUUUUAAAGG]-2945 | Cleavage |
NM_001172698|PPARGC1B | 2.0 | N/A | 6938-[UAAAUUUUAAUUUUUUAAAGG]-6958 | Cleavage |
NM_021089|ZNF8 | 2.0 | N/A | 102-[UGACUUCUGACUUUCUAAGGA]-122 | Cleavage |
NM_205852|CLEC12B | 2.5 | N/A | 1998-[ACAAGUAUAAUUUUCUAAAGA]-2018 | Cleavage |
NM_001040424|PRDM15 | 3.0 | N/A | 2116-[ACAAUUUUAUUUUUUUAAAGA]-2136 | Cleavage |
NM_002957|RXRA | 3.0 | N/A | 2544-[ACAAUCUUUAAUUUUCUAAAGA]-2565 | Cleavage |
NM_001122842|NCOA7 | 3.0 | N/A | 763-[AUAAUUCUAAAUUUCUAAAAA]-783 | Translation |
NM_003034|ST8SIA1 | 3.0 | N/A | 5391-[AUGACUCUAACUUUUUAAAGC]-5411 | Cleavage |
NM_024685|BBS10 | 3.0 | N/A | 1219-[GUAAUUCUGAUUUUUUAAACA]-1239 | Cleavage |
NM_021183|RAP2C | 3.0 | N/A | 1992-[AUGAUUUAAAUUUUCUAGAGA]-2012 | Cleavage |
NM_007203|PALM2-AKAP2 | 3.0 | N/A | 3119-[ACCCUUUUAACUUUCUGAAGA]-3139 | Cleavage |
NM_016072|GOLT1B | 3.5 | N/A | 1813-[AUAAUUCUACCUUUUUAGAGC]-1833 | Cleavage |
NM_001206866|IL6R | 3.5 | N/A | 22-[ACAAUGCUAAUUUUUUAAAAA]-42 | Cleavage |
NM_005282|GPR4 | 3.5 | N/A | 708-[GCAAUUCUAAGUUUCUAGAUA]-728 | Translation |
NM_001256105|WNT5A | 3.5 | N/A | 2300-[ACAAUCCUAGCUUUUAAAAGA]-2320 | Cleavage |
NM_153261|CNEP1R1 | 4.0 | N/A | 1193-[ACAAUUCUCACUGUUUAGAGA]-1213 | Cleavage |
NM_012089|ABCB10 | 4.0 | N/A | 188-[AUAAUUGUAACUUUUUAAAUG]-208 | Cleavage |
NM_001042543|GLRA3 | 4.5 | N/A | 1598-[ACAAUUGUAAUUUUUUAAAAU]-1618 | Cleavage |
TAPIR | ||||
Target accession | Score | MFE ratio | mRNA target aligned fragment (5′-3′) | |
NM_205852|CLEC12B | 3.0 | 0.75 | 1998-[ACAAGUAUAAUUUUCUAAAGA]-2018 | |
NM_001695|ATP6V1C1 | 3.0 | 0.77 | 3909-[GUAAUUCUUGCUUUCUAAAGA]-3929 | |
NM_020841|OSBPL8 | 2.5 | 0.93 | 3084-[GCAGUUUUAACUUUCUGAAGA]-3104 | |
NM_002957|RXRA | 2.5 | 0.78 | 2544-[ACAAUCUUUAAUUUUCUAAAGA]-2565 | |
NM_003272|GPR137B | 3.0 | 0.73 | 212-[AUAAUUUAAACUUUUUAAAGA]-232 | |
NM_007203|PALM2-AKAP2 | 3.5 | 0.79 | 3119-[ACCCUUUUAACUUUCUGAAGA]-3139 | |
NM_203464|AK4 | 4.0 | 0.72 | 1546-[ACAUUACUUACUUUCUGAAGA]-1566 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díez-Sainz, E.; Milagro, F.I.; Aranaz, P.; Riezu-Boj, J.I.; Lorente-Cebrián, S. Plant miR6262 Modulates the Expression of Metabolic and Thermogenic Genes in Human Hepatocytes and Adipocytes. Nutrients 2024, 16, 3146. https://doi.org/10.3390/nu16183146
Díez-Sainz E, Milagro FI, Aranaz P, Riezu-Boj JI, Lorente-Cebrián S. Plant miR6262 Modulates the Expression of Metabolic and Thermogenic Genes in Human Hepatocytes and Adipocytes. Nutrients. 2024; 16(18):3146. https://doi.org/10.3390/nu16183146
Chicago/Turabian StyleDíez-Sainz, Ester, Fermín I. Milagro, Paula Aranaz, José I. Riezu-Boj, and Silvia Lorente-Cebrián. 2024. "Plant miR6262 Modulates the Expression of Metabolic and Thermogenic Genes in Human Hepatocytes and Adipocytes" Nutrients 16, no. 18: 3146. https://doi.org/10.3390/nu16183146
APA StyleDíez-Sainz, E., Milagro, F. I., Aranaz, P., Riezu-Boj, J. I., & Lorente-Cebrián, S. (2024). Plant miR6262 Modulates the Expression of Metabolic and Thermogenic Genes in Human Hepatocytes and Adipocytes. Nutrients, 16(18), 3146. https://doi.org/10.3390/nu16183146