Vitamin D Supplementation as a Therapeutic Strategy in Autoimmune Diabetes: Insights and Implications for LADA Management
Abstract
:1. Introduction
2. Pathophysiology of LADA
3. Epidemiology, Clinical Presentation, and Diagnostic Work-Up in LADA
4. Vitamin D’s Role in Immune Regulation and Pancreatic β-Cell Function: Mechanistic Insights into Autoimmune Diabetes
4.1. Immunomodulatory Mechanisms of Vitamin D in Cellular Immune Regulation and β-Cell Protection
4.2. The Role of Vitamin D in Pancreatic β-Cell Function and Insulin Secretion
5. The Potential Immunomodulatory Therapeutic Impact of Vitamin D on Autoimmune Diabetes: Evidence from Clinical Studies
5.1. Evidence of Vitamin D Efficacy in Patients with Type 1 Diabetes
5.2. The Impact of Vitamin D Supplementation in Latent Autoimmune Diabetes of Adults
6. Vitamin D as a Therapeutic Option in Vitamin D Deficiency and LADA: Challenges, Recommendations, and Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Hossain, M.J.; Al-Mamun, M.; Islam, M.R. Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Sci. Rep. 2024, 7, e2004. [Google Scholar] [CrossRef]
- Tuomilehto, J. The emerging global epidemic of type 1 diabetes. Curr. Diabetes Rep. 2013, 13, 795–804. [Google Scholar] [CrossRef]
- Butler, A.E.; Galasso, R.; Meier, J.J.; Basu, R.; Rizza, R.A.; Butler, P.C. Modestly increased beta cell apoptosis but no increased beta cell replication in recent-onset type 1 diabetic patients who died of diabetic ketoacidosis. Diabetologia 2007, 50, 2323–2331. [Google Scholar] [CrossRef] [PubMed]
- Oram, R.A.; Sims, E.K.; Evans-Molina, C. Beta cells in type 1 diabetes: Mass and function; sleeping or dead? Diabetologia 2019, 62, 567–577. [Google Scholar] [CrossRef]
- Cheng, J.; Yin, M.; Tang, X.; Yan, X.; Xie, Y.; He, B.; Li, X.; Zhou, Z. Residual β-cell function after 10 years of autoimmune type 1 diabetes: Prevalence, possible determinants, and implications for metabolism. Ann. Transl. Med. 2021, 9, 650. [Google Scholar] [CrossRef] [PubMed]
- Buzzetti, R.; Tuomi, T.; Mauricio, D.; Pietropaolo, M.; Zhou, Z.; Pozzilli, P.; Leslie, R.D. Management of Latent Autoimmune Diabetes in Adults: A Consensus Statement from an International Expert Panel. Diabetes 2020, 69, 2037–2047. [Google Scholar] [CrossRef] [PubMed]
- Leslie, R.D.; Williams, R.; Pozzilli, P. Clinical review: Type 1 diabetes and latent autoimmune diabetes in adults: One end of the rainbow. J. Clin. Endocrinol. Metab. 2006, 91, 1654–1659. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47 (Suppl. S1), S20–S42. [Google Scholar] [CrossRef]
- Juneja, R.; Palmer, J.P. Type 1 1/2 diabetes: Myth or reality? Autoimmunity 1999, 29, 65–83. [Google Scholar] [CrossRef]
- Zella, J.B.; DeLuca, H.F. Vitamin D and autoimmune diabetes. J. Cell Biochem. 2003, 88, 216–222. [Google Scholar] [CrossRef]
- Alfonso, B.; Liao, E.; Busta, A.; Poretsky, L. Vitamin D in diabetes mellitus-a new field of knowledge poised for D-velopment. Diabetes Metab. Res. Rev. 2009, 25, 417–419. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Sharma, P.; Girgis, C.M.; Gunton, J.E. Vitamin D and Beta Cells in Type 1 Diabetes: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 14434. [Google Scholar] [CrossRef] [PubMed]
- Björklund, A.; Hals, I.K.; Grill, V.; Ludvigsson, J. Latent Autoimmune Diabetes in Adults: Background, Safety and Feasibility of an Ongoing Pilot Study with Intra-Lymphatic Injections of GAD-Alum and Oral Vitamin D. Front. Endocrinol. 2022, 13, 926021. [Google Scholar] [CrossRef] [PubMed]
- Kahanovitz, L.; Sluss, P.M.; Russell, S.J. Type 1 Diabetes—A Clinical Perspective. Point Care. 2017, 16, 37–40. [Google Scholar] [CrossRef]
- DiMeglio, L.A.; Evans-Molina, C.; Oram, R.A. Type 1 diabetes. Lancet 2018, 391, 2449–2462. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Ferrannini, E.; Groop, L.; Henry, R.R.; Herman, W.H.; Holst, J.J.; Hu, F.B.; Kahn, C.R.; Raz, I.; Shulman, G.I.; et al. Type 2 diabetes mellitus. Nat. Rev. Dis. Primers 2015, 1, 15019. [Google Scholar] [CrossRef] [PubMed]
- Mollo, A.; Hernandez, M.; Marsal, J.R.; Esquerda, A.; Rius, F.; Blanco-Vaca, F.; Verdaguer, J.; Pozzilli, P.; de Leiva, A.; Mauricio, D. Latent autoimmune diabetes in adults is perched between type 1 and type 2: Evidence from adults in one region of Spain. Diabetes Metab. Res. Rev. 2013, 29, 446–451. [Google Scholar] [CrossRef]
- Graham, K.L.; Sutherland, R.M.; Mannering, S.I.; Zhao, Y.; Chee, J.; Krishnamurthy, B.; Thomas, H.E.; Lew, A.M.; Kay, T.W. Pathogenic mechanisms in type 1 diabetes: The islet is both target and driver of disease. Rev. Diabet. Stud. 2012, 9, 148–168. [Google Scholar] [CrossRef]
- Zhu, Y.; Qian, L.; Liu, Q.; Zou, J.; Zhou, Y.; Yang, T.; Huang, G.; Zhou, Z.; Liu, Y. Glutamic Acid Decarboxylase Autoantibody Detection by Electrochemiluminescence Assay Identifies Latent Autoimmune Diabetes in Adults with Poor Islet Function. Diabetes Metab. J. 2020, 44, 260–266. [Google Scholar] [CrossRef]
- Kawasaki, E. Anti-Islet Autoantibodies in Type 1 Diabetes. Int. J. Mol. Sci. 2023, 24, 10012. [Google Scholar] [CrossRef]
- Radtke, M.A.; Midthjell, K.; Nilsen, T.I.; Grill, V. Heterogeneity of patients with latent autoimmune diabetes in adults: Linkage to autoimmunity is apparent only in those with perceived need for insulin treatment: Results from the Nord-Trøndelag Health (HUNT) study. Diabetes Care 2009, 32, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Hosszúfalusi, N.; Vatay, A.; Rajczy, K.; Prohászka, Z.; Pozsonyi, E.; Horváth, L.; Grosz, A.; Gerõ, L.; Madácsy, L.; Romics, L.; et al. Similar genetic features and different islet cell autoantibody pattern of latent autoimmune diabetes in adults (LADA) compared with adult-onset type 1 diabetes with rapid progression. Diabetes Care 2003, 26, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.K. New Insights into the Genetics of Latent Autoimmune Diabetes in Adults. Curr. Diab. Rep. 2020, 20, 43. [Google Scholar] [CrossRef] [PubMed]
- Desai, M.; Zeggini, E.; Horton, V.A.; Owen, K.R.; Hattersley, A.T.; Levy, J.C.; Walker, M.; Gillespie, K.M.; Bingley, P.J.; Hitman, G.A.; et al. An association analysis of the HLA gene region in latent autoimmune diabetes in adults. Diabetologia 2007, 50, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Hernández, M.; Nóvoa-Medina, Y.; Faner, R.; Palou, E.; Esquerda, A.; Castelblanco, E.; Wägner, A.M.; Mauricio, D. Genetics: Is LADA just late onset type 1 diabetes? Front. Endocrinol. 2022, 13, 916698. [Google Scholar] [CrossRef]
- Hjort, R.; Ahlqvist, E.; Carlsson, P.O.; Grill, V.; Groop, L.; Martinell, M.; Rasouli, B.; Rosengren, A.; Tuomi, T.; Åsvold, B.O.; et al. Overweight, obesity and the risk of LADA: Results from a Swedish case-control study and the Norwegian HUNT Study. Diabetologia 2018, 61, 1333–1343. [Google Scholar] [CrossRef]
- Carlsson, S. Etiology and Pathogenesis of Latent Autoimmune Diabetes in Adults (LADA) Compared to Type 2 Diabetes. Front. Physiol. 2019, 10, 320. [Google Scholar] [CrossRef]
- Pettersen, E.; Skorpen, F.; Kvaløy, K.; Midthjell, K.; Grill, V. Genetic heterogeneity in latent autoimmune diabetes is linked to various degrees of autoimmune activity: Results from the Nord-Trøndelag Health Study. Diabetes 2010, 59, 302–310. [Google Scholar] [CrossRef]
- Cousminer, D.L.; Ahlqvist, E.; Mishra, R.; Andersen, M.K.; Chesi, A.; Hawa, M.I.; Davis, A.; Hodge, K.M.; Bradfield, J.P.; Zhou, K.; et al. First Genome-Wide Association Study of Latent Autoimmune Diabetes in Adults Reveals Novel Insights Linking Immune and Metabolic Diabetes. Diabetes Care 2018, 41, 2396–2403. [Google Scholar] [CrossRef]
- Pozzilli, P.; Pieralice, S. Latent Autoimmune Diabetes in Adults: Current Status and New Horizons. Endocrinol. Metab. 2018, 33, 147–159. [Google Scholar] [CrossRef]
- Mishra, R.; Hodge, K.M.; Cousminer, D.L.; Leslie, R.D.; Grant, S.F.A. A Global Perspective of Latent Autoimmune Diabetes in Adults. Trends Endocrinol. Metab. 2018, 29, 638–650. [Google Scholar] [CrossRef] [PubMed]
- Herzog, K.; Ahlqvist, E.; Alfredsson, L.; Groop, L.; Hjort, R.; Löfvenborg, J.E.; Tuomi, T.; Carlsson, S. Combined lifestyle factors and the risk of LADA and type 2 diabetes—Results from a Swedish population-based case-control study. Diabetes Res. Clin. Pract. 2021, 174, 108760. [Google Scholar] [CrossRef] [PubMed]
- Manisha, A.M.; Shangali, A.R.; Mfinanga, S.G.; Mbugi, E.V. Prevalence and factors associated with latent autoimmune diabetes in adults (LADA): A cross-sectional study. BMC Endocr. Disord. 2022, 22, 175. [Google Scholar] [CrossRef] [PubMed]
- Löfvenborg, J.E.; Ahlqvist, E.; Alfredsson, L.; Andersson, T.; Groop, L.; Tuomi, T.; Wolk, A.; Carlsson, S. Consumption of red meat, genetic susceptibility, and risk of LADA and type 2 diabetes. Eur. J. Nutr. 2021, 60, 769–779. [Google Scholar] [CrossRef]
- Löfvenborg, J.E.; Andersson, T.; Carlsson, P.O.; Dorkhan, M.; Groop, L.; Martinell, M.; Tuomi, T.; Wolk, A.; Carlsson, S. Fatty fish consumption and risk of latent autoimmune diabetes in adults. Nutr. Diabetes 2014, 4, e139. [Google Scholar] [CrossRef]
- Rasouli, B.; Ahlbom, A.; Andersson, T.; Grill, V.; Midthjell, K.; Olsson, L.; Carlsson, S. Alcohol consumption is associated with reduced risk of Type 2 diabetes and autoimmune diabetes in adults: Results from the Nord-Trøndelag health study. Diabet. Med. 2013, 30, 56–64. [Google Scholar] [CrossRef]
- Rasouli, B.; Ahlqvist, E.; Alfredsson, L.; Andersson, T.; Carlsson, P.O.; Groop, L.; Löfvenborg, J.E.; Martinell, M.; Rosengren, A.; Tuomi, T.; et al. Coffee consumption, genetic susceptibility and risk of latent autoimmune diabetes in adults: A population-based case-control study. Diabetes Metab. 2018, 44, 354–360. [Google Scholar] [CrossRef]
- Fourlanos, S.; Dotta, F.; Greenbaum, C.J.; Palmer, J.P.; Rolandsson, O.; Colman, P.G.; Harrison, L.C. Latent autoimmune diabetes in adults (LADA) should be less latent. Diabetologia 2005, 48, 2206–2212. [Google Scholar] [CrossRef]
- Lohmann, T.; Nietzschmann, U.; Kiess, W. “Lady-like”: Is there a latent autoimmune diabetes in the young? Diabetes Care 2000, 23, 1707–1708. [Google Scholar] [CrossRef]
- Turner, R.; Stratton, I.; Horton, V.; Manley, S.; Zimmet, P.; Mackay, I.R.; Shattock, M.; Bottazzo, G.F.; Holman, R. UKPDS 25: Autoantibodies to islet-cell cytoplasm and glutamic acid decarboxylase for prediction of insulin requirement in type 2 diabetes. UK Prospective Diabetes Study Group. Lancet 1997, 350, 1288–1293. [Google Scholar] [CrossRef]
- Li, H.; Isomaa, B.; Taskinen, M.R.; Groop, L.; Tuomi, T. Consequences of a family history of type 1 and type 2 diabetes on the phenotype of patients with type 2 diabetes. Diabetes Care 2000, 23, 589–594. [Google Scholar] [CrossRef] [PubMed]
- McKeigue, P.M.; Spiliopoulou, A.; McGurnaghan, S.; Colombo, M.; Blackbourn, L.; McDonald, T.J.; Onengut-Gomuscu, S.; Rich, S.S.; Palmer, C.N.A.; McKnight, J.A.; et al. Persistent C-peptide secretion in Type 1 diabetes and its relationship to the genetic architecture of diabetes. BMC Med. 2019, 17, 165. [Google Scholar] [CrossRef] [PubMed]
- Christakos, S.; Ajibade, D.V.; Dhawan, P.; Fechner, A.J.; Mady, L.J. Vitamin D: Metabolism. Endocrinol. Metab. Clin. N. Am. 2010, 39, 243–253. [Google Scholar] [CrossRef]
- Lamberg-Allardt, C. Vitamin D in foods and as supplements. Prog. Biophys. Mol. Biol. 2006, 92, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Margolis, R.N.; Christakos, S. The nuclear receptor superfamily of steroid hormones and vitamin D gene regulation. An update. Ann. N. Y. Acad. Sci. 2010, 1192, 208–214. [Google Scholar] [CrossRef]
- Rak, K.; Bronkowska, M. Immunomodulatory Effect of Vitamin D and Its Potential Role in the Prevention and Treatment of Type 1 Diabetes Mellitus-A Narrative Review. Molecules 2018, 24, 53. [Google Scholar] [CrossRef]
- Athanassiou, L.; Mavragani, C.P.; Koutsilieris, M. The Immunomodulatory Properties of Vitamin D. Mediterr. J. Rheumatol. 2022, 33, 7–13. [Google Scholar] [CrossRef]
- Korf, H.; Wenes, M.; Stijlemans, B.; Takiishi, T.; Robert, S.; Miani, M.; Eizirik, D.L.; Gysemans, C.; Mathieu, C. 1,25-Dihydroxyvitamin D3 curtails the inflammatory and T cell stimulatory capacity of macrophages through an IL-10-dependent mechanism. Immunobiology 2012, 217, 1292–1300. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, M.; Guo, Y.; Song, Z.; Liu, B. 1,25-Dihydroxyvitamin D3 Promotes High Glucose-Induced M1 Macrophage Switching to M2 via the VDR-PPARγ Signaling Pathway. Biomed. Res. Int. 2015, 2015, 157834. [Google Scholar] [CrossRef]
- Fernandez, G.J.; Ramírez-Mejía, J.M.; Urcuqui-Inchima, S. Vitamin D boosts immune response of macrophages through a regulatory network of microRNAs and mRNAs. J. Nutr. Biochem. 2022, 109, 109105. [Google Scholar] [CrossRef]
- Farias, A.S.; Spagnol, G.S.; Bordeaux-Rego, P.; Oliveira, C.O.; Fontana, A.G.; de Paula, R.F.; Santos, M.P.; Pradella, F.; Moraes, A.S.; Oliveira, E.C.; et al. Vitamin D3 induces IDO+ tolerogenic DCs and enhances Treg, reducing the severity of EAE. CNS Neurosci. Ther. 2013, 19, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Ghaseminejad-Raeini, A.; Ghaderi, A.; Sharafi, A.; Nematollahi-Sani, B.; Moossavi, M.; Derakhshani, A.; Sarab, G.A. Immunomodulatory actions of vitamin D in various immune-related disorders: A comprehensive review. Front. Immunol. 2023, 14, 950465. [Google Scholar] [CrossRef] [PubMed]
- Colin, E.M.; Asmawidjaja, P.S.; van Hamburg, J.P.; Mus, A.M.; van Driel, M.; Hazes, J.M.; van Leeuwen, J.P.; Lubberts, E. 1,25-dihydroxyvitamin D3 modulates Th17 polarization and interleukin-22 expression by memory T cells from patients with early rheumatoid arthritis. Arthritis Rheum. 2010, 62, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Grammatiki, M.; Karras, S.; Kotsa, K. The role of vitamin D in the pathogenesis and treatment of diabetes mellitus: A narrative review. Hormones 2019, 18, 37–48. [Google Scholar] [CrossRef]
- Rolf, L.; Muris, A.H.; Hupperts, R.; Damoiseaux, J. Illuminating vitamin D effects on B cells—the multiple sclerosis perspective. Immunology 2016, 147, 275–284. [Google Scholar] [CrossRef]
- Takiishi, T.; Gysemans, C.; Bouillon, R.; Mathieu, C. Vitamin D and diabetes. Endocrinol. Metab. Clin. N. Am. 2010, 39, 419–446. [Google Scholar] [CrossRef]
- Wu, J.; Atkins, A.; Downes, M.; Wei, Z. Vitamin D in Diabetes: Uncovering the Sunshine Hormone’s Role in Glucose Metabolism and Beyond. Nutrients 2023, 15, 1997. [Google Scholar] [CrossRef]
- Sadek, K.M.; Shaheen, H. Biochemical efficacy of vitamin D in ameliorating endocrine and metabolic disorders in diabetic rats. Pharm. Biol. 2014, 52, 591–596. [Google Scholar] [CrossRef]
- Haussler, M.R.; Livingston, S.; Sabir, Z.L.; Haussler, C.A.; Jurutka, P.W. Vitamin D Receptor Mediates a Myriad of Biological Actions Dependent on Its 1,25-Dihydroxyvitamin D Ligand: Distinct Regulatory Themes Revealed by Induction of Klotho and Fibroblast Growth Factor-23. JBMR Plus 2020, 5, e10432. [Google Scholar] [CrossRef]
- Giulietti, A.; Gysemans, C.; Stoffels, K.; van Etten, E.; Decallonne, B.; Overbergh, L.; Bouillon, R.; Mathieu, C. Vitamin D deficiency in early life accelerates Type 1 diabetes in non-obese diabetic mice. Diabetologia 2004, 47, 451–462. [Google Scholar] [CrossRef]
- Mukhtar, M.; Batool, A.; Wajid, A.; Qayyum, I. Vitamin D Receptor Gene Polymorphisms Influence T1D Susceptibility among Pakistanis. Int. J. Genomics 2017, 2017, 4171254. [Google Scholar] [CrossRef] [PubMed]
- Israni, N.; Goswami, R.; Kumar, A.; Rani, R. Interaction of vitamin D receptor with HLA DRB1 0301 in type 1 diabetes patients from North India. PLoS ONE 2009, 4, e8023. [Google Scholar] [CrossRef]
- Morró, M.; Vilà, L.; Franckhauser, S.; Mallol, C.; Elias, G.; Ferré, T.; Molas, M.; Casana, E.; Rodó, J.; Pujol, A.; et al. Vitamin D Receptor Overexpression in β-Cells Ameliorates Diabetes in Mice. Diabetes 2020, 69, 927–939. [Google Scholar] [CrossRef]
- Zeitz, U.; Weber, K.; Soegiarto, D.W.; Wolf, E.; Balling, R.; Erben, R.G. Impaired insulin secretory capacity in mice lacking a functional vitamin D receptor. FASEB J. 2003, 17, 509–511. [Google Scholar] [CrossRef] [PubMed]
- Dadon, Y.; Hecht Sagie, L.; Mimouni, F.B.; Arad, I.; Mendlovic, J. Vitamin D and Insulin-Dependent Diabetes: A Systematic Review of Clinical Trials. Nutrients 2024, 16, 1042. [Google Scholar] [CrossRef] [PubMed]
- Giannini, S.; Giusti, A.; Minisola, S.; Napoli, N.; Passeri, G.; Rossini, M.; Sinigaglia, L. The Immunologic Profile of Vitamin D and Its Role in Different Immune-Mediated Diseases: An Expert Opinion. Nutrients 2022, 14, 473. [Google Scholar] [CrossRef] [PubMed]
- Pozzilli, P.; Manfrini, S.; Crinò, A.; Picardi, A.; Leomanni, C.; Cherubini, V.; Valente, L.; Khazrai, M.; Visalli, N.; IMDIAB group. Low levels of 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 in patients with newly diagnosed type 1 diabetes. Horm. Metab. Res. 2005, 37, 680–683. [Google Scholar] [CrossRef]
- Yang, X.; Chai, M.; Lin, M. Proportion of vitamin D deficiency in children/adolescents with type 1 diabetes: A systematic review and meta-analysis. BMC Pediatr. 2024, 24, 192. [Google Scholar] [CrossRef]
- Hyppönen, E.; Läärä, E.; Reunanen, A.; Järvelin, M.R.; Virtanen, S.M. Intake of vitamin D and risk of type 1 diabetes: A birth-cohort study. Lancet 2001, 358, 1500–1503. [Google Scholar] [CrossRef]
- The EURODIAB Substudy 2 Study Group. Vitamin D supplement in early childhood and risk for Type I (insulin-dependent) diabetes mellitus. Diabetologia 1999, 42, 51–54. [Google Scholar] [CrossRef]
- Zhai, N.; Bidares, R.; Makoui, M.H.; Aslani, S.; Mohammadi, P.; Razi, B.; Imani, D.; Yazdchi, M.; Mikaeili, H. Vitamin D receptor gene polymorphisms and the risk of the type 1 diabetes: A meta-regression and updated meta-analysis. BMC Endocr. Disord. 2020, 20, 121. [Google Scholar] [CrossRef] [PubMed]
- Klak, M.; Gomółka, M.; Kowalska, P.; Cichoń, J.; Ambrożkiewicz, F.; Serwańska-Świętek, M.; Berman, A.; Wszoła, M. Type 1 diabetes: Genes associated with disease development. Cent. Eur. J. Immunol. 2020, 45, 439–453. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, D.T.; Marakaki, C.; Fretzayas, A.; Nicolaidou, P.; Papadimitriou, A. Negativation of type 1 diabetes-associated autoantibodies to glutamic acid decarboxylase and insulin in children treated with oral calcitriol. J. Diabetes 2013, 5, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, M.M.; Pinheiro, F.M.M.; de Arruda, M.M.; Beato, G.M.; Verde, G.A.C.L.; Bianchini, G.; Casalenuovo, P.R.M.; Argolo, A.A.A.; de Souza, L.T.; Pessoa, F.G.; et al. Association between sitagliptin plus vitamin D3 (VIDPP-4i) use and clinical remission in patients with new-onset type 1 diabetes: A retrospective case-control study. Arch. Endocrinol. Metab. 2023, 67, e000652. [Google Scholar] [CrossRef] [PubMed]
- Gabbay, M.A.; Sato, M.N.; Finazzo, C.; Duarte, A.J.; Dib, S.A. Effect of cholecalciferol as adjunctive therapy with insulin on protective immunologic profile and decline of residual β-cell function in new-onset type 1 diabetes mellitus. Arch. Pediatr. Adolesc. Med. 2012, 166, 601–607. [Google Scholar] [CrossRef]
- Sharma, S.; Biswal, N.; Bethou, A.; Rajappa, M.; Kumar, S.; Vinayagam, V. Does Vitamin D Supplementation Improve Glycaemic Control In Children With Type 1 Diabetes Mellitus?—A Randomized Controlled Trial. J. Clin. Diagn. Res. 2017, 11, SC15–SC17. [Google Scholar] [CrossRef]
- Walter, M.; Kaupper, T.; Adler, K.; Foersch, J.; Bonifacio, E.; Ziegler, A.G. No effect of the 1alpha,25-dihydroxyvitamin D3 on beta-cell residual function and insulin requirement in adults with new-onset type 1 diabetes. Diabetes Care 2010, 33, 1443–1448. [Google Scholar] [CrossRef]
- Pitocco, D.; Crinò, A.; Di Stasio, E.; Manfrini, S.; Guglielmi, C.; Spera, S.; Anguissola, G.B.; Visalli, N.; Suraci, C.; Matteoli, M.C.; et al. The effects of calcitriol and nicotinamide on residual pancreatic beta-cell function in patients with recent-onset Type 1 diabetes (IMDIAB XI). Diabet. Med. 2006, 23, 920–923. [Google Scholar] [CrossRef]
- Bizzarri, C.; Pitocco, D.; Napoli, N.; Di Stasio, E.; Maggi, D.; Manfrini, S.; Suraci, C.; Cavallo, M.G.; Cappa, M.; Ghirlanda, G.; et al. No protective effect of calcitriol on beta-cell function in recent-onset type 1 diabetes: The IMDIAB XIII trial. Diabetes Care 2010, 33, 1962–1963. [Google Scholar] [CrossRef]
- Nwosu, B.U.; Parajuli, S.; Jasmin, G.; Fleshman, J.; Sharma, R.B.; Alonso, L.C.; Lee, A.F.; Barton, B.A. Ergocalciferol in New-onset Type 1 Diabetes: A Randomized Controlled Trial. J. Endocr. Soc. 2021, 6, bvab179. [Google Scholar] [CrossRef]
- Bozkuş, Y. A Case Report of Latent Autoimmune Diabetes Arising After Isotretinoin Treatment: Real Association or Coincidence? A Hypothesis on Pathophysiology. Endocr. Metab. Immune Disord. Drug Targets 2021, 21, 2307–2310. [Google Scholar] [CrossRef] [PubMed]
- Rapti, E.; Karras, S.; Grammatiki, M.; Mousiolis, A.; Tsekmekidou, X.; Potolidis, E.; Zebekakis, P.; Daniilidis, M.; Kotsa, K. Combined treatment with sitagliptin and vitamin D in a patient with latent autoimmune diabetes in adults. Endocrinol. Diabetes Metab. Case Rep. 2016, 2016, 150136. [Google Scholar] [CrossRef]
- Tsaryk, I.; Pashkovska, N. The role of vitamin D deficiency in the development of latent autoimmune diabetes in adults. Endocr. Abstracts 2021, 73, AEP204. [Google Scholar] [CrossRef]
- Cardoso-Sánchez, L.I.; Gómez-Díaz, R.A.; Wacher, N.H. Vitamin D intake associates with insulin resistance in type 2 diabetes, but not in latent autoimmune diabetes in adults. Nutr. Res. 2015, 35, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liao, L.; Yan, X.; Huang, G.; Lin, J.; Lei, M.; Wang, X.; Zhou, Z. Protective effects of 1-alpha-hydroxyvitamin D3 on residual beta-cell function in patients with adult-onset latent autoimmune diabetes (LADA). Diabetes Metab. Res. Rev. 2009, 25, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yan, X.; Wu, C.; Pei, X.; Li, X.; Wang, X.; Niu, X.; Jiang, H.; Zeng, X.; Zhou, Z. Adding vitamin D3 to the dipeptidyl peptidase-4 inhibitor saxagliptin has the potential to protect β-cell function in LADA patients: A 1-year pilot study. Diabetes Metab. Res. Rev. 2020, 36, e3298. [Google Scholar] [CrossRef]
- Yan, X.; Li, X.; Liu, B.; Huang, J.; Xiang, Y.; Hu, Y.; Tang, X.; Zhang, Z.; Huang, G.; Xie, Z.; et al. Combination therapy with saxagliptin and vitamin D for the preservation of β-cell function in adult-onset type 1 diabetes: A multi-center, randomized, controlled trial. Signal Transduct. Target. Ther. 2023, 8, 158. [Google Scholar] [CrossRef]
- Rebelos, E.; Tentolouris, N.; Jude, E. The Role of Vitamin D in Health and Disease: A Narrative Review on the Mechanisms Linking Vitamin D with Disease and the Effects of Supplementation. Drugs 2023, 83, 665–685. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, M.; Xiong, P.; Yuan, J.; Zheng, D.; Piao, S. Prognosis and outcome of latent autoimmune diabetes in adults: T1DM or T2DM? Diabetol. Metab. Syndr. 2024, 16, 242. [Google Scholar] [CrossRef]
- Sørensen, I.M.; Joner, G.; Jenum, P.A.; Eskild, A.; Torjesen, P.A.; Stene, L.C. Maternal serum levels of 25-hydroxy-vitamin D during pregnancy and risk of type 1 diabetes in the offspring. Diabetes 2012, 61, 175–178. [Google Scholar] [CrossRef]
- Shao, S.; Xu, Q.; Yu, X.; Pan, R.; Chen, Y. Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions. Pharmacol. Ther. 2020, 209, 107503. [Google Scholar] [CrossRef] [PubMed]
- Kolb, H.; von Herrath, M. Immunotherapy for Type 1 Diabetes: Why Do Current Protocols Not Halt the Underlying Disease Process? Cell. Metab. 2017, 25, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Mei, A.; Wei, Y.; Li, C.; Qian, H.; Min, X.; Yang, H.; Dong, L.; Rao, X.; Zhong, J. GLP-1 receptor agonist as a modulator of innate immunity. Front. Immunol. 2022, 13, 997578. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Luo, S.; Xiao, Z.; Zhang, Z.; Liu, B.; Zhou, Z. Latent autoimmune diabetes in adults: A focus on β-cell protection and therapy. Front. Endocrinol. 2022, 13, 959011. [Google Scholar] [CrossRef]
- Pozzilli, P.; Leslie, R.D.; Peters, A.L.; Buzzetti, R.; Shankar, S.S.; Milicevic, Z.; Pavo, I.; Lebrec, J.; Martin, S.; Schloot, N.C. Dulaglutide treatment results in effective glycaemic control in latent autoimmune diabetes in adults (LADA): A post-hoc analysis of the AWARD-2, -4 and -5 Trials. Diabetes Obes. Metab. 2018, 20, 1490–1498. [Google Scholar] [CrossRef]
- Holt, R.; Holt, J.; Jorsal, M.J.; Sandsdal, R.M.; Jensen, S.B.K.; Byberg, S.; Juhl, C.R.; Lundgren, J.R.; Janus, C.; Stallknecht, B.M.; et al. Weight Loss Induces Changes in Vitamin D Status in Women with Obesity but not in Men: A Randomized Clinical Trial. J. Clin. Endocrinol. Metab. 2024, dgae775. [Google Scholar] [CrossRef]
- Jenkins, B.J.; Blagih, J.; Ponce-Garcia, F.M.; Canavan, M.; Gudgeon, N.; Eastham, S.; Hill, D.; Hanlon, M.M.; Ma, E.H.; Bishop, E.L.; et al. Canagliflozin impairs T cell effector function via metabolic suppression in autoimmunity. Cell Metab. 2023, 35, 1132–1146.e9. [Google Scholar] [CrossRef] [PubMed]
- Vinke, J.S.J.; Heerspink, H.J.L.; de Borst, M.H. Effects of sodium glucose cotransporter 2 inhibitors on mineral metabolism in type 2 diabetes mellitus. Curr. Opin. Nephrol. Hypertens. 2019, 28, 321–327. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, Y.; Zu, Q.; Wang, X.; Zhang, Y. GLP-1 receptor agonist-induced diabetic ketoacidosis: A case report. Medicine 2024, 103, e39799. [Google Scholar] [CrossRef]
- Danne, T.; Garg, S.; Peters, A.L.; Buse, J.B.; Mathieu, C.; Pettus, J.H.; Alexander, C.M.; Battelino, T.; Ampudia-Blasco, F.J.; Bode, B.W.; et al. International Consensus on Risk Management of Diabetic Ketoacidosis in Patients with Type 1 Diabetes Treated With Sodium-Glucose Cotransporter (SGLT) Inhibitors. Diabetes Care 2019, 42, 1147–1154. [Google Scholar] [CrossRef]
- Demay, M.B.; Pittas, A.G.; Bikle, D.D.; Diab, D.L.; Kiely, M.E.; Lazaretti-Castro, M.; Lips, P.; Mitchell, D.M.; Murad, M.H.; Powers, S.; et al. Vitamin D for the Prevention of Disease: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2024, 109, 1907–1947. [Google Scholar] [CrossRef] [PubMed]
- Ataie-Jafari, A.; Loke, S.C.; Rahmat, A.B.; Larijani, B.; Abbasi, F.; Leow, M.K.; Yassin, Z. A randomized placebo-controlled trial of alphacalcidol on the preservation of beta cell function in children with recent onset type 1 diabetes. Clin. Nutr. 2013, 32, 911–917. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Study’s Desing | Study’s Objective | Population of the Study | Results | Conclusions |
---|---|---|---|---|---|
Li, 2009, [85] | RCT | Evaluation of whether the addition of 1-alpha(OH)D3 to insulin therapy helps preserve β-cell function in patients with LADA | A total of 35 LADA patients divided into two groups (1-year follow-up): - Group 1 (n = 18): insulin - Group 2 (n = 17): insulin + 1-alpha-(OH)D3 (0.5 μg/day) | - FCP and PCP levels remained stable in Group 2, whereas FCP levels exhibited a significant ↓ in Group 1 - After 1 year, 70% of patients in Group 2 either maintained or ↑ their FCP levels, in contrast to only 22% of patients in Group 1 - In subjects with DM duration of 1 year or less, Group 2 showed ↑ preservation of β-cell function, indicated by ↑ FCP and PCP levels | Supplementing insulin therapy with 1-alpha(OH)D3 may support β-cell function preservation in LADA patients, particularly in those with a shorter DM duration. This intervention has been shown to be well-tolerated, with no notable adverse effects observed. |
Löfvenborg, 2014 [35] | Case-control study | Investigation of the relationship between fish consumption, omega-3 FAs, and the risk of developing LADA compared to T2D | - 89 cases of LADA - 462 cases of T2D - 1007 DM-free controls | - Weekly intake of fatty fish (≥1 serving vs. <1 serving) was correlated with a ↓ risk of LADA but not with T2D - Estimated daily intake of n-3 PUFA (≥0.3 g) demonstrated a similar trend, with an odds ratio for LADA of 0.60 (95% CI 0.35–1.03) and for T2D of 1.14 (95% CI 0.79–1.58) - Supplementation with fish oil was linked to a ↓ risk for LADA (OR 0.47, 95% CI 0.19–1.12), but to a ↑ risk for T2D (OR 1.58, 95% CI 1.08–2.31) | Fatty fish consumption may ↓ the risk of LADA, potentially due to the beneficial effects of marine-derived omega-3 FAs |
Cardoso-Sánchez, 2015 [84] | Observational study | Evaluation of the association between vitamin D (both intake and serum levels) and insulin production (C-peptide) and insulin release (eGDR) in adults with T2D and LADA | A total of 107 individuals with the following: - Average age 55.3 ± 11.84 y.o.; - DM duration of 13.23 ± 5.96 years. | - Compared to T2D, LADA patients tend to have lower vitamin D intake, lower BMI, poorer metabolic health, and were generally younger. - While vitamin D intake was initially correlated with insulin secretion across all patients, this link was seen only in T2D after adjustments, with no associations found in LADA. | Vitamin D intake but not serum levels may be associated with insulin resistance in T2D, but neither intake nor serum levels are linked to insulin resistance in LADA. |
Zhang, 2020 [86] | RCT | Assessment of whether the addition of vitamin D3 to DPP-4i therapy can help preserve β-cell function in patients with LADA | A total of 60 LADA patients were divided into 3 groups: 1. Group A (n = 21): conventional treatment (metformin and/or insulin); 2. Group B (n = 20): SAXA + conventional Treatment; 3. Group C (n = 19): SAXA + vitamin D3 (2000 IU/day) + conventional Treatment. | - Over a 1-year period, Group C maintained stable levels of FCP, PCP, and CPI, indicating preservation of β-cell function. - Group B showed a marked ↓ in FCP, while Group A exhibited a significant ↓ in CPI levels; - Group C also demonstrated a significant ↓ in GADA titers compared to baseline, indicating a potential immune-modulating vitamin D3 effect. | Adding vitamin D3 to DPP-4i therapy may help sustain β-cell function in LADA patients. |
Tsaryk, 2021 [83] | Observational study | Investigation of the relationship between vitamin D levels and carbohydrate metabolism across different DM types, focusing on LADA | - 25 healthy controls and 90 DM patients: 1. 26 with T1D; 2. 28 with T2D; 3. 36 with LADA. - LADA patients divided into two subgroups based on GADA levels (LADA1 vs. LADA2) | - VDD is highly prevalent in DM individuals: 1. 62% in T1D; 2. 75% in T2D; 3. 67% in LADA. - VDD rates: 71% in LADA2 vs. 63% in LADA1 - Correlations in LADA patients: Negative correlations between vitamin D and GADA and HbA1c levels, and a positive correlation with C-peptide levels, indicating vitamin D’s potential link to β-cell function and glycemic control in LADA. | Vitamin D may play a role in the progression of LADA, as VDD in these patients is associated with: - ↑ autoimmunity; - ↓ in β-cell function; - worsened disease management/control. |
Björklund, 2022 [13] | Open-label feasibility trial | Evaluation of the safety and feasibility of intranodal GAD-alum injections with vitamin D for LADA patients | A total of 14 GADA-positive, insulin-independent LADA subjects, aged 30–70, diagnosed within 36 months received 4 μg GAD-alum injections at days 1, 30, and 60, along with 2000 U/d vitamin D for 4 months if serum levels were <100 nmol/L | Treatment was safe/feasible, with stable β-cell function and metabolic control observed after 5 months | Intra-lymphatic GAD-alum therapy combined with vitamin D may offer a viable approach for managing LADA, supporting disease stabilization and β-cell preservation. |
Yan, 2023 [87] | RCT | Assessment of the effectiveness of SAXA alone and in combination with vitamin D in maintaining β-cell function in LADA patients | A total of 301 DM adults randomly assigned to three groups: - conventional therapy (metformin and/or insulin) (n = 99); - SAXA (n = 100); - SAXA + vitamin D (n = 102). | - The primary outcome of FCP change was not met in SAXA + vitamin D (p = 0.18) or SAXA groups (p = 0.26); - SAXA + vitamin D showed significantly less ↓ in 2-h C-peptide AUC compared to conventional therapy (−276 pmol/L vs. −419 pmol/L; p = 0.01); - SAXA + vitamin D was especially effective in individuals with ↑ GADA levels (p = 0.001); - insulin dosage was ↓ in both SAXA groups while maintaining similar glycemic control across groups. | - The combination of SAXA and vitamin D appears to sustain β-cell function in LADA patients, with significant benefits in those with ↑ GADA levels. - This treatment shows potential as an adjunct to conventional therapy, offering a promising early intervention option for LADA subjects. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mourelatou, N.G.; Kounatidis, D.; Jude, E.B.; Rebelos, E. Vitamin D Supplementation as a Therapeutic Strategy in Autoimmune Diabetes: Insights and Implications for LADA Management. Nutrients 2024, 16, 4072. https://doi.org/10.3390/nu16234072
Mourelatou NG, Kounatidis D, Jude EB, Rebelos E. Vitamin D Supplementation as a Therapeutic Strategy in Autoimmune Diabetes: Insights and Implications for LADA Management. Nutrients. 2024; 16(23):4072. https://doi.org/10.3390/nu16234072
Chicago/Turabian StyleMourelatou, Niki G., Dimitris Kounatidis, Edward B. Jude, and Eleni Rebelos. 2024. "Vitamin D Supplementation as a Therapeutic Strategy in Autoimmune Diabetes: Insights and Implications for LADA Management" Nutrients 16, no. 23: 4072. https://doi.org/10.3390/nu16234072
APA StyleMourelatou, N. G., Kounatidis, D., Jude, E. B., & Rebelos, E. (2024). Vitamin D Supplementation as a Therapeutic Strategy in Autoimmune Diabetes: Insights and Implications for LADA Management. Nutrients, 16(23), 4072. https://doi.org/10.3390/nu16234072