Potential Efficacy of Propolis in Treating Helicobacter pylori Infection and Its Mechanisms of Action
Abstract
1. Introduction
2. The Pathogenic Mechanisms of H. pylori Infection
2.1. Destruction of the Gastric Mucosal Barrier
2.2. Facilitation of Inflammatory Responses
2.3. Pathogenic Effects of Cytotoxins
2.4. Immune Evasion
2.5. Genotoxic Effects
3. The Chemical Composition of Propolis
3.1. Chemical Composition and Structure of Propolis
3.2. Biological Activity of Propolis
4. Mechanisms of Propolis Action Against H. pylori
4.1. Antibacterial Activity
4.2. Inhibition of Virulence-Associated Enzymes
4.3. Immune Regulation and Anti-Inflammatory Effects
4.4. In Vivo Suppression of H. pylori
4.5. Effects on Oral H. pylori
Propolis Type/Source | Research Model | Major Method | Key Findings | Ref. |
---|---|---|---|---|
Multiple types of propolis | In vitro/molecular simulation | Agar diffusion method, dilution method | Dose-dependent antibacterial activity against H. pylori; Suppression zone of 31.0–47.0 mm | [60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77] |
Multi country propolis extract | In vitro | Cell membrane permeability measurement; molecular docking | Disrupting the structure of bacterial cell membranes and promoting the entry of antibiotics; Flavonoids are key hydroxyl groups that inhibit urease (IC50: 0.260–1.525 mg/mL) | [66,78,86] |
Prololis With clarithromycin or TCM herbs | In vitro (combination) | combined chemosensitivity test | Synergistic effects with antibiotics (e.g., clarithromycin) and herbal extracts (e.g., Evodia, Prunus) | [79,80,81] |
Propolis + Probiotics | In vivo (rat) | 21-day combination therapy | Synergistic promotion of weight gain, improvement of gastric tissue pathology, reduction in inflammation and cell apoptosis | [116,117] |
Propolis + OipA protein | In vivo | Oral immunization model | 11-fold increase in IFN-γ expression; potential oral adjuvant effect | [109,110] |
Korean propolis | In vivo (mouse) | H. Pylori infection model | Reduce bacterial load and expression of virulence factors (CagA, UreA) in the stomach, alleviate inflammation and mucosal damage | [100,107,108] |
Brazilian red propolis Ethanol extract | Rat model | Ethanol extract treatment (300 mg/kg) | Significantly reduce the area of gastric ulcer (49.4%), enhance antioxidant enzyme activity, and promote mucosal repair | [63] |
Brazilian green propolis | Clinical | Oral drops, 7-day treatment | 50% of subjects showed >20% UBT decrease; 83% not eradicated after 40 days | [118] |
Propolis tablets | Clinical | Comparison with Triple Therapy | The clearance rate shows a trend superior to conventional triple therapy | [119,120,121] |
Propolis mouthwash/spray | Clinical | Mouthwash/spray combined system treatment | Reduce oral H. pylori load, increase overall eradication rate by 15–20%, and improve periodontal indicators | [123,126] |
Propolis (CAPE) | In vitro enzymology | Enzyme activity inhibition | Competitive inhibition of H. pylori peptide deacetylase (PDF), unique binding mechanism reduces side effects on human enzymes | [88,89] |
Cell model | ELISA, Western blot | Inhibit the NF–κB and MAPK pathways, reduce the expression of TNF–α, IL-8, COX-2, etc. | [97,98,99,100,101,103] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, T.-T.; Cao, Y.-X.; Cao, L. Novel therapeutic regimens against Helicobacter pylori: An updated systematic review. Front. Microbiol. 2024, 15, 1418129. [Google Scholar] [CrossRef]
- Zamani, M.; Ebrahimtabar, F.; Zamani, V.; Miller, W.H.; Alizadeh-Navaei, R.; Shokri-Shirvani, J.; Derakhshan, M.H. Systematic review with meta-analysis: The worldwide prevalence of Helicobacter pylori infection. Aliment. Pharmacol. Ther. 2018, 47, 868–876. [Google Scholar] [CrossRef]
- Hooi, J.K.Y.; Lai, W.Y.; Ng, W.K.; Suen, M.M.Y.; Underwood, F.E.; Tanyingoh, D.; Malfertheiner, P.; Graham, D.Y.; Wong, V.W.S.; Wu, J.C.Y.; et al. Global prevalence of Helicobacter pylori infection: Systematic review and meta-analysis. Gastroenterology 2017, 153, 420–429. [Google Scholar] [CrossRef]
- Boreiri, M.; Samadi, F.; Etemadi, A.; Babaei, M.; Ahmadi, E.; Sharifi, A.H.; Nikmanesh, A.; Houshiar, A.; Pourfarzi, F.; Yazdanbod, A.; et al. Gastric cancer mortality in a high incidence area: Long-term follow-up of Helicobacter pylori-related precancerous lesions in the general population. Arch. Iran. Med. 2013, 16, 343. [Google Scholar]
- Megraud, F.; Bruyndonckx, R.; Coenen, S.; Wittkop, L.; Huang, T.-D.; Hoebeke, M.; Bénéjat, L.; Lehours, P.; Goossens, H.; Glupczynski, Y. Helicobacter pylori resistance to antibiotics in Europe in 2018 and its relationship to antibiotic consumption in the community. Gut 2021, 70, 1815–1822. [Google Scholar] [CrossRef]
- Tacconelli, E. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Camargo, C.M.; García, A.; Riquelme, A.; Otero, W.; Camargo, C.A.; Hernandez-García, T.; Candia, R.; Bruce, M.G.; Rabkin, C.S. The Problem of Helicobacter pylori Resistance to Antibiotics: A Systematic Review in Latin America. Am. J. Gastroenterol. 2014, 109, 485–495. [Google Scholar] [CrossRef]
- Castaldo, S.; Capasso, F. Propolis, an old remedy used in modern medicine. Fitoterapia 2002, 73, S1–S6. [Google Scholar] [CrossRef] [PubMed]
- Ristivojević, P.; Trifković, J.; Andrić, F.; Milojković-Opsenica, D. Poplar-type propolis: Chemical composition, botanical origin and biological activity. Nat. Prod. Commun. 2015, 10, 1869–1876. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, M.B.M.; Abdelhameed, K.M.A.; Sobhy, S.E.; Konper, H.M.A.; Hassanein, Z.A.E.; Saleh, A.A.; Jamal, M.T.; Hafez, E.E. Antioxidant activity, antibacterial behavior, and anticancer impact of Egyptian propolis. Open Vet. J. 2025, 15, 126. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, M.; González, M.; Fernández, H.; Wilson, M.; Manquián, N.; Otth, C.; Otth, L. In vitro antibacterial activity of Chilean propolis against Helicobacter pylori. Rev. Chil. Infectol. Organo Of. Soc. Chil. Infectol. 2015, 32, 530–535. [Google Scholar] [CrossRef]
- Hammond, C.E.; Beeson, C.; Suarez, G.; Peek, R.M., Jr.; Backert, S.; Smolka, A.J. Helicobacter pylori virulence factors affecting gastric proton pump expression and acid secretion. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 309, G193–G201. [Google Scholar] [CrossRef] [PubMed]
- Marshall, B.J.; Barrett, L.J.; Prakash, C.; McCallum, R.W.; Guerrant, R.J. Urea protects Helicobacter (Campylobacter) pylori from the bactericidal effect of acid. Gastroenterology 1990, 99, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.Y.; Miftahussurur, M. Helicobacter pylori urease for diagnosis of Helicobacter pylori infection: A mini review. J. Adv. Res. 2018, 13, 51–57. [Google Scholar] [CrossRef]
- Nolan, K.J.; McGee, D.J.; Mitchell, H.M.; Kolesnikow, T.; Harro, J.M.; O’Rourke, J.; Wilson, J.E.; Danon, S.J.; Moss, N.D.; Mobley, H.L.T.; et al. In vivo behavior of a Helicobacter pylori SS1 nixA mutant with reduced urease activity. Infect. Immun. 2002, 70, 685–691. [Google Scholar] [CrossRef]
- Farinati, F.; Della Libera, G.; Cardin, R.; Molari, A.; Plebani, M.; Rugge, M.; Di Mario, F.; Naccarato, R. Gastric antioxidant, nitrites, and mucosal lipoperoxidation in chronic gastritis and Helicobacter pylori infection. J. Clin. Gastroenterol. 1996, 22, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Suerbaum, S.; Michetti, P. Helicobacter pylori infection. N. Engl. J. Med. 2002, 347, 1175–1186. [Google Scholar] [CrossRef]
- Gillen, D.; Wirz, A.A.; Neithercut, W.D.; Ardill, J.E.S.; McColl, K.E.L. Helicobacter pylori infection potentiates the inhibition of gastric acid secretion by omeprazole. Gut 1999, 44, 468–475. [Google Scholar] [CrossRef]
- Perrais, M.; Rousseaux, C.; Ducourouble, M.-P.; Courcol, R.; Vincent, P.; Jonckheere, N.; Seuningen, I.V. Helicobacter pylori urease and flagellin alter mucin gene expression in human gastric cancer cells. Gastric Cancer 2014, 17, 235–246. [Google Scholar] [CrossRef]
- Olivera-Severo, D.; Uberti, A.F.; Marques, M.S.; Pinto, M.T.; Gomez-Lazaro, M.; Figueiredo, C.; Leite, M.; Carlini, C.R. A new role for Helicobacter pylori urease: Contributions to angiogenesis. Front. Microbiol. 2017, 8, 1883. [Google Scholar] [CrossRef]
- Nasier-Hussain, M.; Samanje, J.N.; Mokhtari, K.; Nabi-Afjadi, M.; Fathi, Z.; Hoseini, A.; Bahreini, E. Serum levels of oxidative stress, IL-8, and pepsinogen I/II ratio in Helicobacter pylori and gastric cancer patients: Potential diagnostic biomarkers. BMC Gastroenterol. 2025, 25, 2. [Google Scholar] [CrossRef]
- Chen, B.; Liu, X.L.; Yu, P.; Xie, F.; Kwan, J.S.H.; Chan, W.N.; Fang, C.; Zhang, J.; Cheung, A.H.K.; Chow, C.; et al. H. pylori-induced NF-κB-PIEZO1-YAP1-CTGF axis drives gastric cancer progression and cancer-associated fibroblast-mediated tumour microenvironment remodelling. Clin. Transl. Med. 2023, 13, e1481. [Google Scholar] [CrossRef] [PubMed]
- Saadat, I.; Higashi, H.; Obuse, C.; Umeda, M.; Murata-Kamiya, N.; Saito, Y.; Lu, H.; Ohnishi, N.; Azuma, T.; Suzuki, A.; et al. Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature 2007, 447, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.E.; Park, S.J.; Kim, G.H.; Joo, D.C.; Lee, M.W. Anti-inflammatory effects of eupatilin on Helicobacter pylori CagA-induced gastric inflammation. PLoS ONE 2024, 19, e0313251. [Google Scholar] [CrossRef]
- Yang, X.-T.; Niu, P.-Q.; Li, X.-F.; Sun, M.M.; Wei, W.; Chen, Y.-Q.; Zheng, J.-Y. Differential cytokine expression in gastric tissues highlights helicobacter pylori’s role in gastritis. Sci. Rep. 2024, 14, 7683. [Google Scholar] [CrossRef]
- Faass, L.; Hauke, M.; Stein, S.C.; Josenhans, C. Innate immune activation and modulatory factors of Helicobacter pylori towards phagocytic and nonphagocytic cells. Curr. Opin. Immunol. 2023, 82, 102301. [Google Scholar] [CrossRef]
- Wroblewski, L.E.; Peek, R.M., Jr. Pathogenic enablers—Toxic relationships in the stomach. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 317–318. [Google Scholar] [CrossRef] [PubMed]
- Cover, T.L.; Lacy, D.B.; Ohi, M.D. The Helicobacter pylori Cag type IV secretion system. Trends Microbiol. 2020, 28, 682–695. [Google Scholar] [CrossRef]
- Hotchin, N.A.; Cover, T.L.; Akhtar, N. Cell vacuolation induced by the VacA cytotoxin of Helicobacter pylori is regulated by the Rac1 GTPase. J. Biol. Chem. 2000, 275, 14009–14012. [Google Scholar] [CrossRef]
- Li, N.; Feng, Y.; Hu, Y.; He, C.; Xie, C.; Ouyang, Y.; Artim, S.C.; Huang, D.; Zhu, Y.; Luo, Z.; et al. Correction: Helicobacter pylori CagA promotes epithelial mesenchymal transition in gastric carcinogenesis via triggering oncogenic YAP pathway. J. Exp. Clin. Cancer Res. 2023, 42, 305. [Google Scholar] [CrossRef]
- de Bernard, M.; Papini, E.; de Filippis, V.; Gottardi, E.; Telford, J.; Manetti, R.; Fontana, A.; Rappuoli, R.; Montecucco, C. Low pH Activates the Vacuolating Toxin of Helicobacter pylori, Which Becomes Acid and Pepsin Resistant. J. Biol. Chem. 1995, 270, 23937–23940. [Google Scholar] [CrossRef]
- Odenbreit, S.; Püls, J.; Sedlmaier, B.; Gerland, E.; Fischer, W.; Haas, R. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 2000, 287, 1497–1500. [Google Scholar] [CrossRef]
- Wessler, S.; Krisch, L.M.; Elmer, D.P.; Aberger, F. From inflammation to gastric cancer–the importance of Hedgehog/GLI signaling in Helicobacter pylori-induced chronic inflammatory and neoplastic diseases. Cell Commun. Signal. 2017, 15, 15. [Google Scholar] [CrossRef]
- Nguyen, Q.A.; Schmitt, L.; Mejías-Luque, R.; Gerhard, M. Effects of Helicobacter pylori adhesin HopQ binding to CEACAM receptors in the human stomach. Front. Immunol. 2023, 14, 1113478. [Google Scholar] [CrossRef] [PubMed]
- Fan, A.M.; Zhang, C.-P.; Lu, Y.Y.; Liu, G.; Hu, F.-L. Flavonoids in propolis. J. Fujian Agric. For. Univ. (Nat. Sci. Ed.) 2024, 53, 123–128. [Google Scholar]
- Moxon, E.R.; Thaler, D.S. The tinkerer’s evolving tool-box. Nature 1997, 387, 659–662. [Google Scholar] [CrossRef]
- Dunne, C.; Dolan, B.; Clyne, M. Factors that mediate colonization of the human stomach by Helicobacter pylori. World J. Gastroenterol. 2014, 20, 5610. [Google Scholar] [CrossRef]
- Viala, J.; Chaput, C.; Boneca, I.G.; Cardona, A.; Girardin, S.E.; Moran, A.P.; Athman, R.; Mémet, S.; Huerre, M.R.; Coyle, A.J.; et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat. Immunol. 2004, 5, 1166–1174. [Google Scholar] [CrossRef]
- Lu, J.; Haley, K.P.; Francis, J.D.; Guevara, M.A.; Doster, R.S.; Craft, K.M.; Moore, R.E.; Chambers, S.A.; Delgado, A.G.; Blanca Piazuelo, M.; et al. The innate immune glycoprotein lactoferrin represses the Helicobacter pylori cag type IV secretion system. Chembiochem 2021, 22, 2783–2790. [Google Scholar] [CrossRef]
- Soudi, H.; Falsafi, T.; Gharavi, S.; Mahboubi, M. The role of Helicobacter pylori proinflammatory outer membrane protein and propolis in immunomodulation on U937 macrophage cell model. Galen Med. J. 2020, 9, e1687. [Google Scholar] [CrossRef]
- Obst, B.; Wagner, S.; Sewing, K.F.; Beil, W. Helicobacter pylori causes DNA damage in gastric epithelial cells. Carcinogenesis 2000, 21, 1111–1115. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.M.D.; Figueiredo, C.; Touati, E.; Máximo, V.; Sousa, S.; Michel, V.; Carneiro, F.; Nielsen, F.C.; Seruca, R.; Rasmussen, L.J. Helicobacter pylori infection induces genetic instability of nuclear and mitochondrial DNA in gastric cells. Clin. Cancer Res. 2009, 15, 2995–3002. [Google Scholar] [CrossRef] [PubMed]
- Benoit, S.L.; Maier, R.J. Helicobacter Catalase Devoid of Catalytic Activity Protects the Bacterium against Oxidative Stress. J. Biol. Chem. 2016, 291, 23366–23373. [Google Scholar] [CrossRef]
- Kidane, D. Molecular mechanisms of H. pylori-induced DNA double-strand breaks. Int. J. Mol. Sci. 2018, 19, 2891. [Google Scholar] [CrossRef]
- Zhang, C.-P.; Wang, K.; Hu, F.L. Phenolic Acid in Propolis. Chin. J. Mod. Appl. Pharm. 2013, 30, 102–105. [Google Scholar]
- Huang, S.; Zhang, C.-P.; Wang, K.; Hu, F.-L. Recent advances in the chemical composition of propolis. Molecules 2014, 19, 19610–19632. [Google Scholar] [CrossRef]
- Šturm, L.; Ulrih, N.P. Advances in the Propolis Chemical Composition between 2013 and 2018: A Review. EFood 2020, 1, 24–37. [Google Scholar] [CrossRef]
- Belmehdi, O.; EI Menyiy, N.; Bouyahya, A.; El Baaboua, A.; El Omari, N.; Gallo, M.; Montesano, D.; Naviglio, D.; Zengin, G.; Senhaji, N.S.; et al. Recent advances in the chemical composition and biological activities of propolis. Food Rev. Int. 2023, 39, 6078–6128. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, C.-P.; Lu, Y.-Y.; Niu, D.F.; Hu, F.-L. Biotransformation and metabolite activity analysis of flavonoids from propolis in vivo. J. Asian Nat. Prod. Res. 2024, 26, 1192–1206. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.H.; Wang, Y.; Yuan, Q. Analysis of flavonoids and phenolic acid in propolis by capillary electrophoresis. Chromatographia 2004, 59, 135–140. [Google Scholar] [CrossRef]
- Marcucci, M.C.; Ferreres, F.; Garcıa-Viguera, C.; Bankova, V.S.; De Castro, S.L.; Dantas, A.P.; Valente, P.H.M.; Paulino, N. Phenolic compounds from Brazilian propolis with pharmacological activities. J. Ethnopharmacol. 2001, 74, 105–112. [Google Scholar] [CrossRef]
- Popova, M.P.; Chinou, I.B.; Marekov, I.N.; Bankova, V.S. Terpenes with antimicrobial activity from Cretan propolis. Phytochemistry 2009, 70, 1262–1271. [Google Scholar] [CrossRef]
- Trusheva, B.; Todorov, I.; Ninova, M.; Najdenski, H.; Daneshmand, A.; Bankova, V. Antibacterial mono-and sesquiterpene esters of benzoic acids from Iranian propolis. Chem. Cent. J. 2010, 4, 8. [Google Scholar] [CrossRef] [PubMed]
- Popova, M.P.; Graikou, K.; Chinou, I.; Bankova, V.S. GC-MS profiling of diterpene compounds in Mediterranean propolis from Greece. J. Agric. Food Chem. 2010, 58, 3167–3176. [Google Scholar] [CrossRef]
- Sawaya, A.C.H.F.; Souza, K.S.; Marcucci, M.C.; Cunha, I.B.S.; Shimizu, M.T. Analysis of the composition of Brazilian propolis extracts by chromatography and evaluation of their in vitro activity against gram-positive bacteria. Braz. J. Microbiol. 2004, 35, 104–109. [Google Scholar] [CrossRef]
- Janani, D.; Lad, S.S.; Rawson, A.; Sivanandham, V.; Rajamani, M. Effect of microwave and ultrasound-assisted extraction methods on phytochemical extraction of bee propolis of Indian origin and its antibacterial activity. Int. J. Food Sci. Technol. 2022, 57, 7205–7213. [Google Scholar] [CrossRef]
- Funakoshi-Tago, M.; Ohsawa, K.; Ishikawa, T.; Nakamura, F.; Ueda, F.; Narukawa, Y.; Kiuchi, F.; Tamura, H.; Tago, K.; Kasahara, T.; et al. Inhibitory effects of flavonoids extracted from Nepalese propolis on the LPS signaling pathway. Int. Immunopharmacol. 2016, 40, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Batista, C.M.; Alves, A.V.F.; Queiroz, L.A.; Lima, B.S.; Filho, R.N.P.; Araújo, A.A.S.; de Albuquerque Júnior, R.L.C.; Cardoso, J.C. The photoprotective and anti-inflammatory activity of red propolis extract in rats. J. Photochem. Photobiol. B Biol. 2018, 180, 198–207. [Google Scholar] [CrossRef]
- Okamura, T.; Hamaguchi, M.; Bamba, R.; Nakajima, H.; Yoshimura, Y.; Kimura, T.; Hashimoto, Y.; Majima, S.; Senmaru, T.; Ushigome, E.; et al. Brazilian green propolis improves gut microbiota dysbiosis and protects against sarcopenic obesity. J. Cachexia Sarcopenia Muscle 2022, 13, 3028–3047. [Google Scholar] [CrossRef]
- Chen, L.; Liao, W.; Li, G.; Xie, Y.; Lv, N.; Wang, C. A Study on the Antibacterial Activity of Jiangxi Against Helicobacter pylori in Vitro. Acta Acad. Med. Jiangxi 2009, 49, 27–28+32. [Google Scholar]
- Lu, S.; Zong, S.; Du, M.; Lin, G.; Du, J. The in vitro inhibitory effect of propolis on Helicobacter pylori. Asia-Pac. Tradit. Med. 2011, 7, 24–25. [Google Scholar]
- Banskota, A.H.; Tezuka, Y.; Adnyana, I.K.; Ishii, E.; Midorikawa, K.; Matsushige, K.; Kadota, S. Hepatoprotective and anti-Helicobacter pylori activities of constituents from Brazilian propolis. Phytomedicine 2001, 8, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Santiago, M.B.; Leandro, L.F.; Rosa, R.B.; Silva, M.V.; Teixeira, S.C.; Servato, J.P.S.; Ambrósio, S.R.; Veneziani, R.C.S.; Aldana-Mejía, J.A.; Bastos, J.K.; et al. Brazilian red propolis presents promising anti-H. pylori activity in in vitro and in vivo assays with the ability to modulate the immune response. Molecules 2022, 27, 7310. [Google Scholar] [CrossRef] [PubMed]
- Widelski, J.; Okińczyc, P.; Suśniak, K.; Malm, A.; Bozhadze, A.; Jokhadze, M.; Korona-Glowniak, I. Correlation between chemical profile of Georgian propolis extracts and their activity against Helicobacter pylori. Molecules 2023, 28, 1374. [Google Scholar] [CrossRef]
- Dinat, S.; Orchard, A.; Ncube, E.; Chen, W.; Viljoen, A.; van Vuuren, S. South African Propolis: Anti-Helicobacter pylori Activity, Chemistry, and Toxicity. Chem. Biodivers. 2025, 22, e202403200. [Google Scholar] [CrossRef] [PubMed]
- Baltas, N.; Karaoglu, S.A.; Tarakci, C.; Kolayli, S. Effect of propolis in gastric disorders: Inhibition studies on the growth of Helicobacter pylori and production of its urease. J. Enzym. Inhib. Med. Chem. 2016, 31, 46–50. [Google Scholar] [CrossRef]
- Ozbey, G.; Muz, M.N.; Tanriverdi, E.S.; Erkan, S.; Bulut, N.; Otlu, B.; Zigo, F. Chemical composition, antimicrobial activities, and molecular docking studies of Turkish propolis ethanol extract. Czech J. Food Sci. 2023, 41, 144–154. [Google Scholar] [CrossRef]
- Kolayli, S.; Rakici, M.A.A.H.; Baltas, N.; Imran, M.; Iqbal, I.; Karaoglu, Ş. Antibacterial Effect of Anatolian Ethanolic Propolis Extracts on Clinical Strains of Helicobacter pylori. Pharma Chem. J. 2020, 12, 28–32. [Google Scholar]
- Boyanova, L.; Derejian, S.; Koumanova, R.; Katsarov, N.; Gergova, G.; Mitov, I.; Nikolov, R.; Krastev, Z. Inhibition of Helicobacter pylori growth in vitro by Bulgarian propolis: Preliminary report. J. Med. Microbiol. 2003, 52, 417–419. [Google Scholar] [CrossRef]
- Boyanova, L.; Gergova, G.; Nikolov, R.; Derejian, S.; Lazarova, E.; Katsarov, N.; Mitov, I.; Krastev, Z. Activity of Bulgarian propolis against 94 Helicobacter pylori strains in vitro by agar-well diffusion, agar dilution and disc diffusion methods. J. Med. Microbiol. 2005, 54, 481–483. [Google Scholar] [CrossRef]
- Romero, M.; Freire, J.; Pastene, E.; García, A.; Aranda, M.; González, C. Propolis polyphenolic compounds affect the viability and structure of Helicobacter pylori in vitro. Rev. Bras. Farmacogn. 2019, 29, 325–332. [Google Scholar] [CrossRef]
- Oliveira, A.V.; Ferreira, A.L.; Nunes, S.; Dandlen, S.A.; Cavaco, A.; Antunes, M.D.; Miguel, M.G.; Faleiro, M.L. Portuguese propolis: The effect of collection time and localization on anti-Helicobacter activity. Planta Med. 2009, 75, 34924. [Google Scholar] [CrossRef]
- Han, S.M.; Hong, I.P.; Woo, S.O.; Kim, S.G.; Jang, H.R.; Jang, J.S. Anti-Helicobacter pylori activity of Korean propolis. Korean J. Food Nutr. 2016, 29, 73–78. [Google Scholar] [CrossRef]
- Widelski, J.; Okińczyc, P.; Suśniak, K.; Malm, A.; Paluch, E.; Sakipov, A.; Zhumashova, G.; Ibadullayeva, G.; Sakipova, Z.; Korona-Glowniak, I. Phytochemical profile and antimicrobial potential of propolis samples from Kazakhstan. Molecules 2023, 28, 2984. [Google Scholar] [CrossRef]
- Ratnasari, N.; Rezkitha, Y.A.A.; Adnyana, I.K.; Alfaray, R.I.; Fauzia, K.A.; Doohan, D.; Panjaitan, A.; Priskila, Y.; Yulinah, E.; Khomsan, A.; et al. Anti-helicobacter pylori effects of propolis ethanol extract on clarithromycin and metronidazole resistant strains. Syst. Rev. Pharm. 2020, 11, 429–434. [Google Scholar]
- Widelski, J.; Okińczyc, P.; Paluch, E.; Mroczek, T.; Szperlik, J.; Żuk, M.; Sroka, Z.; Sakipova, Z.; Chinou, I.; Skalicka-Woźniak, K.; et al. The antimicrobial properties of poplar and aspen–poplar propolises and their active components against selected microorganisms, including Helicobacter pylori. Pathogens 2022, 11, 191. [Google Scholar] [CrossRef]
- Kiani, R.; Mojgani, N.; Kobarfard, F.; Saffarian, P.; Ayatollahi, S.A.; Khoramjouy, M. Evaluating the Inhibitory Effects of Probiotic Bacteria and Propolis Extracts on the Growth and Histopathological Changes in Gastric Tissues of Helicobacter pylori Challenged Wistar Rats. Iran. J. Pharm. Res. 2024, 23, e148158. [Google Scholar] [CrossRef]
- Governa, P.; Manetti, F.; Biagi, M. Effect of in vitro simulated digestion on the anti-Helicobacter pylori activity of different propolis extracts. Planta Med. 2021, 87, 2183810. [Google Scholar]
- Nostro, A.; Cellini, L.; Bartolomeo, S.D.; Cannatelli, M.A.; Campli, E.D.; Procopio, F.; Grande, R.; Marzio, L.; Alonzo, V. Effects of combining extracts (from propolis or Zingiber officinale) with clarithromycin on Helicobacter pylori. Phytother. Res. 2006, 20, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Li, P.; Chu, G.; Pan, P.; Li, T. Combined Antibacterial Activity of Three Extractives of Traditional Chinese Drug Against Helicobacter pylori. China Pharm. 2007, 18, 2573–2574. [Google Scholar]
- Zeng, L.; Cui, X. Combined Antibacterial Activity of Three Chinese Drug Against Helicobacter pylori. J. Chengdu Med. Coll. 2008, 3, 124–125+141. [Google Scholar]
- Przybyłek, I.; Karpiński, T.M. Antibacterial properties of propolis. Molecules 2019, 24, 2047. [Google Scholar] [CrossRef]
- Ding, Q.; Sheikh, A.R.; Gu, X.; Li, J.; Xia, K.; Sun, N.; Wu, R.A.; Luo, L.; Zhang, Y.; Ma, H. Chinese Propolis: Ultrasound-assisted enhanced ethanolic extraction, volatile components analysis, antioxidant and antibacterial activity comparison. Food Sci. Nutr. 2021, 9, 313–330. [Google Scholar] [CrossRef] [PubMed]
- Mirzoeva, O.K.; Grishanin, R.N.; Calder, P.C. Antimicrobial action of propolis and some of its components: The effects on growth, membrane potential and motility of bacteria. Microbiol. Res. 1997, 152, 239–246. [Google Scholar] [CrossRef]
- Baltas, N.; Yildiz, O.; Kolayli, S. Inhibition properties of propolis extracts to some clinically important enzymes. J. Enzym. Inhib. Med. Chem. 2016, 31, 52–55. [Google Scholar] [CrossRef]
- Al-Rooqi, M.M.; Mughal, E.U.; Raja, Q.A.; Hussein, E.M.; Naeem, N.; Sadiq, A.; Asghar, B.H.; Moussa, Z.; Ahmed, S.A. Flavonoids and related privileged scaffolds as potential urease inhibitors: A review. RSC Adv. 2023, 13, 3210–3233. [Google Scholar] [CrossRef] [PubMed]
- Leeds, J.A.; Dean, C.R. Peptide deformylase as an antibacterial target: A critical assessment. Curr. Opin. Pharmacol. 2006, 6, 445–452. [Google Scholar] [CrossRef]
- Cui, K.; Lu, W.; Zhu, L.; Shen, X.; Huang, J. Caffeic acid phenethyl ester (CAPE), an active component of propolis, inhibits Helicobacter pylori peptide deformylase activity. Biochem. Biophys. Res. Commun. 2013, 435, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Omar, M.S.; Damanhuri, N.S.; Kumolosasi, E. Influences of proton pump inhibitor on Helicobacter pylori adherence to the gastrointestinal cell lines. Turk. J. Gastroenterol. 2017, 28, 53–59. [Google Scholar] [CrossRef]
- Chang, Y.-J.; Wu, M.-S.; Lin, J.-T.; Chen, C.-C. Helicobacter pylori-Induced invasion and angiogenesis of gastric cells is mediated by cyclooxygenase-2 induction through TLR2/TLR9 and promoter regulation. J. Immunol. 2005, 175, 8242–8252. [Google Scholar] [CrossRef]
- Takahashi, S.; Fujita, T.; Yamamoto, A. Role of cyclooxygenase-2 in Helicobacter pylori-induced gastritis in Mongolian gerbils. Am. J. Physiol. Gastrointest. Liver Physiol. 2000, 279, G791–G798. [Google Scholar] [CrossRef]
- Natarajan, K.; Singh, S.; Burke, T.R., Jr.; Grunberger, D.; Aggarwal, B.B. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc. Natl. Acad. Sci. USA 1996, 93, 9090–9095. [Google Scholar] [CrossRef]
- Abdel-Latif, M.M.M.; Windle, H.J.; Homasany, B.S.E.; Sabra, K.; Kelleher, D. Caffeic acid phenethyl ester modulates Helicobacter pylori-induced nuclear factor-kappa B and activator protein-1 expression in gastric epithelial cells. Br. J. Pharmacol. 2005, 146, 1139–1147. [Google Scholar] [CrossRef]
- Hawkey, C.J. COX-1 and COX-2 inhibitors. Best Pract. Res. Clin. Gastroenterol. 2001, 15, 801–820. [Google Scholar] [CrossRef]
- Ben-Hamida, A.; Man, W.K.; McNeil, N.; Spencer, J. Histamine, xanthine oxidase generated oxygen-derived free radicals and Helicobacter pylori in gastroduodenal inflammation and ulceration. Inflamm. Res. 1998, 47, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Yoshizumi, K.; Nishioka, N.; Tsuji, T. Xanthine oxidase inhibitory activity and hypouricemia effect of propolis in rats. Yakugaku Zasshi J. Pharm. Soc. Jpn. 2005, 125, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Jan, I.; Rather, R.A.; Mushtaq, I.; Malik, A.A.; Besina, S.; Basit Baba, A.; Farooq, M.; Yousuf, T.; Rah, B.; Afroze, D. Helicobacter pylori subdues cytokine signaling to alter mucosal inflammation via hypermethylation of suppressor of cytokine signaling 1 gene during gastric carcinogenesis. Front. Oncol. 2021, 10, 604747. [Google Scholar] [CrossRef]
- Tan, V.P.Y.; Wong, B.C.Y. Helicobacter pylori and gastritis: Untangling a complex relationship 27 years on. J. Gastroenterol. Hepatol. 2011, 26, 42–45. [Google Scholar] [CrossRef]
- Xu, W.; Lu, H.; Yuan, Y.; Deng, Z.; Zheng, L.; Li, H. The antioxidant and anti-inflammatory effects of flavonoids from propolis via Nrf2 and NF-κB pathways. Foods 2022, 11, 2439. [Google Scholar] [CrossRef] [PubMed]
- Song, M.-Y.; Lee, D.-Y.; Kim, E.-H. Anti-inflammatory and anti-oxidative effect of Korean propolis on Helicobacter pylori-induced gastric damage in vitro. J. Microbiol. 2020, 58, 878–885. [Google Scholar] [CrossRef]
- Skiba, M.; Szliszka, E.; Kunicka, M.; Krol, W. Effect of ethanol extract of propolis (EEP) on interleukin 8 release by human gastric adenocarcinoma cells (AGS) infected with Helicobacter pylori. Cent. Eur. J. Immunol. 2011, 36, 65–69. [Google Scholar]
- Márquez, N.; Sancho, R.; Macho, A.; Calzado, M.A.; Fiebich, B.L.; Muñoz, E. Caffeic acid phenethyl ester inhibits T-cell activation by targeting both nuclear factor of activated T-cells and NF-κB transcription factors. J. Pharmacol. Exp. Ther. 2004, 308, 993–1001. [Google Scholar] [CrossRef]
- Byun, E.; Park, B.; Lim, J.W.; Kim, H. Activation of NF-κB and AP-1 Mediates Hyperproliferation by Inducing β-Catenin and c-Myc in Helicobacter pylori-Infected Gastric Epithelial Cells. Yonsei Med. J. 2016, 57, 647–651. [Google Scholar] [CrossRef]
- Armutcu, F.; Akyol, S.; Ustunsoy, S.; Turan, F.F. Therapeutic potential of caffeic acid phenethyl ester and its anti-inflammatory and immunomodulatory effects. Exp. Ther. Med. 2015, 9, 1582–1588. [Google Scholar] [CrossRef]
- Franchin, M.; Saliba, A.S.M.C.; Ramos, A.D.S.; Spada, F.P.; Dos Santos, D.C.; de Oliveira Leandro, M.; Da Campo Junqueira Gonçalves, E.; Bueno-Silva, B.; Xu, Y.; Wang, K.; et al. Alginate-based microcapsules loaded with Brazilian green propolis decrease reactive oxygen species production, reduce inflammatory cytokines, and mitigate intestinal inflammation. Int. J. Biol. Macromol. 2025, 310, 143357. [Google Scholar] [CrossRef]
- Della Bella, C.; Soluri, M.F.; Puccio, S.; Benagiano, M.; Grassi, A.; Bitetti, J.; Cianchi, J.; Sblattero, D.; Peano, C.; D’Elios, M.M. The Helicobacter pylori CagY protein drives gastric Th1 and Th17 inflammation and B cell proliferation in gastric MALT lymphoma. Int. J. Mol. Sci. 2021, 22, 9459. [Google Scholar] [CrossRef]
- Ahn, M.R.; Kumazawa, S.; Hamasaka, T.; Bang, K.-S.; Nakayama, T. Antioxidant activity and constituents of propolis collected in various areas of Korea. J. Agric. Food Chem. 2004, 52, 7286–7292. [Google Scholar] [CrossRef]
- Song, M.-Y.; Lee, D.-Y.; Han, Y.-M.; Kim, E.-H. Anti-inflammatory effect of Korean propolis on Helicobacter pylori-infected gastric mucosal injury mice model. Nutrients 2022, 14, 4644. [Google Scholar] [CrossRef]
- Sedarat, Z.; Taylor-Robinson, A.W. Helicobacter pylori outer membrane proteins and virulence factors: Potential targets for novel therapies and vaccines. Pathogens 2024, 13, 392. [Google Scholar] [CrossRef]
- Soudi, H.; Falsafi, T.; Mahboubi, M.; Gharavi, S. Evaluation of Helicobacter pylori OipA protein as a vaccine candidate and propolis as an adjuvant in C57BL/6 mice. Iran. J. Basic Med. Sci. 2021, 24, 1220. [Google Scholar]
- Kim, N.-R.; Lee, S.W.; Kwon, H.J.; Kim, M.R. Protective effect of propolis complex against Helicobacter pylori-induced stomach ulcer in C57BL/6 mouse. J. Korean Soc. Food Sci. Nutr. 2020, 49, 547–553. [Google Scholar] [CrossRef]
- Mahboubi, M.; Falsafi, T.; Sadeghizadeh, M.; Mahjoub, F. The role of outer inflammatory protein A (OipA) in vaccination of theC57BL/6 mouse model infected by Helicobacter pylori. Turk. J. Med. Sci. 2017, 47, 326–333. [Google Scholar] [CrossRef]
- Patel, S.K.; Pratap, C.B.; Jain, A.K.; Gulati, A.K.; Nath, G. Diagnosis of Helicobacter pylori: What should be the gold standard? World J. Gastroenterol. 2014, 20, 12847. [Google Scholar] [CrossRef] [PubMed]
- Mansour, A.; Mansour, M. Helicobacter pylori: Pathology, Diagnosis and Nano Natural Treatment of Diabetes and Auto-immune Diseases. Adv. Res. J. Med. Clin. Sci. 2023, 9, 1142–1146. [Google Scholar]
- Hatz, R.A.; Brooks, W.P.; Krämling, H.J.; Enders, G. Stomach immunology and Helicobacter pylori infection. Curr. Opin. Gastroenterol. 1992, 8, 993–1001. [Google Scholar] [CrossRef]
- Sitkin, S.; Lazebnik, L.; Avalueva, E.; Kononova, S.; Vakhitov, T. Gastrointestinal microbiome and Helicobacter pylori: Eradicate, leave it as it is, or take a personalized benefit–risk approach? World J. Gastroenterol. 2022, 28, 766. [Google Scholar] [CrossRef]
- Mendonça, M.A.A.; Ribeiro, A.R.S.; de Lima, A.K.; Bezerra, G.B.; Pinheiro, M.S.; de Albuquerque-Júnior, R.L.C.; Gomes, M.Z.; Padilha, F.F.; Thomazzi, S.M.; Novellino, E.; et al. Red propolis and its dyslipidemic regulator formononetin: Evaluation of antioxidant activity and gastroprotective effects in rat model of gastric ulcer. Nutrients 2020, 12, 2951. [Google Scholar] [CrossRef]
- Vaz Coelho, L.G.; Ferreira Bastos, E.M.A.; Resende, C.C.; e Silva, C.M.P.; Sanches, B.S.F.; De Castro, F.G.; Moretzsohn, L.D.; Vieira, W.L.D.S.; Trindade, O.R. Brazilian green propolis on Helicobacter pylori infection. a pilot clinical study. Helicobacter 2007, 12, 572–574. [Google Scholar] [CrossRef]
- Bustamante-Rengifo, J.A.; Matta, A.J.; Pazos, A.; Bravo, L.E. In vitro effect of amoxicillin and clarithromycin on the 3′region of cagA gene in Helicobacter pylori isolates. World J. Gastroenterol. 2013, 19, 6044. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, B.; Xie, Q. New progress in traditional Chinese medicine treatment of Hp related peptic ulcers. J. New Chin. Med. 2011, 43, 122–124. [Google Scholar]
- Zhang, J.; Li, Z. Determination of Baicalin and Galangin Content in Propolis Tablets by High Performance Liquid Chromatography. Tradit. Chin. Med. Res. 2015, 28, 70–72. [Google Scholar]
- Yee, J.K.C. Helicobacter pylori colonization of the oral cavity: A milestone discovery. World J. Gastroenterol. 2016, 22, 641. [Google Scholar] [CrossRef]
- Santiago, K.B.; Conti, B.J.Ã.; Cardoso, E.O.; Golim, M.A.; Sforcin, J.M. Immunomodulatory/anti-inflammatory effects of a propolis-containing mouthwash on human monocytes. FEMS Pathog. Dis. 2016, 74, ftw081. [Google Scholar] [CrossRef]
- Santiago, K.B.; Piana, G.M.; Conti, B.J.; de Oliveira Cardoso, E.; Andrade, B.F.M.T.; Zanutto, M.R.; Rall, V.L.M.; Fernandes, A.; Sforcin, J.M. Microbiological control and antibacterial action of a propolis-containing mouthwash and control of dental plaque in humans. Nat. Prod. Res. 2018, 32, 1441–1445. [Google Scholar] [CrossRef] [PubMed]
- Zulhendri, F.; Felitti, R.; Fearnley, J.; Ravalia, M. The use of propolis in dentistry, oral health, and medicine: A review. J. Oral Biosci. 2021, 63, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Mkrtchyan, Z. Methods and means of Helicobacter pylori eradication in the oral cavity. New Armen. Med. J. 2011, 5, 41–45. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, H.; Li, Q.; Zhao, K.; Li, W.; Zhang, C.; Jiang, X. Potential Efficacy of Propolis in Treating Helicobacter pylori Infection and Its Mechanisms of Action. Nutrients 2025, 17, 2803. https://doi.org/10.3390/nu17172803
Nie H, Li Q, Zhao K, Li W, Zhang C, Jiang X. Potential Efficacy of Propolis in Treating Helicobacter pylori Infection and Its Mechanisms of Action. Nutrients. 2025; 17(17):2803. https://doi.org/10.3390/nu17172803
Chicago/Turabian StyleNie, Haitao, Qing Li, Keke Zhao, Wen Li, Cuiping Zhang, and Xiasen Jiang. 2025. "Potential Efficacy of Propolis in Treating Helicobacter pylori Infection and Its Mechanisms of Action" Nutrients 17, no. 17: 2803. https://doi.org/10.3390/nu17172803
APA StyleNie, H., Li, Q., Zhao, K., Li, W., Zhang, C., & Jiang, X. (2025). Potential Efficacy of Propolis in Treating Helicobacter pylori Infection and Its Mechanisms of Action. Nutrients, 17(17), 2803. https://doi.org/10.3390/nu17172803