Parental Dietary Knowledge, Income and Students’ Consumption of Sugar-Sweetened Beverages in China: Evidence from Longitudinal Study
Abstract
1. Introduction
2. Literature Review
2.1. Indicidual Level
2.2. Family Level
2.3. Environmental Level
3. Materials and Methods
3.1. Data
3.2. Variables
3.2.1. Student’s SSB Consumption
3.2.2. Parental Dietary Knowledge
3.2.3. Parental Income
3.2.4. Covariates
3.3. Statistical Analysis
4. Results
4.1. Descriptive Results
4.2. Regression Results of TWFE Model
4.3. Robustness Checks
4.4. Heterogeneous Effects
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| SSB | Sugar-Sweetened Beverages |
| TWFE | Two-way fixed-effects |
| PDK | Parental dietary knowledge |
| Income | Parental income |
| mL | Milliliter |
| g | Gram |
References
- Bleich, S.N.; Vercammen, K.A. The Negative Impact of Sugar-Sweetened Beverages on Children’s Health: An Update of the Literature. BMC Obes. 2018, 5, 6. [Google Scholar] [CrossRef]
- Lara-Castor, L.; Micha, R.; Cudhea, F.; Miller, V.; Shi, P.; Zhang, J.; Sharib, J.R.; Erndt-Marino, J.; Cash, S.B.; Barquera, S.; et al. Intake of Sugar Sweetened Beverages among Children and Adolescents in 185 Countries between 1990 and 2018: Population Based Study. BMJ 2024, 386, e079234. [Google Scholar] [CrossRef]
- Lara-Castor, L.; Micha, R.; Cudhea, F.; Miller, V.; Shi, P.; Zhang, J.; Sharib, J.R.; Erndt-Marino, J.; Cash, S.B.; Mozaffarian, D. Sugar-Sweetened Beverage Intakes among Adults between 1990 and 2018 in 185 Countries. Nat. Commun. 2023, 14, 5957. [Google Scholar] [CrossRef]
- Yang, L.; Bovet, P.; Liu, Y.; Zhao, M.; Ma, C.; Liang, Y.; Xi, B. Consumption of Carbonated Soft Drinks Among Young Adolescents Aged 12 to 15 Years in 53 Low- and Middle-Income Countries. Am. J. Public Health 2017, 107, 1095–1100. [Google Scholar] [CrossRef]
- Singh, G.M. Soda Consumption Among Adolescents: Implications for Low- and Middle-Income Countries. Am. J. Public Health 2017, 107, 1025–1027. [Google Scholar] [CrossRef]
- Gui, Z.-H.; Zhu, Y.-N.; Cai, L.; Sun, F.-H.; Ma, Y.-H.; Jing, J.; Chen, Y.-J. Sugar-Sweetened Beverage Consumption and Risks of Obesity and Hypertension in Chinese Children and Adolescents: A National Cross-Sectional Analysis. Nutrients 2017, 9, 1302. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Phung, D.; Chu, C. Sociodemographic, Lifestyle, Behavioral, and Parental Factors Associated with Sugar-Sweetened Beverage Consumption in Children in China. PLoS ONE 2021, 16, e0261199. [Google Scholar] [CrossRef] [PubMed]
- Scharf, R.J.; DeBoer, M.D. Sugar-Sweetened Beverages and Children’s Health. Annu. Rev. Public Health 2016, 37, 273–293. [Google Scholar] [CrossRef] [PubMed]
- Briefel, R.R.; Wilson, A.; Gleason, P.M. Consumption of Low-Nutrient, Energy-Dense Foods and Beverages at School, Home, and Other Locations among School Lunch Participants and Nonparticipants. J. Am. Diet. Assoc. 2009, 109, S79–S90. [Google Scholar] [CrossRef]
- Malik, V.S.; Schulze, M.B.; Hu, F.B. Intake of Sugar-Sweetened Beverages and Weight Gain: A Systematic Review. Am. J. Clin. Nutr. 2006, 84, 274–288. [Google Scholar] [CrossRef]
- Malik, V.S.; Popkin, B.M.; Bray, G.A.; Després, J.-P.; Hu, F.B. Sugar-Sweetened Beverages, Obesity, Type 2 Diabetes Mellitus, and Cardiovascular Disease Risk. Circulation 2010, 121, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Sohn, W.; Burt, B.A.; Sowers, M.R. Carbonated Soft Drinks and Dental Caries in the Primary Dentition. J. Dent. Res. 2006, 85, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Marshall, T.A. Preventing Dental Caries Associated with Sugar-Sweetened Beverages. J. Am. Dent. Assoc. 2013, 144, 1148–1152. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, H.; Kelishadi, R.; Heshmat, R.; Motlagh, M.E.; Ranjbar, S.H.; Ardalan, G.; Payab, M.; Chinian, M.; Asayesh, H.; Larijani, B. Association between Junk Food Consumption and Mental Health in a National Sample of Iranian Children and Adolescents: The CASPIAN-IV Study. Nutrition 2014, 30, 1391–1397. [Google Scholar] [CrossRef]
- Hu, D.; Cheng, L.; Jiang, W. Sugar-Sweetened Beverages Consumption and the Risk of Depression: A Meta-Analysis of Observational Studies. J. Affect. Disord. 2019, 245, 348–355. [Google Scholar] [CrossRef]
- Geng, M.; Jiang, L.; Wu, X.; Ding, P.; Liu, W.; Liu, M.; Tao, F. Sugar-Sweetened Beverages Consumption Are Associated with Behavioral Problems among Preschoolers: A Population Based Cross-Sectional Study in China. J. Affect. Disord. 2020, 265, 519–525. [Google Scholar] [CrossRef]
- Viner, R.M.; Cole, T.J. Who Changes Body Mass between Adolescence and Adulthood? Factors Predicting Change in BMI between 16 Year and 30 Years in the 1970 British Birth Cohort. Int. J. Obes. 2006, 30, 1368–1374. [Google Scholar] [CrossRef]
- Nissinen, K.; Mikkilä, V.; Männistö, S.; Lahti-Koski, M.; Räsänen, L.; Viikari, J.; Raitakari, O.T. Sweets and Sugar-Sweetened Soft Drink Intake in Childhood in Relation to Adult BMI and Overweight. The Cardiovascular Risk in Young Finns Study. Public Health Nutr. 2009, 12, 2018–2026. [Google Scholar] [CrossRef]
- Kassem, N.O.; Lee, J.W.; Modeste, N.N.; Johnston, P.K. Understanding Soft Drink Consumption among Female Adolescents Using the Theory of Planned Behavior. Health Educ. Res. 2003, 18, 278–291. [Google Scholar] [CrossRef]
- Kassem, N.O.; Lee, J.W. Understanding Soft Drink Consumption Among Male Adolescents Using the Theory of Planned Behavior. J. Behav. Med. 2004, 27, 273–296. [Google Scholar] [CrossRef]
- Bere, E.; Glomnes, E.S.; Te Velde, S.J.; Klepp, K.-I. Determinants of Adolescents’ Soft Drink Consumption. Public Health Nutr. 2008, 11, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Haerens, L.; Craeynest, M.; Deforche, B.; Maes, L.; Cardon, G.; De Bourdeaudhuij, I. The Contribution of Psychosocial and Home Environmental Factors in Explaining Eating Behaviours in Adolescents. Eur. J. Clin. Nutr. 2008, 62, 51–59. [Google Scholar] [CrossRef]
- Ezendam, N.P.; Evans, A.E.; Stigler, M.H.; Brug, J.; Oenema, A. Cognitive and Home Environmental Predictors of Change in Sugar-Sweetened Beverage Consumption among Adolescents. Br. J. Nutr. 2010, 103, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Van De Gaar, V.M.; Jansen, W.; Van Grieken, A.; Borsboom, G.J.; Kremers, S.; Raat, H. Effects of an Intervention Aimed at Reducing the Intake of Sugar-Sweetened Beverages in Primary School Children: A Controlled Trial. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 98. [Google Scholar] [CrossRef] [PubMed]
- Rauba, J.; Tahir, A.; Milford, B.; Toll, A.; Benedict, V.; Wang, C.; Chehab, L.; Sanborn, T. Reduction of Sugar-Sweetened Beverage Consumption in Elementary School Students Using an Educational Curriculum of Beverage Sugar Content. Glob. Pediatr. Health 2017, 4, 2333794X1771177. [Google Scholar] [CrossRef] [PubMed]
- Patrick, H.; Nicklas, T.A. A Review of Family and Social Determinants of Children’s Eating Patterns and Diet Quality. J. Am. Coll. Nutr. 2005, 24, 83–92. [Google Scholar] [CrossRef]
- Mazarello Paes, V.; Hesketh, K.; O’Malley, C.; Moore, H.; Summerbell, C.; Griffin, S.; van Sluijs, E.M.F.; Ong, K.K.; Lakshman, R. Determinants of Sugar-Sweetened Beverage Consumption in Young Children: A Systematic Review. Obes. Rev. 2015, 16, 903–913. [Google Scholar] [CrossRef]
- van Ansem, W.J.C.; van Lenthe, F.J.; Schrijvers, C.T.M.; Rodenburg, G.; van de Mheen, D. Socio-Economic Inequalities in Children’s Snack Consumption and Sugar-Sweetened Beverage Consumption: The Contribution of Home Environmental Factors. Br. J. Nutr. 2014, 112, 467–476. [Google Scholar] [CrossRef]
- Variyam, J.N.; Blaylock, J.; Lin, B.; Ralston, K.; Smallwood, D. Mother’s Nutrition Knowledge and Children’s Dietary Intakes. Am. J. Agric. Econ. 1999, 81, 373–384. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, X. Parental Nutrition Knowledge, Iron Deficiency, and Child Anaemia in Rural China. J. Dev. Stud. 2020, 56, 578–595. [Google Scholar] [CrossRef]
- Yu, P.; Chen, Y.; Zhao, A.; Bai, Y.; Zheng, Y.; Zhao, W.; Zhang, Y. Consumption of Sugar-Sweetened Beverages and Its Association with Overweight among Young Children from China. Public Health Nutr. 2016, 19, 2336–2346. [Google Scholar] [CrossRef]
- Hafekost, K.; Mitrou, F.; Lawrence, D.; Zubrick, S.R. Sugar Sweetened Beverage Consumption by Australian Children: Implications for Public Health Strategy. BMC Public Health 2011, 11, 950. [Google Scholar] [CrossRef]
- Han, E.; Powell, L.M. Consumption Patterns of Sugar-Sweetened Beverages in the United States. J. Acad. Nutr. Diet. 2013, 113, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Shareck, M.; Lewis, D.; Smith, N.R.; Clary, C.; Cummins, S. Associations between Home and School Neighbourhood Food Environments and Adolescents’ Fast-Food and Sugar-Sweetened Beverage Intakes: Findings from the Olympic Regeneration in East London (ORiEL) Study. Public Health Nutr. 2018, 21, 2842–2851. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, R.; Zhao, Q.; Fan, S. The Impact of Peer Effect on Students’ Consumption of Sugar-Sweetened Beverages-Instrumental Variable Evidence from North China. Food Policy 2023, 115, 102413. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, J.; Wan, L.; Chen, W. Total and Added Sugar Intakes Are Increasing among Children and Adolescents in China: Findings from CHNS 1997–2011. Nutrients 2022, 14, 3340. [Google Scholar] [CrossRef]
- Liu, Z.; Si, W.; Zhao, Q.; Tao, C. Does Subjective Dietary Knowledge Affect Sugar-Sweetened Carbonated Beverages Consumption and Child Obesity? Empirical Evidence from the Inner Mongolia Autonomous Region in China. Int. J. Environ. Res. Public Health 2021, 18, 3713. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, X.; Coday, M.; Garcia, D.O.; Li, X.; Mossavar-Rahmani, Y.; Naughton, M.J.; Lopez-Pentecost, M.; Saquib, N.; Shadyab, A.H.; et al. Sugar-Sweetened and Artificially Sweetened Beverages and Risk of Liver Cancer and Chronic Liver Disease Mortality. JAMA 2023, 330, 537–546. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, P.; Xu, J.; Gan, Q.; Yang, T.; Cao, W.; Wang, H.; Luo, R.; Pan, H.; Hu, X. Nutrition and Health Monitoring and Evaluation of the NIPRCES in China. China CDC Wkly. 2023, 5, 542–544. [Google Scholar] [CrossRef]
- Dang, H.-A.H.; Viet Nguyen, C. Gender Inequality during the COVID-19 Pandemic: Income, Expenditure, Savings, and Job Loss. World Dev. 2021, 140, 105296. [Google Scholar] [CrossRef]
- Aksoy, N.C.; Kabadayi, E.T.; Alan, A.K. An Unintended Consequence of Covid-19: Healthy Nutrition. Appetite 2021, 166, 105430. [Google Scholar] [CrossRef] [PubMed]
- Altawil, H.; Klawunn, R.; Dierks, M.; Lander, J. Parental COVID-19–Related Health Information Practises, Sources, Evaluations and Needs: A Qualitative Interview Study. Health Expect. 2022, 26, 555–565. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Song, Q.; Smith, J.P. Hukou system, mechanisms, and health stratification across the life course in rural and urban China. Health Place 2019, 58, 102150. [Google Scholar] [CrossRef] [PubMed]
- Scaglioni, S.; De Cosmi, V.; Ciappolino, V.; Parazzini, F.; Brambilla, P.; Agostoni, C. Factors Influencing Children’s Eating Behaviours. Nutrients 2018, 10, 706. [Google Scholar] [CrossRef] [PubMed]
- Ek, S. Gender Differences in Health Information Behaviour: A Finnish Population-Based Survey. Health Promot. Int. 2015, 30, 736–745. [Google Scholar] [CrossRef]
- Rosinger, A.; Herrick, K.A.; Gahche, J.J.; Park, S. Sugar-Sweetened Beverage Consumption Among US Youth, 2011–2014. In NCHS Data Brief; United States Department of Health and Human Services: Washington, DC, USA, 2017; pp. 1–8. [Google Scholar]
- Bleich, S.N.; Vercammen, K.A.; Koma, J.W.; Li, Z. Trends in Beverage Consumption Among Children and Adults, 2003–2014. Obesity 2018, 26, 432–441. [Google Scholar] [CrossRef]
- Zhuang, X.; Liu, Y.; Gittelsohn, J.; Lewis, E.; Song, S.; Ma, Y.; Wen, D. Sugar-Sweetened Beverages Consumption and Associated Factors among Northeastern Chinese Children. Nutrients 2021, 13, 2233. [Google Scholar] [CrossRef]
- Blecher, E.; Liber, A.C.; Drope, J.M.; Nguyen, B.; Stoklosa, M. Global Trends in the Affordability of Sugar-Sweetened Beverages, 1990–2016. Prev. Chronic Dis. 2017, 14, 160406. [Google Scholar] [CrossRef]
- Li, D.; Wang, T.; Cheng, Y.; Zhang, M.; Yang, X.; Zhu, Z.; Liu, D.; Yang, W.; Zeng, L. The Extent and Nature of Television Food Advertising to Children in Xi’an, China. BMC Public Health 2016, 16, 770. [Google Scholar] [CrossRef]
- Ma, L.; Xu, H.; Zhang, Z.; Li, L.; Lin, Z.; Qin, H. Nutrition Knowledge, Attitudes, and Dietary Practices among Parents of Children and Adolescents in Weifang, China: A Cross-Sectional Study. Prev. Med. Rep. 2023, 35, 102396. [Google Scholar] [CrossRef]
- Cai, Z.; Jiang, K.; Wang, T.; Li, S.; Xian, J.; Zhao, Y.; Shi, Z. Influence of Adolescents’ and Parental Dietary Knowledge on Adolescents’ Body Mass Index (BMI), Overweight/Obesity in 2004–2015: A Longitudinal Study. Arch. Public Health 2023, 81, 188. [Google Scholar] [CrossRef]
- Williams, L.; Campbell, K.; Abbott, G.; Crawford, D.; Ball, K. Is Maternal Nutrition Knowledge More Strongly Associated with the Diets of Mothers or Their School-Aged Children? Public Health Nutr. 2012, 15, 1396–1401. [Google Scholar] [CrossRef]
- Vereecken, C.; Maes, L. Young Children’s Dietary Habits and Associations with the Mothers’ Nutritional Knowledge and Attitudes. Appetite 2010, 54, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Azizi Fard, N.; De Francisci Morales, G.; Mejova, Y.; Schifanella, R. On the Interplay between Educational Attainment and Nutrition: A Spatially-Aware Perspective. EPJ Data Sci. 2021, 10, 18. [Google Scholar] [CrossRef]
- Reppas, K.; Papamichael, M.M.; Moschonis, G.; Cardon, G.; Iotova, V.; Bazdarska, Y.; Chakarova, N.; Rurik, I.; Antal, E.; Valve, P.; et al. Role of Parenting Practices and Digital Media on Beverage Intake in European Schoolchildren of Different Weight Status. Feel4Diabetes-Study. Nutrition 2023, 115, 112142. [Google Scholar] [CrossRef] [PubMed]
- Grunert, K.G.; Wills, J.M.; Fernández-Celemín, L. Nutrition Knowledge, and Use and Understanding of Nutrition Information on Food Labels among Consumers in the UK. Appetite 2010, 55, 177–189. [Google Scholar] [CrossRef]
- Backholer, K.; Gupta, A.; Zorbas, C.; Bennett, R.; Huse, O.; Chung, A.; Isaacs, A.; Golds, G.; Kelly, B.; Peeters, A. Differential Exposure to, and Potential Impact of, Unhealthy Advertising to Children by Socio-economic and Ethnic Groups: A Systematic Review of the Evidence. Obes. Rev. 2021, 22, e13144. [Google Scholar] [CrossRef]
- Arango-Angarita, A.; Méndez-Gómez-Humarán, I.; Guerrero-López, C.M.; Shamah-Levy, T. Is Store Density Associated with Sugar-sweetened Beverages Consumption and Overweight or Obesity in Mexican Adolescents? Pediatr. Obes. 2022, 17, e12838. [Google Scholar] [CrossRef]
- Vohs, K.D.; Heatherton, T.F. Self-Regulatory Failure: A Resource-Depletion Approach. Psychol. Sci. 2000, 11, 249–254. [Google Scholar] [CrossRef]
- Torres, S.J.; Nowson, C.A. Relationship between Stress, Eating Behavior, and Obesity. Nutrition 2007, 23, 887–894. [Google Scholar] [CrossRef]
- Jabs, J.; Devine, C.M. Time Scarcity and Food Choices: An Overview. Appetite 2006, 47, 196–204. [Google Scholar] [CrossRef]
- Barquera, S.; Hernandez-Barrera, L.; Tolentino, M.L.; Espinosa, J.; Ng, S.W.; Rivera, J.A.; Popkin, B.M. Energy Intake from Beverages Is Increasing among Mexican Adolescents and Adults. J. Nutr. 2008, 138, 2454–2461. [Google Scholar] [CrossRef]
- Andreyeva, T.; Marple, K.; Marinello, S.; Moore, T.E.; Powell, L.M. Outcomes Following Taxation of Sugar-Sweetened Beverages: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2022, 5, e2215276. [Google Scholar] [CrossRef]
- Taylor, L. UK Sugar Tax Led to Fall in Consumption in Children and Adults. BMJ 2024, 386, q1518. [Google Scholar] [CrossRef]

| Variables | Mean ± SD or n (%) |
|---|---|
| Student characteristic | |
| Hukou, rural (%) | 1897 (47.88) |
| Gender, boy (%) | 1914 (48.31) |
| Ethnic minority, yes (%) | 403 (10.20) |
| Age (y) | 11.48 ± 1.55 |
| Sibling (n) | 0.58 ± 0.59 |
| Lives with parents, yes (%) | 3745 (94.52) |
| Pocket money, yes (%) | 2597 (65.55) |
| Dietary knowledge score (points) | 2.52 ± 1.38 |
| Parental characteristic | |
| Father’s education (y) | 10.46 ± 3.24 |
| Mother’s education (y) | 10.01 ± 3.58 |
| Father’s age (y) | 42.18 ± 5.64 |
| Mother’s age (y) | 40.03 ± 5.37 |
| School characteristic | |
| Nutrition education, yes (%) | 2707 (68.32) |
| Nutrition activities, yes (%) | 2440 (61.59) |
| Variables | Definition | Mean ± SD or n (%) | p Value | |
|---|---|---|---|---|
| 2019 | 2020 | |||
| Panel A: Extensive margin (whether consumed in the past week, %) | ||||
| Dummy_total | Any SSBs, yes | 3269 (82.51) | 3443 (86.90) | 0.00 |
| Dummy_CB | Carbonated beverages, yes | 2782 (70.22) | 3120 (78.75) | 0.00 |
| Dummy_JB | Juice beverages, yes | 2936 (74.10) | 3231 (81.55) | 0.00 |
| Panel B: Intensive margin (consumption in the past week, milliliters) | ||||
| (1) Total sample | ||||
| ml_total | Total SSBs volume | 686.09 ± 546.45 | 891.21 ± 620.53 | 0.00 |
| ml_CB | Carbonated beverages volume | 316.21 ± 317.32 | 406.18 ± 354.56 | 0.00 |
| ml_JB | Juice beverages volume | 369.88 ± 342.67 | 485.03 ± 388.77 | 0.00 |
| (2) Conditional on consumption | ||||
| ml_total | Total SSBs volume | 831.53 ± 490.87 | 1025.55 ± 552.54 | 0.00 |
| ml_CB | Carbonated beverages volume | 450.33 ± 288.09 | 515.81 ± 321.08 | 0.00 |
| ml_JB | Juice beverages volume | 499.13 ± 306.48 | 594.76 ± 346.50 | 0.00 |
| Panel C: Intensive margin (added sugar intake, grams) | ||||
| (1) Total sample | ||||
| Sugar_total | Added sugar from SSBs | 69.39 ± 55.85 | 89.97 ± 63.29 | 0.00 |
| Sugar_CB | Added sugar from carbonated beverages | 37.95 ± 38.08 | 48.89 ± 43.54 | 0.00 |
| Sugar_JB | Added sugar from juice beverages | 31.44 ± 29.13 | 41.33 ± 33.67 | 0.00 |
| (2) Conditional on consumption | ||||
| Sugar_total | Added sugar from SSBs | 84.09 ± 50.43 | 103.53 ± 56.62 | 0.00 |
| Sugar_CB | Added sugar from carbonated beverages | 54.04 ± 34.57 | 62.09 ± 39.85 | 0.00 |
| Sugar_JB | Added sugar from juice beverages | 42.43 ± 26.06 | 50.68 ± 30.26 | 0.00 |
| Income | Parental monthly income, thousand-yuan | 6.71 ± 3.92 | 6.45 ± 3.42 | 0.00 |
| PDK | Parental dietary knowledge score (points) | 3.32 ± 1.70 | 3.72 ± 1.41 | 0.00 |
| Outcome Variables | PDK | Income | R2 |
|---|---|---|---|
| Estimate (95% CI) | Estimate (95% CI) | ||
| Panel A: Extensive margin (consumption probability) | |||
| Dummy_total | −0.004 (−0.01, 0.00) | 0.003 ** (0.00, 0.01) | 0.01 |
| Dummy_CB | −0.007 (−0.02, 0.00) | 0.000 (−0.00, 0.00) | 0.03 |
| Dummy_JB | −0.004 (−0.01, 0.01) | 0.003 (−0.00, 0.01) | 0.02 |
| Panel B: Intensive margin (volume consumed) | |||
| ml_total | −13.395 ** (−26.38, −0.41) | −0.054 (−5.45, 5.35) | 0.08 |
| ml_CB | −3.496 (−10.57, 3.58) | 0.215 (−2.94, 3.37) | 0.05 |
| ml_JB | −9.899 ** (−18.23, −1.57) | −0.269 (−3.70, 3.17) | 0.06 |
| Panel C: Intensive margin (added sugar intake) | |||
| Sugar_total | −1.261 (−2.57, 0.05) | 0.003 (−0.55, 0.55) | 0.08 |
| Sugar_CB | −0.348 (−1.24, 0.54) | 0.025 (−0.35, 0.40) | 0.05 |
| Sugar_JB | −0.791 ** (−1.51, −0.07) | −0.024 (−0.31, 0.27) | 0.06 |
| Outcome Variable | PDK | Income | PDK × Income | R2 |
|---|---|---|---|---|
| Estimate (95% CI) | Estimate (95% CI) | Estimate (95% CI) | ||
| Panel A: Extensive margin (consumption probability) | ||||
| Dummy_total | −0.021 *** (−0.03, −0.01) | −0.004 (−0.01, 0.00) | 0.002 *** (0.00, 0.00) | 0.01 |
| Dummy_CB | −0.012 (−0.03, 0.01) | −0.002 (−0.01, 0.01) | 0.001 (−0.00, 0.00) | 0.03 |
| Dummy_JB | −0.016 (−0.03, 0.00) | −0.003 (−0.01, 0.01) | 0.002 (−0.00, 0.00) | 0.02 |
| Panel B: Intensive margin (volume consumed) | ||||
| ml_total | −14.136 (−39.84, 11.57) | −0.398 (−11.27, 10.47) | 0.113 (−3.14, 3.36) | 0.08 |
| ml_CB | −9.428 (−24.42, 5.56) | −2.539 (−9.03, 3.95) | 0.903 (−1.20, 3.00) | 0.05 |
| ml_JB | −4.708 (−20.85, 11.43) | 2.141 (−5.25, 9.53) | −0.790 (−2.70, 1.12) | 0.06 |
| Panel C: Intensive margin (added sugar intake) | ||||
| Sugar_total | −1.532 (−4.16, 1.10) | −0.123 (−1.23, 0.98) | 0.041 (−0.30, 0.38) | 0.08 |
| Sugar_CB | −1.100 (−2.90, 0.70) | −0.325 (−1.11, 0.46) | 0.115 (−0.14, 0.37) | 0.05 |
| Sugar_JB | −0.378 (−1.75, 1.00) | 0.168 (−0.46, 0.79) | −0.063 (−0.23, 0.10) | 0.06 |
| Outcome Variable | Model (1) | Model (2) | |||
|---|---|---|---|---|---|
| PDK | Income | R2 | PDK × Income | R2 | |
| Estimate (95% CI) | Estimate (95% CI) | Estimate (95% CI) | |||
| Panel A: Extensive margin (consumption probability) | |||||
| Dummy_total | −0.004 (−0.01, 0.00) | 0.004 ** (0.00, 0.01) | 0.01 | 0.003 *** (0.00, 0.00) | 0.01 |
| Dummy_CB | −0.009 (−0.02, 0.00) | 0.001 (−0.00, 0.00) | 0.03 | 0.001 (−0.00, 0.00) | 0.03 |
| Dummy_JB | −0.004 (−0.01, 0.01) | 0.003 (−0.00, 0.01) | 0.02 | 0.002 (−0.00, 0.00) | 0.02 |
| Panel B: Intensive margin (volume consumed) | |||||
| ml_total | −13.598 ** (−26.60, −0.59) | 0.776 (4.72, 6.27) | 0.08 | 0.656 (−2.60, 3.91) | 0.08 |
| ml_CB | −3.421 (−10.53, 3.69) | 0.497 (−2.68, 3.68) | 0.05 | 1.236 (−0.90, 3.37) | 0.05 |
| ml_JB | −10.177 ** (−18.74, −1.62) | 0.279 (−3.22, 3.77) | 0.06 | −0.580 (−2.55, 1.39) | 0.06 |
| Panel C: Intensive margin (added sugar intake) | |||||
| Sugar_total | −1.276 (−2.59, 0.04) | 0.083 (−0.48, 0.64) | 0.08 | 0.099 (−0.24, 0.44) | 0.08 |
| Sugar_CB | −0.335 (−1.24, 0.57) | 0.058 (−0.32, 0.44) | 0.05 | 0.155 (−0.10, 0.41) | 0.05 |
| Sugar_JB | −0.811 ** (−1.56, −0.07) | 0.023 (−0,27, 0.32) | 0.06 | −0.045 (−0.21, 0.12) | 0.06 |
| Outcome Variable | Model (1) | Model (2) | |||
|---|---|---|---|---|---|
| PDK_c | Income | R2 | PDK_c × Income | R2 | |
| Estimate (95% CI) | Estimate (95% CI) | Estimate (95% CI) | |||
| Panel A: Extensive margin (consumption probability) | |||||
| Dummy_total | −0.026 (−0.07, 0.02) | 0.003 ** (0.00, 0.01) | 0.01 | 0.015 *** (0.01, 0.02) | 0.01 |
| Dummy_CB | −0.042 (−0.11, 0.02) | 0.000 (−0.00, 0.00) | 0.03 | 0.004 (−0.00, 0.02) | 0.03 |
| Dummy_JB | −0.022 (−0.08, 0.04) | 0.000 (−0.00, 0.01) | 0.02 | 0.011 (−0.00, 0.02) | 0.02 |
| Panel B: Intensive margin (volume consumed) | |||||
| ml_total | −80.388 ** (−158.12, −2.65) | −0.047 (5.45, 5.35) | 0.08 | 0.581 (−18.97, 20.14) | 0.08 |
| ml_CB | −21.398 (−63.71, 20.91) | 0.217 (−2.93, 3.37) | 0.05 | 5.352 (−7.27, 17.97) | 0.05 |
| ml_JB | −58.991 ** (−109.05, −8.93) | −0.264 (−3.70, 3.17) | 0.06 | −4.771 (−16.28, 6.74) | 0.06 |
| Panel C: Intensive margin (added sugar intake) | |||||
| Sugar_total | −7.582 (−15.44, 0.27) | 0.004 (−0.55, 0.56) | 0.08 | 0.237 (−1.81, 2.28) | 0.08 |
| Sugar_CB | −2.131 (−7.46, 3.20) | 0.025 (−0.35, 0.40) | 0.05 | 0.679 (−0.85, 2.21) | 0.05 |
| Sugar_JB | −4.705 ** (−9.05, −0.36) | −0.023 (−0.31, 0.27) | 0.06 | −0.379 (−1.36, 0.60) | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Bai, Y.; Liu, C. Parental Dietary Knowledge, Income and Students’ Consumption of Sugar-Sweetened Beverages in China: Evidence from Longitudinal Study. Nutrients 2025, 17, 3356. https://doi.org/10.3390/nu17213356
Cui Y, Bai Y, Liu C. Parental Dietary Knowledge, Income and Students’ Consumption of Sugar-Sweetened Beverages in China: Evidence from Longitudinal Study. Nutrients. 2025; 17(21):3356. https://doi.org/10.3390/nu17213356
Chicago/Turabian StyleCui, Yi, Yunli Bai, and Chengfang Liu. 2025. "Parental Dietary Knowledge, Income and Students’ Consumption of Sugar-Sweetened Beverages in China: Evidence from Longitudinal Study" Nutrients 17, no. 21: 3356. https://doi.org/10.3390/nu17213356
APA StyleCui, Y., Bai, Y., & Liu, C. (2025). Parental Dietary Knowledge, Income and Students’ Consumption of Sugar-Sweetened Beverages in China: Evidence from Longitudinal Study. Nutrients, 17(21), 3356. https://doi.org/10.3390/nu17213356

