Biological and Nutritional Applications of Microalgae
Abstract
:1. Introduction
2. Biological Activities
2.1. Photosynthesis
2.2. Cellular Structure
2.3. Metabolism
2.4. Reproduction and Life Cycle
2.5. Diversity and Classification
3. Nutritional Aspects
3.1. Microalgae in the Food İndustry
3.2. Novel Foods and Regulatory Aspects of Microalgae
3.3. Health Benefits Associated with the Consumption of Microalgae
Health Benefits | Microalgae | Effects | References |
---|---|---|---|
Metabolic health | Chlorella vulgaris (Chlorophyta) | -Enhance taste score -Influence glucose homeostasis | [169] |
Phaeodactylum tricornutum (Bacillariophycea) | -Influence glucose and insulin homeostasis | [177] | |
Tetraselmis chui (Chlorophyta) | -Exhibit antioxidant, and anti-inflammatory effects | [173] | |
Diacronema lutheri (Pavlovophyceae) | -Influence glucose and insulin homeostasis | [176] | |
Tetraselmis chui (Chlorophyta) | -Influence hematological and hormonal parameters | [178] | |
Chlorella vulgaris (Chlorophyta) Chlorococcum amblystomatis | -Exhibit lipid-reducing activity and anti-inflammatory activity | [172] | |
Nannochloropsis oceanica | -Exhibit lipid-reducing activity -Influence gut microbiota | [175] | |
Tetraselmis chui (Chlorophyta) | -Influence hematological parameters | [174] | |
Tisochrysis lutea (Coccolithophyceae) | -Influence cholesterol levels -Exhibit anti-inflamatory effects | [171] | |
Cardiovascular health | Auxenochlorella pyrenoidosa (Chlorophyta) Microchloropsis salina (Eustigmatophyceae) | -Influence cholesterol levels -Influence vitamin and mineral levels | [179] |
Limnospira platensis (Cyanobacteria) | -Exhibit antihypertensive activity | [180] | |
Nannochloropsis sp. (Eustigmato-phyceae) | -Influence cholesterol levels | [181] | |
Schizochytrium sp. (Thraustochytriaceae) | -Influence cholesterol levels | [166] | |
Immune health | Euglena gracilis (Euglenophyta) | -Influence cholesterol levels -Exhibit natural killer cell activity | [167] |
Gut health | Phaeodactylum tricornutum (Bacillariophyceae) | -Influence SCFA levels -Influence microbial diversity | [182] |
-Influence cholesterol levels | [17] | ||
Limnospira maxima Chlorella vulgaris (Chlorophyta) | -Influence incidence of diarrhea | [183] | |
Skincare | Dunaliella salina (Chlorophyta) | -Exhibit antiglycation and anti-Inflammatory activities | [184] |
Scenedesmus rubescens (Chlorophyta) | -Modulate hyperpigmentation | [185] | |
Cognitive function | Phaeodactylum tricornutum (Bacillariophyceae) | -Influence mood state | [186] |
Limnospira maxima (Cyanobacteria) | -Influence visual learning and visual working memory | [187] | |
Euglena gracilis (Euglenophyta) | -Influence sleep quality -Influence the autonomic nervous system | [188] | |
-Influence oxidative stress -Influence the autonomic nervous system | [170] |
4. Environmental Effects
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Verdelho Vieira, V.; Cadoret, J.-P.; Acien, F.G.; Benemann, J. Clarification of Most Relevant Concepts Related to the Microalgae Production Sector. Processes 2022, 10, 175. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, L.; Chen, H.; Gao, C. Carbon Dioxide Removal from Air by Microalgae Cultured in a Membrane-Photobioreactor. Sep. Purif. Technol. 2006, 50, 324–329. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, J.; Chen, P.; Ji, C.; Kang, Q.; Lu, B.; Li, K.; Liu, J.; Ruan, R. Bio-Mitigation of Carbon Dioxide Using Microalgal Systems: Advances and Perspectives. Renew. Sustain. Energy Rev. 2017, 76, 1163–1175. [Google Scholar] [CrossRef]
- Acién, F.G.; Fernández, J.M.; Magán, J.J.; Molina, E. Production Cost of a Real Microalgae Production Plant and Strategies to Reduce It. Biotechnol. Adv. 2012, 30, 1344–1353. [Google Scholar] [CrossRef]
- Andersen, R.A. The Microalgal Cell. In Handbook of Microalgal Culture; Richmond, A., Hu, Q., Eds.; Wiley: Hoboken, NJ, USA, 2013; pp. 1–20. ISBN 978-0-470-67389-8. [Google Scholar]
- De Martino, A.; Bartual, A.; Willis, A.; Meichenin, A.; Villazán, B.; Maheswari, U.; Bowler, C. Physiological and Molecular Evidence That Environmental Changes Elicit Morphological Interconversion in the Model Diatom Phaeodactylum Tricornutum. Protist 2011, 162, 462–481. [Google Scholar] [CrossRef] [PubMed]
- Richmond, A. (Ed.) Handbook of Microalgal Culture: Biotechnology and Applied Phycology, 1st ed.; Wiley: Hoboken, NJ, USA, 2003; ISBN 978-0-632-05953-9. [Google Scholar]
- Jensen, P.E.; Leister, D. Chloroplast Evolution, Structure and Functions. F1000Prime Rep. 2014, 6, 40. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, D.J.; Thresher, C.L.; Street, H.E. The Heterotrophic Nutrition of Chlorella Vulgaris (Brannon No. 1 Strain): With Two Figures In the Text. Ann. Bot. 1960, 24, 1–11. [Google Scholar] [CrossRef]
- Boyle, N.R.; Morgan, J.A. Flux Balance Analysis of Primary Metabolism in Chlamydomonas Reinhardtii. BMC Syst. Biol. 2009, 3, 4. [Google Scholar] [CrossRef]
- Baalan, C.V.; Pulich, W.M.; Brandeis, M.G. Heterotrophic Growth of the Microalgae. CRC Crit. Rev. Microbiol. 1973, 2, 229–254. [Google Scholar] [CrossRef]
- Perez-Garcia, O.; Escalante, F.M.E.; de-Bashan, L.E.; Bashan, Y. Heterotrophic Cultures of Microalgae: Metabolism and Potential Products. Water Res. 2011, 45, 11–36. [Google Scholar] [CrossRef]
- Zachleder, V.; Bišová, K.; Vítová, M. The Cell Cycle of Microalgae. In The Physiology of Microalgae; Borowitzka, M.A., Beardall, J., Raven, J.A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 3–46. ISBN 978-3-319-24943-8. [Google Scholar]
- Cheng, S.; Jessica; Yoshikawa, K.; Cross, J.S. Effects of Nano/Microplastics on the Growth and Reproduction of the Microalgae, Bacteria, Fungi, and Daphnia Magna in the Microcosms. Environ. Technol. Innov. 2023, 31, 103211. [Google Scholar] [CrossRef]
- Not, F.; Gausling, R.; Azam, F.; Heidelberg, J.F.; Worden, A.Z. Vertical Distribution of Picoeukaryotic Diversity in the Sargasso Sea. Environ. Microbiol. 2007, 9, 1233–1252. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.-C.; Ogden, K.L. Algal Biofuels: The Research. Chem. Eng. Prog. 2011, 107, 42–47. [Google Scholar] [CrossRef]
- Stiefvatter, L.; Lehnert, K.; Frick, K.; Montoya-Arroyo, A.; Frank, J.; Vetter, W.; Schmid-Staiger, U.; Bischoff, S.C. Oral Bioavailability of Omega-3 Fatty Acids and Carotenoids from the Microalgae Phaeodactylum Tricornutum in Healthy Young Adults. Mar. Drugs 2021, 19, 700. [Google Scholar] [CrossRef]
- Sarıtaş, S.; Duman, H.; Pekdemir, B.; Rocha, J.M.; Oz, F.; Karav, S. Functional Chocolate: Exploring Advances in Production and Health Benefits. Int. J. Food Sci. Technol. 2024, 59, 5303–5325. [Google Scholar] [CrossRef]
- Sarıtaş, S.; Mondragon Portocarrero, A.D.C.; Miranda, J.M.; Witkowska, A.M.; Karav, S. Functional Yogurt: Types and Health Benefits. Appl. Sci. 2024, 14, 11798. [Google Scholar] [CrossRef]
- Hernández-López, I.; Benavente Valdés, J.R.; Castellari, M.; Aguiló-Aguayo, I.; Morillas-España, A.; Sánchez-Zurano, A.; Acién-Fernández, F.G.; Lafarga, T. Utilisation of the Marine Microalgae Nannochloropsis Sp. and Tetraselmis Sp. as Innovative Ingredients in the Formulation of Wheat Tortillas. Algal Res. 2021, 58, 102361. [Google Scholar] [CrossRef]
- Sarıtaş, S.; Duman, H.; Karav, S. Nutritional and Functional Aspects of Fermented Algae. Int. J. Food Sci. Technol. 2024, 59, 5270–5284. [Google Scholar] [CrossRef]
- Durmaz, Y.; Kilicli, M.; Toker, O.S.; Konar, N.; Palabiyik, I.; Tamtürk, F. Using Spray-Dried Microalgae in Ice Cream Formulation as a Natural Colorant: Effect on Physicochemical and Functional Properties. Algal Res. 2020, 47, 101811. [Google Scholar] [CrossRef]
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA); Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of an Ethanolic Extract of the Dried Biomass of the Microalga Phaeodactylum Tricornutum as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA J. 2023, 21, e08072. [Google Scholar] [CrossRef] [PubMed]
- Kagan, M.L.; Sullivan, D.W.; Gad, S.C.; Ballou, C.M. Safety Assessment of EPA-Rich Polar Lipid Oil Produced From the Microalgae Nannochloropsis Oculata. Int. J. Toxicol. 2014, 33, 459–474. [Google Scholar] [CrossRef] [PubMed]
- Szabo, N.J.; Matulka, R.A.; Kiss, L.; Licari, P. Safety Evaluation of a High Lipid Whole Algalin Flour (WAF) from Chlorella Protothecoides. Regul. Toxicol. Pharmacol. 2012, 63, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Prüser, T.F.; Braun, P.G.; Wiacek, C. Microalgae as a Novel Food. Ernahr. Umsch. 2021, 68, 78–85. [Google Scholar] [CrossRef]
- Mosibo, O.K.; Ferrentino, G.; Udenigwe, C.C. Microalgae Proteins as Sustainable Ingredients in Novel Foods: Recent Developments and Challenges. Foods 2024, 13, 733. [Google Scholar] [CrossRef] [PubMed]
- Williamson, E.; Ross, I.L.; Wall, B.T.; Hankamer, B. Microalgae: Potential Novel Protein for Sustainable Human Nutrition. Trends Plant Sci. 2024, 29, 370–382. [Google Scholar] [CrossRef]
- Vieira Salla, A.C.; Margarites, A.C.; Seibel, F.I.; Holz, L.C.; Brião, V.B.; Bertolin, T.E.; Colla, L.M.; Costa, J.A.V. Increase in the Carbohydrate Content of the Microalgae Spirulina in Culture by Nutrient Starvation and the Addition of Residues of Whey Protein Concentrate. Bioresour. Technol. 2016, 209, 133–141. [Google Scholar] [CrossRef]
- Lupatini, A.L.; Colla, L.M.; Canan, C.; Colla, E. Potential Application of Microalga Spirulina Platensis as a Protein Source. J. Sci. Food Agric. 2017, 97, 724–732. [Google Scholar] [CrossRef]
- Sinetova, M.A.; Kupriyanova, E.V.; Los, D.A. Spirulina/Arthrospira/Limnospira—Three Names of the Single Organism. Foods 2024, 13, 2762. [Google Scholar] [CrossRef] [PubMed]
- Koyande, A.K.; Chew, K.W.; Rambabu, K.; Tao, Y.; Chu, D.-T.; Show, P.-L. Microalgae: A Potential Alternative to Health Supplementation for Humans. Food Sci. Hum. Wellness 2019, 8, 16–24. [Google Scholar] [CrossRef]
- Marinov, I.; Doney, S.C.; Lima, I.D. Response of Ocean Phytoplankton Community Structure to Climate Change over the 21st Century: Partitioning the Effects of Nutrients, Temperature and Light. Biogeosciences 2010, 7, 3941–3959. [Google Scholar] [CrossRef]
- Rost, B.; Riebesell, U.; Burkhardt, S.; Sültemeyer, D. Carbon Acquisition of Bloom-forming Marine Phytoplankton. Limnol. Oceanogr. 2003, 48, 55–67. [Google Scholar] [CrossRef]
- Sedjati, S.; Santosa, G.; Yudiati, E.; Supriyantini, E.; Ridlo, A.; Kimberly, F. Chlorophyll and Carotenoid Content of Dunaliella salina at Various Salinity Stress and Harvesting Time. IOP Conf. Ser. Earth Environ. Sci. 2019, 246, 012025. [Google Scholar] [CrossRef]
- Jerez, C.; Navarro, E.; Malpartida, I.; Rico, R.; Masojídek, J.; Abdala, R.; Figueroa, F. Hydrodynamics and Photosynthesis Performance of Chlorella Fusca (Chlorophyta) Grown in a Thin-Layer Cascade (TLC) System. Aquat. Biol. 2014, 22, 111–122. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, K.; Riebesell, U. CO2-Induced Seawater Acidification Affects Physiological Performance of the Marine Diatom Phaeodactylum tricornutum. Biogeosciences 2010, 7, 2915–2923. [Google Scholar] [CrossRef]
- Preetha, K.; John, L.; Subin, C.S.; Vijayan, K.K. Phenotypic and Genetic Characterization of Dunaliella (Chlorophyta) from Indian Salinas and Their Diversity. Aquat. Biosyst. 2012, 8, 27. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Kamberovic, F.; Uota, S.T.; Kovan, I.-M.; Viegas, C.S.B.; Simes, D.C.; Gangadhar, K.N.; Varela, J.; Barreira, L. Microalgae as Potential Sources of Bioactive Compounds for Functional Foods and Pharmaceuticals. Appl. Sci. 2022, 12, 5877. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sahoo, P.K.; Singhal, S.; Patel, A. Impact of Various Media and Organic Carbon Sources on Biofuel Production Potential from Chlorella Spp. 3 Biotech. 2016, 6, 116. [Google Scholar] [CrossRef]
- Huang, Y.; Qin, S.; Zhang, D.; Li, L.; Mu, Y. Evaluation of Cell Disruption of Chlorella vulgaris by Pressure-Assisted Ozonation and Ultrasonication. Energies 2016, 9, 173. [Google Scholar] [CrossRef]
- Vaičiulytė, S.; Padovani, G.; Kostkevičienė, J.; Carlozzi, P. Batch Growth of Chlorella Vulgaris CCALA 896 versus Semi-Continuous Regimen for Enhancing Oil-Rich Biomass Productivity. Energies 2014, 7, 3840–3857. [Google Scholar] [CrossRef]
- Grauvogel, C.; Brinkmann, H.; Petersen, J. Evolution of the Glucose-6-Phosphate Isomerase: The Plasticity of Primary Metabolism in Photosynthetic Eukaryotes. Mol. Biol. Evol. 2007, 24, 1611–1621. [Google Scholar] [CrossRef]
- Barbier, G.; Oesterhelt, C.; Larson, M.D.; Halgren, R.G.; Wilkerson, C.; Garavito, R.M.; Benning, C.; Weber, A.P.M. Comparative Genomics of Two Closely Related Unicellular Thermo-Acidophilic Red Algae, Galdieria Sulphuraria and Cyanidioschyzon Merolae, Reveals the Molecular Basis of the Metabolic Flexibility of Galdieria Sulphuraria and Significant Differences in Carbohydrate Metabolism of Both Algae. Plant Physiol. 2005, 137, 460–474. [Google Scholar] [CrossRef]
- Schilling, S.; Oesterhelt, C. Structurally Reduced Monosaccharide Transporters in an Evolutionarily Conserved Red Alga. Biochem. J. 2007, 406, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Oesterhelt, C.; Schnarrenberger, C.; Gross, W. Characterization of a Sugar/Polyol Uptake System in the Red Alga Galdieria Sulphuraria. Eur. J. Phycol. 1999, 34, 271–277. [Google Scholar] [CrossRef]
- Gross, W.; Schnarrenberger, C. Heterotrophic Growth of Two Strains of the Acido-Thermophilic Red Alga Galdieria Sulphuraria. Plant Cell Physiol. 1995, 36, 633–638. [Google Scholar] [CrossRef]
- Haass, D.; Tanner, W. Regulation of Hexose Transport in Chlorella Vulgaris: Characteristics of Induction and Turnover. Plant Physiol. 1974, 53, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Sauer, N. Hexose-Transport-Deficient Mutants of Chlorella Vulgaris: Lack of Transport Activity Correlates with Absence of Inducible Proteins. Planta 1986, 168, 139–144. [Google Scholar] [CrossRef] [PubMed]
- De-Bashan, L.E.; Antoun, H.; Bashan, Y. Cultivation Factors and Population Size Control the Uptake of Nitrogen by the Microalgae Chlorella Vulgaris When Interacting with the Microalgae Growth-Promoting Bacterium Azospirillum Brasilense. FEMS Microbiol. Ecol. 2005, 54, 197–203. [Google Scholar] [CrossRef] [PubMed]
- de-Bashan, L.E.; Bashan, Y.; Moreno, M.; Lebsky, V.K.; Bustillos, J.J. Increased Pigment and Lipid Content, Lipid Variety, and Cell and Population Size of the Microalgae Chlorella Spp. When Co-Immobilized in Alginate Beads with the Microalgae-Growth-Promoting Bacterium Azospirillum Brasilense. Can. J. Microbiol. 2002, 48, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Cerón Garcí, M.C.; Fernández Sevilla, J.M.; Acién Fernández, F.G.; Molina Grima, E.; García Camacho, F. Mixotrophic Growth of Phaeodactylum Tricornutum on Glycerol: Growth Rate and Fatty Acid Profile. J. Appl. Phycol. 2000, 12, 239–248. [Google Scholar] [CrossRef]
- Lewitus, A.; Caron, D. Relative Effects of Nitrogen or Phosphorus Depletion and Light Intensity on the Pigmentation, Chemical Composition, and Volume of Pyrenomonas Salina (Cryptophyceae). Mar. Ecol. Prog. Ser. 1990, 61, 171–181. [Google Scholar] [CrossRef]
- Fujise, L.; Nitschke, M.R.; Frommlet, J.C.; Serôdio, J.; Woodcock, S.; Ralph, P.J.; Suggett, D.J. Cell Cycle Dynamics of Cultured Coral Endosymbiotic Microalgae (Symbiodinium) Across Different Types (Species) Under Alternate Light and Temperature Conditions. J. Eukaryot. Microbiol. 2018, 65, 505–517. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, I.; Cunha, C.; Kaufmann, M.; Faria, M.; Cordeiro, N. Microplastics Reduce Microalgal Biomass by Decreasing Single-Cell Weight: The Barrier towards Implementation at Scale. Sci. Total Environ. 2023, 877, 162950. [Google Scholar] [CrossRef] [PubMed]
- Rindi, F.; McIvor, L.; Sherwood, A.R.; Friedl, T.; Guiry, M.D.; Sheath, R.G. Molecular phylogeny of the green algal order prasiolales (trebouxiophyceae, chlorophyta). J. Phycol. 2007, 43, 811–822. [Google Scholar] [CrossRef]
- Neofotis, P.; Huang, A.; Sury, K.; Chang, W.; Joseph, F.; Gabr, A.; Twary, S.; Qiu, W.; Holguin, O.; Polle, J.E.W. Characterization and Classification of Highly Productive Microalgae Strains Discovered for Biofuel and Bioproduct Generation. Algal Res. 2016, 15, 164–178. [Google Scholar] [CrossRef]
- Masojídek, J.; Ranglová, K.; Lakatos, G.E.; Silva Benavides, A.M.; Torzillo, G. Variables Governing Photosynthesis and Growth in Microalgae Mass Cultures. Processes 2021, 9, 820. [Google Scholar] [CrossRef]
- Rubio, F.C.; Camacho, F.G.; Sevilla, J.M.F.; Chisti, Y.; Grima, E.M. A Mechanistic Model of Photosynthesis in Microalgae. Biotechol. Bioeng. 2003, 81, 459–473. [Google Scholar] [CrossRef]
- Beardall, J.; Raven, J.A. Carbon Acquisition by Microalgae. In The Physiology of Microalgae; Borowitzka, M.A., Beardall, J., Raven, J.A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 89–99. ISBN 978-3-319-24943-8. [Google Scholar]
- Richmond, A. Microalgal Biotechnology at the Turn of the Millennium: A Personal View. J. Appl. Phycol. 2000, 12, 441–451. [Google Scholar] [CrossRef]
- ElMekawy, A.; Hegab, H.M.; Vanbroekhoven, K.; Pant, D. Techno-Productive Potential of Photosynthetic Microbial Fuel Cells through Different Configurations. Renew. Sustain. Energy Rev. 2014, 39, 617–627. [Google Scholar] [CrossRef]
- Ali, S.; Paul Peter, A.; Chew, K.W.; Munawaroh, H.S.H.; Show, P.L. Resource Recovery from Industrial Effluents through the Cultivation of Microalgae: A Review. Bioresour. Technol. 2021, 337, 125461. [Google Scholar] [CrossRef]
- Rosso, L.; Lobry, J.R.; Bajard, S.; Flandrois, J.P. Convenient Model To Describe the Combined Effects of Temperature and pH on Microbial Growth. Appl. Environ. Microbiol. 1995, 61, 610–616. [Google Scholar] [CrossRef]
- Häder, D.-P.; Gao, K. Interactions of Anthropogenic Stress Factors on Marine Phytoplankton. Front. Environ. Sci. 2015, 3, 14. [Google Scholar] [CrossRef]
- Giordano, M.; Beardall, J.; Raven, J.A. CO2 CONCENTRATING MECHANISMS IN ALGAE: Mechanisms, Environmental Modulation, and Evolution. Annu. Rev. Plant Biol. 2005, 56, 99–131. [Google Scholar] [CrossRef]
- Gao, K.; Helbling, E.; Häder, D.; Hutchins, D. Responses of Marine Primary Producers to Interactions between Ocean Acidification, Solar Radiation, and Warming. Mar. Ecol. Prog. Ser. 2012, 470, 167–189. [Google Scholar] [CrossRef]
- Del Campo, J. Carotenoid Content of Chlorophycean Microalgae: Factors Determining Lutein Accumulation in Muriellopsis Sp. (Chlorophyta). J. Biotechnol. 2000, 76, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Shi, Q.; Xu, Z.; Xu, J.; Campbell, D.A.; Wu, H. Global Warming Interacts with Ocean Acidification to Alter PSII Function and Protection in the Diatom Thalassiosira Weissflogii. Environ. Exp. Bot. 2018, 147, 95–103. [Google Scholar] [CrossRef]
- Khanna, P.; Kaur, A.; Goyal, D. Algae-Based Metallic Nanoparticles: Synthesis, Characterization and Applications. J. Microbiol. Methods 2019, 163, 105656. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, H.; Chen, Z.-S.; Chen, G. Biosynthesis of Nanoparticles by Microorganisms and Their Applications. J. Nanomater. 2011, 2011, 270974. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, H.; Song, Y.; Huang, H.; Shao, M.; Liu, Y.; Li, H.; Kang, Z. Pristine Carbon Dots Boost the Growth of Chlorella Vulgaris by Enhancing Photosynthesis. ACS Appl. Bio Mater. 2018, 1, 894–902. [Google Scholar] [CrossRef]
- Giraldo, J.P.; Landry, M.P.; Faltermeier, S.M.; McNicholas, T.P.; Iverson, N.M.; Boghossian, A.A.; Reuel, N.F.; Hilmer, A.J.; Sen, F.; Brew, J.A.; et al. Correction: Corrigendum: Plant Nanobionics Approach to Augment Photosynthesis and Biochemical Sensing. Nat. Mater. 2014, 13, 530. [Google Scholar] [CrossRef]
- Gualtieri, P.; Barsanti, L. Algae: Anatomy, Biochemistry, and Biotechnology, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2022; ISBN 978-1-00-318770-7. [Google Scholar]
- Queiroz, M.I.; Vieira, J.G.; Maroneze, M.M. Morphophysiological, Structural, and Metabolic Aspects of Microalgae. In Handbook of Microalgae-Based Processes and Products; Elsevier: Amsterdam, The Netherlands, 2020; pp. 25–48. ISBN 978-0-12-818536-0. [Google Scholar]
- Oren, A. A Century of Dunaliella Research: 1905–2005. In Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya; Gunde-Cimerman, N., Oren, A., Plemenitaš, A., Eds.; Cellular Origin, Life in Extreme Habitats and Astrobiology; Springer: Berlin/Heidelberg, Germany, 2005; Volume 9, pp. 491–502. ISBN 978-1-4020-3632-3. [Google Scholar]
- Cowan, A.K.; Rose, P.D.; Horne, L.G. Dunaliella Salina: A Model System for Studying the Response of Plant Cells to Stress. J. Exp. Bot. 1992, 43, 1535–1547. [Google Scholar] [CrossRef]
- Guiry, M.D. How many species of algae are there? J. Phycol. 2012, 48, 1057–1063. [Google Scholar] [CrossRef]
- Safi, C.; Zebib, B.; Merah, O.; Pontalier, P.-Y.; Vaca-Garcia, C. Morphology, Composition, Production, Processing and Applications of Chlorella Vulgaris: A Review. Renew. Sustain. Energy Rev. 2014, 35, 265–278. [Google Scholar] [CrossRef]
- Andersen, J. Forord. NTIK 2013, 2, 3. [Google Scholar] [CrossRef]
- Zaslavskaia, L.A.; Lippmeier, J.C.; Shih, C.; Ehrhardt, D.; Grossman, A.R.; Apt, K.E. Trophic Conversion of an Obligate Photoautotrophic Organism Through Metabolic Engineering. Science 2001, 292, 2073–2075. [Google Scholar] [CrossRef]
- Lee, Y. Algal Nutrition—Heterotrophic Carbon Nutrition. In Handbook of Microalgal Culture; Richmond, A., Ed.; Wiley: Hoboken, NJ, USA, 2003; pp. 116–124. ISBN 978-0-632-05953-9. [Google Scholar]
- Morales-Sánchez, D.; Tinoco-Valencia, R.; Kyndt, J.; Martinez, A. Heterotrophic Growth of Neochloris Oleoabundans Using Glucose as a Carbon Source. Biotechnol. Biofuels 2013, 6, 100. [Google Scholar] [CrossRef] [PubMed]
- Deak, T. On the Existence of H+-Symport in Yeasts: A Comparative Study. Arch. Microbiol. 1978, 116, 205–211. [Google Scholar] [CrossRef]
- Santo-Domingo, J.; Galindo, A.N.; Cominetti, O.; De Marchi, U.; Cutillas, P.; Dayon, L.; Wiederkehr, A. Glucose-Dependent Phosphorylation Signaling Pathways and Crosstalk to Mitochondrial Respiration in Insulin Secreting Cells. Cell Commun. Signal. 2019, 17, 14. [Google Scholar] [CrossRef]
- Neilson, A.H.; Lewin, R.A. The Uptake and Utilization of Organic Carbon by Algae: An Essay in Comparative Biochemistry. Phycologia 1974, 13, 227–264. [Google Scholar] [CrossRef]
- Syrett, P.J.; Merrett, M.J.; Bocks, S.M. Enzymes of the Glyoxylate Cycle in Chlorella vulgaris. J. Exp. Bot. 1963, 14, 249–264. [Google Scholar] [CrossRef]
- Marsh, H.V.; Galmiche, J.M.; Gibbs, M. Effect of Light on the Tricarboxylic Acid Cycle in Scenedesmus. Plant Physiol. 1965, 40, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Lopez, D.; Casero, D.; Cokus, S.J.; Merchant, S.S.; Pellegrini, M. Algal Functional Annotation Tool: A Web-Based Analysis Suite to Functionally Interpret Large Gene Lists Using Integrated Annotation and Expression Data. BMC Bioinform. 2011, 12, 282. [Google Scholar] [CrossRef] [PubMed]
- Merchant, S.S.; Prochnik, S.E.; Vallon, O.; Harris, E.H.; Karpowicz, S.J.; Witman, G.B.; Terry, A.; Salamov, A.; Fritz-Laylin, L.K.; Maréchal-Drouard, L.; et al. The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions. Science 2007, 318, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Palenik, B.; Grimwood, J.; Aerts, A.; Rouzé, P.; Salamov, A.; Putnam, N.; Dupont, C.; Jorgensen, R.; Derelle, E.; Rombauts, S.; et al. The Tiny Eukaryote Ostreococcus Provides Genomic Insights into the Paradox of Plankton Speciation. Proc. Natl. Acad. Sci. USA 2007, 104, 7705–7710. [Google Scholar] [CrossRef]
- Radakovits, R.; Jinkerson, R.E.; Fuerstenberg, S.I.; Tae, H.; Settlage, R.E.; Boore, J.L.; Posewitz, M.C. Draft Genome Sequence and Genetic Transformation of the Oleaginous Alga Nannochloropsis Gaditana. Nat. Commun. 2012, 3, 686. [Google Scholar] [CrossRef]
- Blanc, G.; Duncan, G.; Agarkova, I.; Borodovsky, M.; Gurnon, J.; Kuo, A.; Lindquist, E.; Lucas, S.; Pangilinan, J.; Polle, J.; et al. The Chlorella Variabilis NC64A Genome Reveals Adaptation to Photosymbiosis, Coevolution with Viruses, and Cryptic Sex. Plant Cell 2010, 22, 2943–2955. [Google Scholar] [CrossRef]
- Archibald, J.M.; Keeling, P.J. Recycled Plastids: A ‘Green Movement’ in Eukaryotic Evolution. Trends Genet. 2002, 18, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Giroud, C.; Gerber, A.; Eichenberger, W. Lipids of Chlamydomonas Reinhardtii. Analysis of Molecular Species and Intracellular Site(s) of Biosynthesis. Plant Cell Physiol. 1988, 29, 587–595. [Google Scholar] [CrossRef]
- Vieler, A.; Brubaker, S.B.; Vick, B.; Benning, C. A Lipid Droplet Protein of Nannochloropsis with Functions Partially Analogous to Plant Oleosins. Plant Physiol. 2012, 158, 1562–1569. [Google Scholar] [CrossRef]
- Fan, J.; Andre, C.; Xu, C. A Chloroplast Pathway for the de Novo Biosynthesis of Triacylglycerol in Chlamydomonas Reinhardtii. FEBS Lett. 2011, 585, 1985–1991. [Google Scholar] [CrossRef] [PubMed]
- Fuhrmann, M. Expanding the Molecular Toolkit for Chlamydomonas Reinhardtii—From History to New Frontiers. Protist 2002, 153, 357–364. [Google Scholar] [CrossRef]
- Castruita, M.; Casero, D.; Karpowicz, S.J.; Kropat, J.; Vieler, A.; Hsieh, S.I.; Yan, W.; Cokus, S.; Loo, J.A.; Benning, C.; et al. Systems Biology Approach in Chlamydomonas Reveals Connections between Copper Nutrition and Multiple Metabolic Steps. Plant Cell 2011, 23, 1273–1292. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Si, Y.; Douglass, S.; Casero, D.; Merchant, S.S.; Pellegrini, M.; Ladunga, I.; Liu, P.; Spalding, M.H. Transcriptome-Wide Changes in Chlamydomonas Reinhardtii Gene Expression Regulated by Carbon Dioxide and the CO 2 -Concentrating Mechanism Regulator CIA5/CCM1. Plant Cell 2012, 24, 1876–1893. [Google Scholar] [CrossRef]
- Zäuner, S.; Jochum, W.; Bigorowski, T.; Benning, C. A Cytochrome b5 -Containing Plastid-Located Fatty Acid Desaturase from Chlamydomonas Reinhardtii. Eukaryot. Cell 2012, 11, 856–863. [Google Scholar] [CrossRef]
- Miller, R.; Wu, G.; Deshpande, R.R.; Vieler, A.; Gärtner, K.; Li, X.; Moellering, E.R.; Zäuner, S.; Cornish, A.J.; Liu, B.; et al. Changes in Transcript Abundance in Chlamydomonas Reinhardtii Following Nitrogen Deprivation Predict Diversion of Metabolism. Plant Physiol. 2010, 154, 1737–1752. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Yan, C.; Andre, C.; Shanklin, J.; Schwender, J.; Xu, C. Oil Accumulation Is Controlled by Carbon Precursor Supply for Fatty Acid Synthesis in Chlamydomonas Reinhardtii. Plant Cell Physiol. 2012, 53, 1380–1390. [Google Scholar] [CrossRef] [PubMed]
- Vuppaladadiyam, A.K.; Prinsen, P.; Raheem, A.; Luque, R.; Zhao, M. Microalgae Cultivation and Metabolites Production: A Comprehensive Review. Biofuels Bioprod. Bioref. 2018, 12, 304–324. [Google Scholar] [CrossRef]
- Abdul, Q.A.; Choi, R.J.; Jung, H.A.; Choi, J.S. Health Benefit of Fucosterol from Marine Algae: A Review. J. Sci. Food Agric. 2016, 96, 1856–1866. [Google Scholar] [CrossRef] [PubMed]
- Martin-Creuzburg, D.; Merkel, P. Sterols of Freshwater Microalgae: Potential Implications for Zooplankton Nutrition. J. Plankton Res. 2016, 38, 865–877. [Google Scholar] [CrossRef]
- Adarme-Vega, T.C.; Lim, D.K.Y.; Timmins, M.; Vernen, F.; Li, Y.; Schenk, P.M. Microalgal Biofactories: A Promising Approach towards Sustainable Omega-3 Fatty Acid Production. Microb. Cell Factories 2012, 11, 96. [Google Scholar] [CrossRef]
- Del Campo, J.A.; García-González, M.; Guerrero, M.G. Outdoor Cultivation of Microalgae for Carotenoid Production: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2007, 74, 1163–1174. [Google Scholar] [CrossRef]
- Pulz, O.; Gross, W. Valuable Products from Biotechnology of Microalgae. Appl. Microbiol. Biotechnol. 2004, 65, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Cohen, Z. The Production Potential of Eicosapentaenoic and Arachidonic Acids by the Red Alga Porphyridium Cruentum. J. Am. Oil Chem. Soc. 1990, 67, 916–920. [Google Scholar] [CrossRef]
- Ip, P.-F.; Chen, F. Production of Astaxanthin by the Green Microalga Chlorella Zofingiensis in the Dark. Process Biochem. 2005, 40, 733–738. [Google Scholar] [CrossRef]
- Sloth, J.K.; Wiebe, M.G.; Eriksen, N.T. Accumulation of Phycocyanin in Heterotrophic and Mixotrophic Cultures of the Acidophilic Red Alga Galdieria Sulphuraria. Enzym. Microb. Technol. 2006, 38, 168–175. [Google Scholar] [CrossRef]
- Schmidt, R.A.; Wiebe, M.G.; Eriksen, N.T. Heterotrophic High Cell-density Fed-batch Cultures of the Phycocyanin-producing Red Alga Galdieria Sulphuraria. Biotech. Bioeng. 2005, 90, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Lien, T.; Knutsen, G. Synchronous growth of Chlamydomonas reinhardtii (chlorophyceae): A review of optimal conditions. J. Phycol. 1979, 15, 191–200. [Google Scholar] [CrossRef]
- Flechtner, V.R. North American Desert Microbiotic Soil Crust Communities. In Algae and Cyanobacteria in Extreme Environments; Seckbach, J., Ed.; Cellular Origin, Life in Extreme Habitats and Astrobiology; Springer: Dordrecht, The Netherlands, 2007; Volume 11, pp. 537–551. ISBN 978-1-4020-6111-0. [Google Scholar]
- Lewis, L.A.; Flechtner, V.R. Green Algae (Chlorophyta) of Desert Microbiotic Crusts: Diversity of North American Taxa. Taxon 2002, 51, 443. [Google Scholar] [CrossRef]
- Sharma, N.K.; Rai, A.K.; Singh, S.; Brown, R.M. Airborne algae: Their present status and relevance. J. Phycol. 2007, 43, 615–627. [Google Scholar] [CrossRef]
- Broady, P.A. Diversity, Distribution and Dispersal of Antarctic Terrestrial Algae. Biodivers. Conserv. 1996, 5, 1307–1335. [Google Scholar] [CrossRef]
- Radmer, R.J. Algal Diversity and Commercial Algal Products. BioScience 1996, 46, 263–270. [Google Scholar] [CrossRef]
- Heimann, K.; Huerlimann, R. Microalgal Classification. In Handbook of Marine Microalgae; Elsevier: Amsterdam, The Netherlands, 2015; pp. 25–41. ISBN 978-0-12-800776-1. [Google Scholar]
- Woese, C.R.; Fox, G.E. Phylogenetic Structure of the Prokaryotic Domain: The Primary Kingdoms. Proc. Natl. Acad. Sci. USA 1977, 74, 5088–5090. [Google Scholar] [CrossRef]
- Woese, C.R.; Kandler, O.; Wheelis, M.L. Towards a Natural System of Organisms: Proposal for the Domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 1990, 87, 4576–4579. [Google Scholar] [CrossRef]
- Cavalier-Smith, T. Kingdom Protozoa and Its 18 Phyla. Microbiol. Rev. 1993, 57, 953–994. [Google Scholar] [CrossRef] [PubMed]
- Maneveldt, G.W.; Keats, D.W. Chromista. In Encyclopedia of Life Sciences; Wiley: Hoboken, NJ, USA, 2003; ISBN 978-0-470-01617-6. [Google Scholar]
- Cavalier-Smith, T. Kingdoms Protozoa and Chromista and the Eozoan Root of the Eukaryotic Tree. Biol. Lett. 2010, 6, 342–345. [Google Scholar] [CrossRef]
- Weiss, T.L.; Roth, R.; Goodson, C.; Vitha, S.; Black, I.; Azadi, P.; Rusch, J.; Holzenburg, A.; Devarenne, T.P.; Goodenough, U. Colony Organization in the Green Alga Botryococcus Braunii (Race B) Is Specified by a Complex Extracellular Matrix. Eukaryot. Cell 2012, 11, 1424–1440. [Google Scholar] [CrossRef]
- Gantt, E.; Conti, S.F. The ultrastructure of Porphyridium cruentum. J. Cell Biol. 1965, 26, 365–381. [Google Scholar] [CrossRef] [PubMed]
- Edvardsen, B.; Eikrem, W.; Green, J.C.; Andersen, R.A.; Moon-van Der Staay, S.Y.; Medlin, L.K. Phylogenetic Reconstructions of the Haptophyta Inferred from 18S Ribosomal DNA Sequences and Available Morphological Data. Phycologia 2000, 39, 19–35. [Google Scholar] [CrossRef]
- Bendif, E.M.; Probert, I.; Schroeder, D.C.; De Vargas, C. On the Description of Tisochrysis Lutea Gen. Nov. Sp. Nov. and Isochrysis Nuda Sp. Nov. in the Isochrysidales, and the Transfer of Dicrateria to the Prymnesiales (Haptophyta). J. Appl. Phycol. 2013, 25, 1763–1776. [Google Scholar] [CrossRef]
- Armbrust, E.V.; Berges, J.A.; Bowler, C.; Green, B.R.; Martinez, D.; Putnam, N.H.; Zhou, S.; Allen, A.E.; Apt, K.E.; Bechner, M.; et al. The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism. Science 2004, 306, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Sarno, D.; Kooistra, W.H.C.F.; Medlin, L.K.; Percopo, I.; Zingone, A. Diversity in the genus skeletonema (bacillariophyceae). Ii. An assessment of the taxonomy of S. Costatum-like species with the description of four new species. J. Phycol. 2005, 41, 151–176. [Google Scholar] [CrossRef]
- Prabowo, D.A.; Hiraishi, O.; Suda, S. Diversity of Crypthecodinium spp. (Dinophyceae) from Okinawa Prefecture, Japan. J. Mar. Sci. Technol. 2013, 21, 23. [Google Scholar] [CrossRef]
- Matsui, M.S.; Muizzuddin, N.; Arad, S.; Marenus, K. Sulfated Polysaccharides from Red Microalgae Have Antiinflammatory Properties In Vitro and In Vivo. Appl. Biochem. Biotechnol. 2003, 104, 13–22. [Google Scholar] [CrossRef]
- Araya, M.; García, S.; Rengel, J.; Pizarro, S.; Álvarez, G. Determination of Free and Protein Amino Acid Content in Microalgae by HPLC-DAD with Pre-Column Derivatization and Pressure Hydrolysis. Mar. Chem. 2021, 234, 103999. [Google Scholar] [CrossRef]
- Waghmare, A.G.; Salve, M.K.; LeBlanc, J.G.; Arya, S.S. Concentration and Characterization of Microalgae Proteins from Chlorella Pyrenoidosa. Bioresour. Bioprocess. 2016, 3, 16. [Google Scholar] [CrossRef]
- Soletto, D.; Binaghi, L.; Lodi, A.; Carvalho, J.C.M.; Converti, A. Batch and Fed-Batch Cultivations of Spirulina Platensis Using Ammonium Sulphate and Urea as Nitrogen Sources. Aquaculture 2005, 243, 217–224. [Google Scholar] [CrossRef]
- Wang, Y.; Tibbetts, S.; McGinn, P. Microalgae as Sources of High-Quality Protein for Human Food and Protein Supplements. Foods 2021, 10, 3002. [Google Scholar] [CrossRef] [PubMed]
- Markou, G.; Angelidaki, I.; Georgakakis, D. Microalgal Carbohydrates: An Overview of the Factors Influencing Carbohydrates Production, and of Main Bioconversion Technologies for Production of Biofuels. Appl. Microbiol. Biotechnol. 2012, 96, 631–645. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M.; Seibert, M.; Darzins, A. Microalgal Triacylglycerols as Feedstocks for Biofuel Production: Perspectives and Advances. Plant J. 2008, 54, 621–639. [Google Scholar] [CrossRef] [PubMed]
- Maltsev, Y.; Maltseva, K.; Kulikovskiy, M.; Maltseva, S. Influence of Light Conditions on Microalgae Growth and Content of Lipids, Carotenoids, and Fatty Acid Composition. Biology 2021, 10, 1060. [Google Scholar] [CrossRef] [PubMed]
- Becker, W. Microalgae in Human and Animal Nutrition. In Handbook of Microalgal Culture; Richmond, A., Ed.; Wiley: Hoboken, NJ, USA, 2003; pp. 312–351. ISBN 978-0-632-05953-9. [Google Scholar]
- Jeszka-Skowron, M.; Zgoła-Grześkowiak, A. Analysis of Antioxidant Activity, Chlorogenic Acid, and Rutin Content of Camellia Sinensis Infusions Using Response Surface Methodology Optimization. Food Anal. Methods 2014, 7, 2033–2041. [Google Scholar] [CrossRef]
- Hmid, I.; Elothmani, D.; Hanine, H.; Oukabli, A.; Mehinagic, E. Comparative Study of Phenolic Compounds and Their Antioxidant Attributes of Eighteen Pomegranate (Punica granatum L.) Cultivars Grown in Morocco. Arab. J. Chem. 2017, 10, S2675–S2684. [Google Scholar] [CrossRef]
- Victor, P.; Camarena-Bernard, C. Lutein, Violaxanthin, and Zeaxanthin Spectrophotometric Quantification: A Machine Learning Approach. J. Appl. Phycol. 2023, 35, 73–84. [Google Scholar] [CrossRef]
- Pignolet, O.; Jubeau, S.; Vaca-Garcia, C.; Michaud, P. Highly Valuable Microalgae: Biochemical and Topological Aspects. J. Ind. Microbiol. Biotechnol. 2013, 40, 781–796. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tang, X.; Kapoore, R.V.; Xu, C.; Vaidyanathan, S. Influence of Nutrient Status on the Accumulation of Biomass and Lipid in Nannochloropsis Salina and Dunaliella Salina. Energy Convers. Manag. 2015, 106, 61–72. [Google Scholar] [CrossRef]
- Mularczyk, M.; Michalak, I.; Marycz, K. Astaxanthin and Other Nutrients from Haematococcus Pluvialis—Multifunctional Applications. Mar. Drugs 2020, 18, 459. [Google Scholar] [CrossRef] [PubMed]
- Sui, Y.; Harvey, P.J. Effect of Light Intensity and Wavelength on Biomass Growth and Protein and Amino Acid Composition of Dunaliella Salina. Foods 2021, 10, 1018. [Google Scholar] [CrossRef]
- Pratiwi, D.Y. A Mini Review-Effect of Dunaliella Salina on Growth and Health of Shrimps. Int. J. Fish. Aquat. Stud. 2020, 8, 317–319. [Google Scholar]
- Colusse, G.A.; Mendes, C.R.B.; Duarte, M.E.R.; Carvalho, J.C.D.; Noseda, M.D. Effects of Different Culture Media on Physiological Features and Laboratory Scale Production Cost of Dunaliella Salina. Biotechnol. Rep. 2020, 27, e00508. [Google Scholar] [CrossRef]
- Lafarga, T.; Rodríguez-Bermúdez, R.; Morillas-España, A.; Villaró, S.; García-Vaquero, M.; Morán, L.; Sánchez-Zurano, A.; González-López, C.V.; Acién-Fernández, F.G. Consumer Knowledge and Attitudes towards Microalgae as Food: The Case of Spain. Algal Res. 2021, 54, 102174. [Google Scholar] [CrossRef]
- Hussein, A.; Ibrahim, G.; Kamil, M.; El-Shamarka, M.; Mostafa, S.; Mohamed, D. Spirulina-Enriched Pasta as Functional Food Rich in Protein and Antioxidant. Biointerface Res. Appl. Chem. 2021, 11, 14736–14750. [Google Scholar] [CrossRef]
- Basuny, A.; AbdelAziz, K.; Bikheet, M.; Shaban, M.; AboelAnin, M. Enhancing The Nutritional Value and Chemical Composition of Functional Yogurt Drink by Adding Bee Honey and Spirulina Powder. J. Agric. Chem. Biotechnol. 2023, 14, 23–30. [Google Scholar] [CrossRef]
- Tavşanlı, N.; Yıldız, S.; Çalışkan, M.; Aydin, S. Evaluating the Potential Effect of Microalgae on Soymilk Vegan Kefir in Terms of Physical, Chemical, Microbiological Properties. Algal Res. 2024, 82, 103630. [Google Scholar] [CrossRef]
- Kazemeini, H.; Azizian, A.; Ahmadi, K. Preparation of Synbiotic Yogurt Sauce Containing Spirulina platensis Microalgae Extract and Its Effect on the Viability of Lactobacillus acidophilus. BioMed Res. Int. 2023, 2023, 8434865. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Faresin, L.; Devos, R.J.B.; Reinehr, C.O.; Colla, L.M. Development of Ice Cream with Reduction of Sugar and Fat by the Addition of Inulin, Spirulina Platensis or Phycocyanin. Int. J. Gastron. Food Sci. 2022, 27, 100445. [Google Scholar] [CrossRef]
- Qazi, W.M.; Ballance, S.; Uhlen, A.K.; Kousoulaki, K.; Haugen, J.-E.; Rieder, A. Protein Enrichment of Wheat Bread with the Marine Green Microalgae Tetraselmis Chuii—Impact on Dough Rheology and Bread Quality. LWT 2021, 143, 111115. [Google Scholar] [CrossRef]
- Khemiri, S.; Khelifi, N.; Nunes, M.C.; Ferreira, A.; Gouveia, L.; Smaali, I.; Raymundo, A. Microalgae Biomass as an Additional Ingredient of Gluten-Free Bread: Dough Rheology, Texture Quality and Nutritional Properties. Algal Res. 2020, 50, 101998. [Google Scholar] [CrossRef]
- Coşkun, N.; Sarıtaş, S.; Jaouhari, Y.; Bordiga, M.; Karav, S. The Impact of Freeze Drying on Bioactivity and Physical Properties of Food Products. Appl. Sci. 2024, 14, 9183. [Google Scholar] [CrossRef]
- Su, M.; Bastiaens, L.; Verspreet, J.; Hayes, M. Applications of Microalgae in Foods, Pharma and Feeds and Their Use as Fertilizers and Biostimulants: Legislation and Regulatory Aspects for Consideration. Foods 2023, 12, 3878. [Google Scholar] [CrossRef]
- Borowitzka, M.A. High-Value Products from Microalgae—Their Development and Commercialisation. J. Appl. Phycol. 2013, 25, 743–756. [Google Scholar] [CrossRef]
- Muslu, M.; Gökçay, G.F. Sağlığın Desteklenmesi ve Sürdürülebilir Beslenme Için Alternatif Bir Kaynak: Alg (Yosunlar). Bandırma Onyedi Eylül Üniversitesi Sağlık Bilim. Ve Araştırmaları Derg. 2020, 2, 221–237. [Google Scholar] [CrossRef]
- Ampofo, J.; Abbey, L. Microalgae: Bioactive Composition, Health Benefits, Safety and Prospects as Potential High-Value Ingredients for the Functional Food Industry. Foods 2022, 11, 1744. [Google Scholar] [CrossRef]
- Orzuna-Orzuna, J.F.; Godina-Rodríguez, J.E.; Garay-Martínez, J.R.; Reséndiz-González, G.; Joaquín-Cancino, S.; Lara-Bueno, A. Milk Yield, Composition, and Fatty Acid Profile in Milk of Dairy Cows Supplemented with Microalgae Schizochytrium Sp.: A Meta-Analysis. Agriculture 2024, 14, 1119. [Google Scholar] [CrossRef]
- Wang, C.; Onyeaka, H.; Miri, T.; Soltani, F. Chlorella Vulgaris as a Food Substitute: Applications and Benefits in the Food Industry. J. Food Sci. 2024, 89, 8231–8247. [Google Scholar] [CrossRef]
- García-Maldonado, E.; Alcorta, A.; Zapatera, B.; Vaquero, M.P. Changes in Fatty Acid Levels after Consumption of a Novel Docosahexaenoic Supplement from Algae: A Crossover Randomized Controlled Trial in Omnivorous, Lacto-Ovo Vegetarians and Vegans. Eur. J. Nutr. 2023, 62, 1691–1705. [Google Scholar] [CrossRef]
- Park, S.; Kim, K.J.; Jo, S.M.; Jeon, J.-Y.; Kim, B.-R.; Hwang, J.E.; Kim, J.Y. Euglena Gracilis (Euglena) Powder Supplementation Enhanced Immune Function through Natural Killer Cell Activity in Apparently Healthy Participants: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutr. Res. 2023, 119, 90–97. [Google Scholar] [CrossRef]
- Yang, S.; Fan, Y.; Cao, Y.; Wang, Y.; Mou, H.; Sun, H. Technological Readiness of Commercial Microalgae Species for Foods. Crit. Rev. Food Sci. Nutr. 2024, 64, 7993–8017. [Google Scholar] [CrossRef]
- Wu, J.Y.; Tso, R.; Yong, Y.N.; Lim, S.P.S.; Wheeler, T.; Nag, A.; Cheng, L.; Talukder, M.M.R.; Huffman, L.; Quek, S.Y.; et al. Effects of the Consumption of Algal Biomass versus Protein Concentrate on Postprandial Satiety and Metabolism. Future Foods 2024, 10, 100436. [Google Scholar] [CrossRef]
- Kawano, T.; Naito, J.; Nishioka, M.; Nishida, N.; Takahashi, M.; Kashiwagi, S.; Sugino, T.; Watanabe, Y. Effect of Food Containing Paramylon Derived from Euglena Gracilis EOD-1 on Fatigue in Healthy Adults: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Trial. Nutrients 2020, 12, 3098. [Google Scholar] [CrossRef] [PubMed]
- Mayer, C.; Richard, L.; Côme, M.; Ulmann, L.; Nazih, H.; Chénais, B.; Ouguerram, K.; Mimouni, V. The Marine Microalga, Tisochrysis Lutea, Protects against Metabolic Disorders Associated with Metabolic Syndrome and Obesity. Nutrients 2021, 13, 430. [Google Scholar] [CrossRef]
- Regueiras, A.; Huguet, Á.; Conde, T.; Couto, D.; Domingues, P.; Domingues, M.R.; Costa, A.M.; Silva, J.L.D.; Vasconcelos, V.; Urbatzka, R. Potential Anti-Obesity, Anti-Steatosis, and Anti-Inflammatory Properties of Extracts from the Microalgae Chlorella Vulgaris and Chlorococcum Amblystomatis under Different Growth Conditions. Mar. Drugs 2021, 20, 9. [Google Scholar] [CrossRef]
- Gil-Cardoso, K.; Del Bas, J.M.; Caimari, A.; Lama, C.; Torres, S.; Mantecón, L.; Infante, C. TetraSOD®, a Unique Marine Microalgae Ingredient, Promotes an Antioxidant and Anti-Inflammatory Status in a Metabolic Syndrome-Induced Model in Rats. Nutrients 2022, 14, 4028. [Google Scholar] [CrossRef]
- Toro, V.; Siquier-Coll, J.; Bartolomé, I.; Robles-Gil, M.; Rodrigo, J.; Maynar-Mariño, M. Effects of Tetraselmis Chuii Microalgae Supplementation on Ergospirometric, Haematological and Biochemical Parameters in Amateur Soccer Players. Int. J. Environ. Res. Public Health 2020, 17, 6885. [Google Scholar] [CrossRef]
- Du Preez, R.; Majzoub, M.E.; Thomas, T.; Panchal, S.K.; Brown, L. Nannochloropsis Oceanica as a Microalgal Food Intervention in Diet-Induced Metabolic Syndrome in Rats. Nutrients 2021, 13, 3991. [Google Scholar] [CrossRef] [PubMed]
- Mayer, C.; Côme, M.; Ulmann, L.; Martin, I.; Zittelli, G.C.; Faraloni, C.; Ouguerram, K.; Chénais, B.; Mimouni, V. The Potential of the Marine Microalga Diacronema Lutheri in the Prevention of Obesity and Metabolic Syndrome in High-Fat-Fed Wistar Rats. Molecules 2022, 27, 4246. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, B.; Maury, J.; Jenkins, V.; Nottingham, K.; Xing, D.; Gonzalez, D.E.; Leonard, M.; Kendra, J.; Ko, J.; Yoo, C.; et al. Effects of Supplementation with Microalgae Extract from Phaeodactylum Tricornutum (Mi136) to Support Benefits from a Weight Management Intervention in Overweight Women. Nutrients 2024, 16, 990. [Google Scholar] [CrossRef]
- García, Á.; Toro-Román, V.; Siquier-Coll, J.; Bartolomé, I.; Muñoz, D.; Maynar-Mariño, M. Effects of Tetraselmis Chuii Microalgae Supplementation on Anthropometric, Hormonal and Hematological Parameters in Healthy Young Men: A Double-Blind Study. Int. J. Environ. Res. Public Health 2022, 19, 6060. [Google Scholar] [CrossRef] [PubMed]
- Sandgruber, F.; Höger, A.-L.; Kunze, J.; Schenz, B.; Griehl, C.; Kiehntopf, M.; Kipp, K.; Kühn, J.; Stangl, G.I.; Lorkowski, S.; et al. Impact of Regular Intake of Microalgae on Nutrient Supply and Cardiovascular Risk Factors: Results from the NovAL Intervention Study. Nutrients 2023, 15, 1645. [Google Scholar] [CrossRef] [PubMed]
- Ghaem Far, Z.; Babajafari, S.; Kojuri, J.; Mohammadi, S.; Nouri, M.; Rostamizadeh, P.; Rahmani, M.H.; Azadian, M.; Ashrafi-Dehkordi, E.; Zareifard, A.; et al. Antihypertensive and Antihyperlipemic of Spirulina (Arthrospira Platensis) Sauce on Patients with Hypertension: A Randomized Triple-blind Placebo-controlled Clinical Trial. Phytother. Res. 2021, 35, 6181–6190. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.; Briskey, D.; Nalley, J.O.; Ganuza, E. Omega-3 Eicosapentaenoic Acid (EPA) Rich Extract from the Microalga Nannochloropsis Decreases Cholesterol in Healthy Individuals: A Double-Blind, Randomized, Placebo-Controlled, Three-Month Supplementation Study. Nutrients 2020, 12, 1869. [Google Scholar] [CrossRef] [PubMed]
- Stiefvatter, L.; Neumann, U.; Rings, A.; Frick, K.; Schmid-Staiger, U.; Bischoff, S.C. The Microalgae Phaeodactylum Tricornutum Is Well Suited as a Food with Positive Effects on the Intestinal Microbiota and the Generation of SCFA: Results from a Pre-Clinical Study. Nutrients 2022, 14, 2504. [Google Scholar] [CrossRef]
- Furbeyre, H.; Van Milgen, J.; Mener, T.; Gloaguen, M.; Labussière, E. Effects of Dietary Supplementation with Freshwater Microalgae on Growth Performance, Nutrient Digestibility and Gut Health in Weaned Piglets. Animal 2017, 11, 183–192. [Google Scholar] [CrossRef]
- Havas, F.; Krispin, S.; Cohen, M.; Loing, E.; Farge, M.; Suere, T.; Attia-Vigneau, J. A Dunaliella Salina Extract Counteracts Skin Aging under Intense Solar Irradiation Thanks to Its Antiglycation and Anti-Inflammatory Properties. Mar. Drugs 2022, 20, 104. [Google Scholar] [CrossRef] [PubMed]
- Campiche, R.; Curpen, S.J.; Lutchmanen-Kolanthan, V.; Gougeon, S.; Cherel, M.; Laurent, G.; Gempeler, M.; Schuetz, R. Pigmentation Effects of Blue Light Irradiation on Skin and How to Protect against Them. Intern. J. Cosmet. Sci. 2020, 42, 399–406. [Google Scholar] [CrossRef]
- Leonard, M.; Maury, J.; Dickerson, B.; Gonzalez, D.E.; Kendra, J.; Jenkins, V.; Nottingham, K.; Yoo, C.; Xing, D.; Ko, J.; et al. Effects of Dietary Supplementation of a Microalgae Extract Containing Fucoxanthin Combined with Guarana on Cognitive Function and Gaming Performance. Nutrients 2023, 15, 1918. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.-Y.; Lee, W.-K.; Kim, T.-H.; Ryu, Y.-K.; Park, A.; Lee, Y.-J.; Heo, S.-J.; Oh, C.; Chung, Y.-C.; Kang, D.-H. The Effects of Spirulina Maxima Extract on Memory Improvement in Those with Mild Cognitive Impairment: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2022, 14, 3714. [Google Scholar] [CrossRef]
- Nakashima, A.; Yasuda, K.; Murata, A.; Suzuki, K.; Miura, N. Effects of Euglena Gracilis Intake on Mood and Autonomic Activity under Mental Workload, and Subjective Sleep Quality: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2020, 12, 3243. [Google Scholar] [CrossRef]
- Leal, P.P.; Uribe, D.; Henríquez-Antipa, L.A.; Jiménez, C.; Hormazábal, L.; Cascales, E.-K. Evaluating the Ability of Macroalgae to Create a Chemical Refuge for Bivalves under Ocean Acidification Conditions in Closed-Environment Experiments. J. Appl. Phycol. 2024, 36, 1561–1575. [Google Scholar] [CrossRef]
- Hejna, M.; Kapuścińska, D.; Aksmann, A. Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae. Int. J. Environ. Res. Public Health 2022, 19, 7717. [Google Scholar] [CrossRef] [PubMed]
- Almeida, Â.; Cotas, J.; Pereira, L.; Carvalho, P. Potential Role of Spirogyra Sp. and Chlorella Sp. in Bioremediation of Mine Drainage: A Review. Phycology 2023, 3, 186–201. [Google Scholar] [CrossRef]
- Warjri, S.M.; Syiem, M.B. Analysis of Biosorption Parameters, Equilibrium Isotherms and Thermodynamic Studies of Chromium (VI) Uptake by a Nostoc Sp. Isolated from a Coal Mining Site in Meghalaya, India. Mine Water Env. 2018, 37, 713–723. [Google Scholar] [CrossRef]
- Yu, G.; Zhang, Y.; Schideman, L.; Funk, T.; Wang, Z. Distributions of Carbon and Nitrogen in the Products from Hydrothermal Liquefaction of Low-Lipid Microalgae. Energy Environ. Sci. 2011, 4, 4587. [Google Scholar] [CrossRef]
- Wuang, S.C.; Khin, M.C.; Chua, P.Q.D.; Luo, Y.D. Use of Spirulina Biomass Produced from Treatment of Aquaculture Wastewater as Agricultural Fertilizers. Algal Res. 2016, 15, 59–64. [Google Scholar] [CrossRef]
- Chisti, Y. Biodiesel from Microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef] [PubMed]
Biological Features | Microalgae Species | Outcomes | References |
---|---|---|---|
Photosynthesis | Chlorella vulgaris (Chlorophyta) | Enhance CO2 fixation efficiency | [2] |
Phytoplankton | Small phytoplankton flourish in changing climates | [33] | |
Skeletonema marinoi (formerly Skeletonema costatum) (Mediophyceae) | Increase extracellular carbonic anhydrase (eCA) activity | [34] | |
Phaeocystis globose (Prymnesiophyceae) | Stable internal carbonic anhydrase (iCA) activity | ||
Gephyrocapsa huxleyi (formerly Emiliania huxleyi) (Coccolithophyceae) | Low eCA activity | ||
Dunaliella salina (Chlorophyta) | Salinity stress enhanced microalgae photosynthesis and pigment production | [35] | |
Desmodesmus abundans (formerly Chlorella fusca) (Chlorophyta) | Layer thickness optimizes microalgae photosynthesis in thin-layer cascade systems | [36] | |
Scenedesmus almeriensis (Chlorophyta) | Optimize photosynthesis and cost are key for microalgal biofuel | [4] | |
Cellular structure | Phaeodactylum tricornutum (Bacillariophyceae) | Enhance diatom photosynthesis efficiency | [37] |
Environmental stress influences microalgae cell structure and morphology | [6] | ||
Dunaliella spp. (Chlorophyta) | Genetic analysis reveals diverse cell structures in Dunaliella strains | [38] | |
Phaeodactylum tricornutum (Bacillariophyceae) Skeletonema sp. (Mediophyceae) Porphyridium sp. (Rhodophyta) Tetraselmis striata (Chlorophyta) | Microalgal cell structures produce bioactive compounds with therapeutic potential | [39] | |
Chlorella spp. (Chlorophyta) | Its cell structures optimize lipid production for biodiesel | [40] | |
Chlorella vulgaris (Chlorophyta) | Pressure-assisted ozonation method is more efficient than ultrasonication in Chlorella vulgaris cell disruption | [41] | |
Stress conditions promote lipid accumulation in Chlorella cell structures | [42] | ||
Metabolism | Diacronema lutheri (formerly Pavlova lutheri) (Pavlovophyceae) Gephyrocapsa huxleyi (formerly Emiliania huxleyi) (Coccolithophyceae) Cyanophora paradoxa (Glaucophyta) | Plastid glucose-6-phosphate isomerase is essential for primary metabolism in microalgae | [43] |
Chlamydomonas reinhardtii (Chlorophyta) | Demonstrate varied metabolic efficiency across growth conditions | [10] | |
Galdieria sulphuraria (Cyanidiophyceae) | Exhibit metabolic flexibility through unique genes | [44] | |
Enhance metabolic versatility via sugar uptake pathway | [45] | ||
Metabolize diverse carbon sources heterotrophically | [46] | ||
Metabolize various sugars for heterotrophic growth | [47] | ||
Chlorella vulgaris (Chlorophyta) | Exhibit efficient hexose transport and regulation | [48] | |
Enhance nutrient uptake for efficient metabolism | [49] | ||
Microalgae growth affects nitrogen uptake efficiency in Chlorella vulgaris | [50] | ||
Chlorella sorokiniana (Chlorophyta) Chlorella vulgaris (Chlorophyta) | Bacterial co-immobilization enhances lipid metabolism in microalgae | [51] | |
Phaeodactylum tricornutum (Bacillariophyceae) | Glycerol enhances biomass and lipid metabolism in diatom Phaeodactylum | [52] | |
Rhizomonas salina (formerly Pyrenomonas salina) (Cryptophyceae) | Nitrogen depletion reduces phycoerythrin, affecting cryptophyte metabolism | [53] | |
Reproduction and life cycle | Symbiodinium (Dinophyceae) strains | Symbiodinium reproduction varies by strain, influenced by growth and stress | [54] |
Chlorella spp. (Chlorophyta) | Microplastics inhibit microalgae growth and reproduction | [14] | |
Tetraselmis suecica (Chlorophyta) Desmodesmus armatus (formerly Scenedesmus armatus) (Chlorophyta) Microchloropsis gaditana (formerly Nannochloropsis gaditana) (Eustigmatophyceae) | Microplastics reduce biomass and alter microalgae cell growth | [55] | |
Diversity and classification | Euphotic zone samples | Exhibit vast, uncultured diversity across varying ocean depths | [15] |
Prasiolale species | Exhibit distinct clades with varying diversity across habitats | [56] | |
Scenedesmus obliquus Chlorella sorokiniana and others. | Exhibit diverse classifications, expanding biofuel production potential | [57] |
Commerical Species | Biomass Dry Wight (%) | References | ||
---|---|---|---|---|
Protein | Carbohydrate | Lipid | ||
Limnospira platensis (formerly Spirulina platensis) | 60–70% | 15–20% | 5–8% | [31] |
Chlorella vulgaris | 42–58% | 12–55% | 5–40% | [79] |
Dunaliella salina | 19-57% | 5.6–40% | 18-43% | [146,148,149,150] |
Haematococcus lacustris (formerly Haematococcus pluvialis) | 29-45% | 15–63% | 20-25% | [147] |
Product Types | Microalgae | Outcome | References |
---|---|---|---|
Soymilk vegan kefir | Haematococcus lacustris (Chlorophyta) | -Improve protein content -Improve bacterial diversity | [154] |
Yogurt drink | Limnospira platensis (formerly Spirulina platensis) (Cyanobacteria) | -Enhance sensory and rheological properties | [153] |
Sauce | -Improve bacterial viability | [155] | |
Ice cream | -Enhance sensory and rheological properties | [156] | |
Wheat tortillas | Nannochloropsis sp. (Eustigmatophyceae) Tetraselmis sp. (Chlorophyta) | -Enhance color properties -Improve protein, lipid, and ash contents | [20] |
Pasta | Limnospira platensis (formerly Spirulina platensis) (Cyanobacteria) | -Enhance color properties -Improve protein and mineral contents -Influence sensory acceptance | [152] |
Wheat bread | Tetraselmis chui (Chlorophyta) | -Improve protein content -Enhance color properties | [157] |
Bread | Chlamydomonas sp. Nannochloropsis gaditana (Eustigmatophyceae) | -Enhance color properties -Improve protein and ash contents | [158] |
Ice cream | Nannochloropsis oculata (Eustigmatophyceae) Diacronema vlkianum (Pavlovophyceae) Porphyridium purpureum (Rhodophyta) | -Enhance color properties | [22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarıtaş, S.; Kalkan, A.E.; Yılmaz, K.; Gurdal, S.; Göksan, T.; Witkowska, A.M.; Lombardo, M.; Karav, S. Biological and Nutritional Applications of Microalgae. Nutrients 2025, 17, 93. https://doi.org/10.3390/nu17010093
Sarıtaş S, Kalkan AE, Yılmaz K, Gurdal S, Göksan T, Witkowska AM, Lombardo M, Karav S. Biological and Nutritional Applications of Microalgae. Nutrients. 2025; 17(1):93. https://doi.org/10.3390/nu17010093
Chicago/Turabian StyleSarıtaş, Sümeyye, Arda Erkan Kalkan, Kadir Yılmaz, Savas Gurdal, Tolga Göksan, Anna Maria Witkowska, Mauro Lombardo, and Sercan Karav. 2025. "Biological and Nutritional Applications of Microalgae" Nutrients 17, no. 1: 93. https://doi.org/10.3390/nu17010093
APA StyleSarıtaş, S., Kalkan, A. E., Yılmaz, K., Gurdal, S., Göksan, T., Witkowska, A. M., Lombardo, M., & Karav, S. (2025). Biological and Nutritional Applications of Microalgae. Nutrients, 17(1), 93. https://doi.org/10.3390/nu17010093